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Review of Probability Theory

Random Variables

A random variable models the outcome of an experiment which is not deterministic in nature.

Example: Coin Toss
Let X denote the outcome from flipping a coin.

Pr {X = ‘heads’} = 1
2

Pr {X = ‘tails’} = 1
2

Heads or tails can occur with equal probability.

Discrete Random Variables

– takes on values from a set that is either finite or countably infinite

– takes each value with a certain probability, Pr {X = x}
– one of the outcomes must occur, so∑

all x

Pr {X = x} = 1

– cumulative distribution function

FX(x) = Pr {X ≤ x} =
∑

all a≤x

Pr {X = a}

Example: Sum of the value of two dice
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Joint and Conditional Probabilities

Consider two random variables, X and Y .
The joint probability of event X = x and event Y = y both occuring is denoted by Pr {X = x, Y = y}.

Example: Flip a coin twice
Let X be the outcome of the first toss, and Y be the outcome of the second toss.

Pr {X = ‘heads’, Y = ‘heads’} =
1

4
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Example: Balls in an urn
Consider an urn containing two red balls and two black balls.
Let X denote the colour of a ball drawn randomly. Then

Pr {X = ‘red’} = Pr {X = ‘black’} =
1

2

Now let X and Y denote the colours of two balls drawn randomly without replacement. Then

Pr {X = ‘red’, Y = ‘red’} =
1

6

Pr {X = ‘red’, Y = ‘black’} =
2

6

Pr {X = ‘black’, Y = ‘red’} =
2

6

Pr {X = ‘black’, Y = ‘black’} =
1

6

The joint cdf of X and Y is

FX,Y (x, y) = Pr {X ≤ x, Y ≤ y} =
∑

all a≤x

∑
all b≤y

Pr {X = a, Y = b}

The conditional probability of event Y = y occuring given that event X = x has occurred is Pr {Y = y|X = x}

Example: Coins

Pr {Y = ‘heads’|X = ‘heads’} = Pr {Y = ‘heads’} =
1

2

Example: Balls

Pr {Y = ‘red’|X = ‘red’} =
1

3

X and Y are independent if
Pr {X = x, Y = y} = Pr {X = x}Pr {Y = y}

Marginal probability:

Pr {X = x} =
∑
all y

Pr {X = x, Y = y} Pr {Y = y} =
∑
all x

Pr {X = x, Y = y}

Bayes’ Rule:

Pr {Y = y|X = x} =
Pr {X = x, Y = y}

Pr {X = x}
=

Pr {X = x|Y = y}Pr {Y = y}
Pr {X = x}

If X and Y are independendent, then
Pr {Y = y|X = x} = Pr {Y = y}

Moments

Expectation of a function of a random variable

E [g(X)] =
∑
all x

g(x) Pr {X = x}

Mean: (Average value, expected value)

µX = E [X] =
∑
all x

x Pr {X = x}

Variance:
σ2
X = Var (X) = E

[
(X − µX)2

]
=
∑
all x

(x− µX)2 Pr {X = x}

σ2
X = E

[
(X − µX)2

]
= E

[
X2 − 2XµX + µ2

X

]
= E

[
X2
]
− 2E [X]µX + µ2

X = E
[
X2
]
− µ2

X

Covariance:
Cov (X,Y ) = E [(X − µX)(Y − µY )] =

∑
all x

∑
all y

(x− µX)(y − µY ) Pr {X = x, Y = y}

Correlation:

ρ(X,Y ) =
Cov (X,Y )√

Var (X) Var (Y )
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Some common distributions for discrete random variables

Bernoulli Distribution
Consider an experiment that can result in either a success or a failure.
e.g. transmission of a single bit – either the bit is received correctly (success), or an error occurs (failure).
Let X = 0 if the experiment is a success, and X = 1 if the experiment fails.
If p, with 0 ≤ p ≤ 1, is the probability of a failure, then the probability distribution of X is:

Pr {X = 0} = 1− p Pr {X = 1} = p

The random variable X is said to be a Bernoulli random variable.

Mean: E [X] = p Variance: Var (X) = p(1− p)

NOTE: A coin toss is an example of a Bernoulli random variable with p = 1
2 .

Binomial Distribution
Suppose that N independent experiments are performed, each resulting in a failure with probability p and in success
with probability 1−p. If X represents the number of failures that occur in N trials, then X is said to be a binomial
random variable with parameters (N, p). The probability distribution of X is

Pr {X = i} =

(
N

i

)
pi(1− p)N−i i = 0, 1, 2, . . . , N

Mean: E [X] = Np Variance: Var (X) = Np(1− p)

Continuous Random Variables

– takes on values from a set that is uncountable

– defined by its probability density function (pdf), which is a non-negative function such that

Pr {X ∈ B} =

∫
B

fX(α) dα

with ∫ ∞
−∞

fX(α) dα = 1

– cumulative distribution function (cdf)

FX(x) = Pr {X ≤ x} =

∫ x

−∞
fX(α) dα

Example: Rayleigh distribution

fX(x) = xe−x
2/2 FX(x) = 1− e−x

2/2
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Joint and Conditional Probabilities

Consider two continuous random variables, X and Y , with pdf’s fX(x) and fY (y).
The joint pdf of X and Y is denoted by fX,Y (x, y).
The joint cdf of X and Y is denoted by

FX,Y (x, y) = Pr {X ≤ x, Y ≤ y} =

∫ x

−∞

∫ y

−∞
fX,Y (α, β) dβ dα

The conditional pdf of Y given that X = x is fY |X(y | X = x)
X and Y are independent if

fX,Y (x, y) = fX(x)fY (y)
Marginal pdf:

fX(x) =

∫ ∞
−∞

fX,Y (x, y) dy

fY (y) =

∫ ∞
−∞

fX,Y (x, y) dx

Bayes’ Rule:

fY |X(y | X = x) =
fX,Y (x, y)

fX(x)
=
fX|Y (x | Y = y)fY (y)

fX(x)

If X and Y are independendent, then
fY |X(y | X = x) = fY (y)

Moments

Expectation of a function of a continuous random variable

E [g(X)] =

∫ ∞
−∞

g(x) fX(x) dx

Mean: (Average value, expected value)

µX = E [X] =

∫ ∞
−∞

x fX(x) dx

Variance:

σ2
X = Var (X) = E

[
(X − µX)2

]
=

∫ ∞
−∞

(x− µX)2 fX(x) dx

σ2
X = E

[
X2
]
− µ2

X

Covariance:

Cov (X,Y ) = E [(X − µX)(Y − µY )] =

∫ ∞
−∞

(x− µX)(y − µY ) fX,Y (x, y) dy dx

Correlation:

ρ(X,Y ) =
Cov (X,Y )√

Var (X) Var (Y )
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Some common distributions for continuous random variables

Uniform Distribution:

– A uniformly distributed random variable is defined over some range [a, b].

– probability density function:

fX(x) =

{
1
b−a a ≤ x ≤ b
0 otherwise

– cumulative distribution function:

FX(x) =

∫ x

a

fX(α) dα =
x− a
b− a

– mean:

E [X] = a+
b− a

2
– variance:

Var (X) =
(b− a)2

12
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Gaussian (Normal) Distribution:
– probability density function:

fX(x) =
1√

2πσ2
X

exp

{
− (x− µX)2

2σ2
X

}
– mean: E [X] = µX

– variance: Var (X) = σ2
X

– cumulative distribution function:

FX(x) =
1

2
+

1

2
erf

(
x− µX√

2σ2
X

)
– error function

erf (x) =
2√
π

∫ x

0

e−u
2

du

– Notes:

– If two Gaussian random variables are
uncorrelated, they are also indepen-
dent.

– Any linear combination of two or more
Gaussian random variables results in
another Gaussian random variable.

e.g.: If X and Y are Gaussian random
variables, then

Z = α1X + α2Y

is also a Gaussian random vari-
able, for any constants α1 and α2.
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Notes on Complex-valued Random Variables
Consider the complex-valued random variable, Z, generated from two real-valued random variables, X and Y , by

Z = X + jY

– The pdf of Z is given by the joint pdf of X and Y :

fZ(z) = fX,Y (Re {z} , Im {z})
– The mean of Z is

µZ = E [Z] = E [X + jY ] = E [X] + jE [Y ] = µX + jµY

where µX and µY are the means of X and Y , respectively.

– The variance of Z is

σ2
Z = 1

2E

[∣∣∣Z − µZ∣∣∣2] = 1
2E

[∣∣∣(X − µX) + j(Y − µY )
∣∣∣2] = 1

2E
[
(X − µX)2 + (Y − µY )2

]
= 1

2 (σ2
X + σ2

Y )

where σ2
X and σ2

Y are the variances of X and Y , respectively.

NOTE: There is some dispute about the factor of one-half in the definition of the variance of complex random vari-
ables. Some authors (such as Proakis) use the factor, while others omit it. For analysis of communication
systems inclusion of the factor is often useful. Stick with one approach and BE CONSISTENT.

– The pdf of a complex Gaussian r.v. is:

fZ(z) =
1

2πσXσY
√

1−ρ2
exp

{
−σ

2
Y Re {z − µZ}2 − 2ρσXσY Re {z − µZ} Im {z − µZ}+ σ2

XIm {z − µZ}2

2σ2
Xσ

2
Y (1− ρ2)

}
where ρ is the correlation of X and Y ,

ρ =
Cov (X,Y )

σXσY
If X and Y are uncorrelated (i.e. ρ = 0) with equal variances (i.e. σ2

X = σ2
Y ), the pdf of Z reduces to

fZ(z) =
1

2πσ2
Z

exp

{
− 1

2σ2
Z

∣∣∣Z − µZ∣∣∣2}
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Review of Probability Theory

Stochastic Processes (Random Processes)

Defn: A random process is an ensemble of waveforms (time functions) together with a probability rule that assigns a
probability to each possible waveform.

– A random variable, X, can take on a single value from a set of values.
– A random process, X(t), can take on a waveform from a set of waveforms.

Example:
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Probability Distribution:
The value of the random process at any time, t1, is a random variable.
i.e., X(t1) is a random variable, with some pdf fX(t1)(x).
Let X(t1), X(t2), . . . , X(tn) denote the random variables obtained by observing the random process X(t) at times
t1, t2, . . . , tn, for any n. The joint pdf of these observations is

fX(t1),X(t2),...,X(tn)(x1, x2, . . . , xn)

Defn: A random process is stationary in the strict sense if and only if

fX(t1+τ),X(t2+τ),...,X(tn+τ)(x1, x2, . . . , xn) = fX(t1),X(t2),...,X(tn)(x1, x2, . . . , xn)

for any time offset, τ .

Note: For a stationary random process, the pdf does not change over time:

fX(t1)(x) = fX(t2)(x) ∀ t1, t2
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Mean: The mean of a random process at any time t1 is

µX(t1) = E [X(t1)] =

∫ ∞
−∞

x fX(t1)(x) dx

For a stationary random process fX(t1)(x) = fX(t2)(x) for all t1, t2, so the mean is constant (independent of
time):

µX(t1) = µX

Example: Stationary vs. Nonstationary
The outside temperature in Ottawa is an example of a nonstationary random process, as the expected tem-
perature in the summer is warmer than in the winter.
The temperature in your refrigerator can be modelled as a stationary random process.
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Autocorrelation function:
The autocorrelation function measures how much two observations taken at different times can vary. The autocor-
relation function of a random process is defined as:

φX(t1, t2) = E [X(t1)X(t2)]

For a stationary random process the autocorrelation function is independent of time:

φX(t1, t1 + τ) = φX(τ)
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Interpretation of the autocorrelation function
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Note: For a complex-valued random process, Z(t), the autocorrelation function is defined as:

φZ(t1, t2) = 1
2E [Z∗(t1)Z(t2)]

For stationary complex random processes:

φZ(τ) = 1
2E [Z∗(t1)Z(t1 + τ)]

Properties of the autocorrelation function
For a stationary random process, X(t):

1. The average power of the process is φX(0) = E
[
X2(t)

]
2. The autocorrelation function has even symmetry:

φX(−τ) = φX(τ)

3. The autocorrelation function is at a maximum at τ = 0:

|φX(τ)| ≤ φX(0)

Proof: Note that(
X(t+ τ)±X(t)

)2

≥ 0

Taking the expected value yields

E

[(
X(t+ τ)±X(t)

)2
]
≥ 0

E
[
X2(t+ τ)± 2X(t+ τ)X(t) +X2(t)

]
≥ 0

φX(0)± 2φX(τ) + φX(0) ≥ 0

φX(0)± φX(τ) ≥ 0

Therefore

−φX(0) ≤ φX(τ) ≤ φX(0)

Cross-correlation function
For two random processes, X(t) and Y (t), the cross-correlation function is

φXY (t1, t2) = E [X(t1)Y (t2)]
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Wide-sense stationary
Many nonstationary random processes have the property that the mean and autocorrelation functions are indepen-
dent of time. i.e.,

µX(t1) = µX and φX(t1, t1 + τ) = φX(τ)

for all t1.
Such random processes are referred to as wide-sense stationary (WSS).

Note: All strict-sense stationary random processes are also wide-sense stationary, but not all wide-sense stationary
random processes are strict-sense stationary.

Gaussian random processes
When the pdf of the observations of a random process have a joint Gaussian distribution, the process is called a
Gaussian random process. The pdf of the observation at time t1 is

fX(t1)(x) =
1√

2πσ2
X(t1)

exp

{
− 1

2σ2
X(t1)

(x− µX(t1))2

}
For WSS Gaussian random processes, this pdf is

fX(t1)(x) =
1√

2πσ2
X

exp

{
− 1

2σ2
X

(x− µX)2

}
Note: All WSS Gaussian random processes are also stationary in the strict sense.

Power Spectral Density
For deterministic signals, the power spectrum is usually found by taking the Fourier transform of the signal. For
stationary random processes, the power spectrum is found by taking the Fourier transform of the autocorrelation
function:

ΦX(f) =

∫ ∞
−∞

φX(τ)e−j2πfτ dτ

Transmission of a random process through a linear filter
Consider a linear time-invariant filter with impulse response h(t) and frequency response H(f).

X(t) h(t) Y (t)

The input is the WSS random process X(t), and the output is Y (t). The output of the filter is related to the input
through

Y (t) =

∫ ∞
−∞

X(t− α)h(α) dα

Mean: E [Y (t)] =

∫ ∞
−∞

E [X(t− α)]h(α) dα

=

∫ ∞
−∞

µXh(α) dα

= µXH(0)

Note: The mean does not depend on time.
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Autocorrelation function:
E [Y (t1)Y (t1 + τ)] = E

[∫ ∞
−∞

X(t1 − α1)h(α1) dα1

∫ ∞
−∞

X(t1 + τ − α2)h(α2) dα2

]
=

∫ ∞
−∞

∫ ∞
−∞

E [X(t1 − α1)X(t1 + τ − α2)]h(α1)h(α2) dα1 dα2

=

∫ ∞
−∞

∫ ∞
−∞

φX(τ − α2 + α1)h(α1)h(α2) dα1 dα2

= φY (τ)

Note: The autocorrelation function does not depend on t1. Therefore, the output of a linear time-invariant
filter in response to a WSS random process is also WSS.

Power Spectral Density

ΦY (f) =

∫ ∞
−∞

φY (τ)e−j2πfτ dτ

=

∫ ∞
−∞

[∫ ∞
−∞

∫ ∞
−∞

φX(τ − α2 + α1)h(α1)h(α2) dα1 dα2

]
e−j2πfτ dτ

=

∫ ∞
−∞

∫ ∞
−∞

∫ ∞
−∞

φX(τ − α2 + α1)e−j2πfτ dτ h(α1)h(α2) dα1 dα2

=

∫ ∞
−∞

∫ ∞
−∞

ΦX(f)e−j2πf(α2−α1)h(α1)h(α2) dα1 dα2

= ΦX(f)

∫ ∞
−∞

h(α1)ej2πfα1 dα1

∫ ∞
−∞

h(α2)e−j2πfα2 dα2

= ΦX(f)H∗(f)H(f)

= ΦX(f)
∣∣∣H(f)

∣∣∣2
White Gaussian Noise

Thermal noise in communication systems is often modelled as a white Gaussian random process. This process is
stationary, with a mean of zero and a double-sided power spectral density of N0/2. i.e.,

ΦX(f) =
N0

2
The corresponding autocorrelation function is

φX(τ) =

∫ ∞
−∞

ΦX(f)ej2πfτ df

=

∫ ∞
−∞

[
N0

2

]
ej2πfτ df

=
N0

2
δ(τ)

Observations at different times, no matter how close, are uncorrelated (and therefore independent, since the process
is Gaussian).

f

ΦX(f)
N0

2

τ

φX(τ)

(N0

2 )

SYSC 5504 12 Fall 2017/18



Discrete-time Random Processes
The concept of random processes can be extended to discrete-time signals, such as a sampled version of a continuous-
time random process. A discrete-time random process, Xn, is a sequence of random variables, one for each time
index, n. That is, for any n1, Xn1

is a random variable. This random variable itself can be either discrete or
continuous (in its amplitude).

Example: The temperature at noon every day is modelled as a discrete-time random process with continuously
distributed amplitude. A sequence of randomly generated bits can be modelled as a discrete-time random
process with discrete amplitudes.

Mean: For a WSS discrete-time random process, the mean is

µX = E [Xn] ∀ n

Autocorrlation Sequence:

For a WSS discrete-time random process, the autocorrelation sequence is

φX(m) = E [XnXn+m]

Note: For complex-valued discrete-time random processes, this is

φX(m) = 1
2E [X∗nXn+m]

Power Spectral Density:

The PSD for a WSS process is

ΦX(f) =

∞∑
n=−∞

φX(n)e−j2πfn

The inverse transform is

φX(n) =

∫ 1
2

− 1
2

ΦX(f)ej2πfn df

Note: The PSD is periodic with a period of 1.
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Bandpass Signal Modulation Schemes

Typically, data is communicated by modulating a carrier wave.
Either the amplitude, the phase, or the frequency is modulated, or some combination of the three.
Amplitude Shift Keying (ASK)

– modulate the amplitude of the carrier wave
– transmit s0(t) to represent a “0”, and s1(t) to represent a “1”:

s0(t) =

{
0 cos (2πfct), 0 ≤ t ≤ T

0 , elsewhere

s1(t) =

{
A cos (2πfct), 0 ≤ t ≤ T

0 , elsewhere
fc is the frequency of the carrier wave, and T is the duration of the symbol interval.

– ASK is also known as pulse amplitude modulation (PAM)
M -ary Amplitude Shift Keying (M -ASK, M -PAM)

– M -ary modulation schemes are used to transmit multiple bits during a single symbol interval.
– log2M bits are transmitted at once. M is an integer power of 2.
– transmit sm(t) to represent m ∈ {0, 1, . . . ,M − 1}

sm(t) =

{
Am cos (2πfct), 0 ≤ t ≤ T

0 , elsewhere
– the amplitude of the carrier wave is

Am = mA

Example: For M = 4, Am ∈ {0, A, 2A, 3A}
The transmitted signal for the sequence 10,11,01,00,11,10 is

0 1 2 3 4 5 6
−4

−3

−2

−1

0

1

2

3

4

5

Time (T sec)

A
m

pl
itu

de
 (

A
 v

ol
ts

)

2 (10) 3 (11) 1 (01) 0 (00) 3 (11) 2 (10)

2A 3A A 0 3A 2A

– M is the total number of possible signals, one of which is transmitted during each symbol interval. The
transmission during each symbol interval conveys log2M bits of information.

– Note that a different set of amplitudes, such as {−3A,−A,A, 3A} could be used instead, as long as the receiver
knows which set of amplitudes the transmitter is using.
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Phase Shift Keying (PSK)
– modulate the phase of the carrier wave
– transmit s0(t) to represent a “0”, and s1(t) to represent a “1”:

s0(t) =

{
A cos (2πfct), 0 ≤ t ≤ T

0 , elsewhere

s1(t) =

{
A cos (2πfct+ π), 0 ≤ t ≤ T

0 , elsewhere
fc is the frequency of the carrier wave, and T is the duration of the symbol interval.

– Note: binary PSK is the same as binary ASK
M -ary Phase Shift Keying (M -PSK)

– transmit sm(t) to represent m ∈ {0, 1, . . . ,M − 1}

sm(t) =

{
A cos (2πfct+ θm), 0 ≤ t ≤ T

0 , elsewhere
– the phase of the carrier wave is

θm =
2π

M
m

Example: For M = 4, θm ∈ {0, 1
2π, π,

3
2π}

The transmitted signal for the sequence 10,11,01,00,11,10 is

0 1 2 3 4 5 6
−1.5

−1

−0.5

0

0.5

1

1.5

2

2.5

Time (T sec)

A
m

pl
itu

de
 (

A
 v

ol
ts

)

2 (10) 3 (11) 1 (01) 0 (00) 3 (11) 2 (10)

π 3π/2 π/2 0 3π/2 π
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Frequency Shift Keying (FSK)
– modulate the frequency of the carrier wave
– transmit s0(t) to represent a “0”, and s1(t) to represent a “1”:

s0(t) =

{
A cos (2π[fc]t), 0 ≤ t ≤ T

0 , elsewhere

s1(t) =

{
A cos (2π[fc + ∆fc]t), 0 ≤ t ≤ T

0 , elsewhere
fc is the frequency of the carrier wave, T is the duration of the symbol interval, and ∆fc is the frequency
separation.

– a good choice for the frequency separation is ∆fc = 1
2T

M -ary Frequency Shift Keying (M -FSK)
– transmit sm(t) to represent m ∈ {0, 1, . . . ,M − 1}

sm(t) =

{
A cos (2πfmt), 0 ≤ t ≤ T

0 , elsewhere
– the frequency of the carrier wave is

fm = fc +m∆fc

Example: For M = 4, fm ∈ {fc, fc + ∆fc, fc + 2∆fc, fc + 3∆fc}.
The transmitted signal for the sequence 10,11,01,00,11,10 is

0 1 2 3 4 5 6
−1.5

−1

−0.5

0

0.5

1

1.5

2

2.5

Time (T sec)

A
m

pl
itu

de
 (

A
 v

ol
ts

)

2 (10) 3 (11) 1 (01) 0 (00) 3 (11) 2 (10)

f
c
+2∆ f

c
f
c
+3∆ f

c
f
c
+1∆ f

c
f
c
+0∆ f

c
f
c
+3∆ f

c
f
c
+2∆ f

c
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Channel Models

vc(t) Channel rc(t)

transmitted
bandpass signal

received
bandpass signal

Ideally, rc(t) = vc(t), but in practice the channel corrupts the transmitted signal, so rc(t) 6= vc(t). The nature of the
corruption depends on the channel model. Some common channel models are:

1. Additive White Gaussian Noise (AWGN) Channel

vc(t)

wc(t)

rc(t)

rc(t) = vc(t) + wc(t)

– wc(t) is additive noise, caused by random motion of charged particles within a resistive material (thermal noise).
May be from both internal and external sources.

– wc(t) = white, zero-mean stationary Gaussian random process
– mean: E [wc(t)] = 0 ∀ t

– autocorrelation: φwc(t; τ) = E [wc(t)wc(t+ τ)] = N0

2 δ(τ)

– N0 = single-sided noise power spectral density
– N0 = kTe, where k = Boltzmann’s constant (1.38× 10−23 J/K), and Te = equivalent noise temperature

(K).

2. Propagation Delay and Attenuation

vc(t)

αc

Delay (τc)

wc(t)

rc(t)

rc(t) = αcvc(t− τc) + wc(t)

– signals take a finite (non-zero) amount of time to traverse the channel, and typically energy is lost in transmission,
so the received signal is weaker than the transmitted one (attenuated).

– αc = signal attenuation

– τc = signal propagation delay

– both αc and τc are a function of the propagation distance.

– not much can be done about the attenuation, but it may need to be estimated at the receiver

– the receiver will need to compensate for the delay, by means of symbol synchronization and carrier synchroniza-
tion.

– particularly in mobile environments αc and τc can be time-variant, so
rc(t) = αc(t)vc

(
t− τc(t)

)
+ wc(t)

e.g. frequency-flat fading due to multipath interference
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3. Linear Time-invariant Channel

vc(t) hc(t)

wc(t)

rc(t)

rc(t) =
∫∞
−∞ vc(t− τ)hc(τ) dτ + wc(t)

– hc(t) = channel impulse response

– Hc(f) = F {hc(t)} = channel frequency response

– Ideally, hc(t) = δ(t), so

rc(t) =

∫ ∞
−∞

vc(t− τ)δ(τ) dτ + wc(t) = vc(t) + wc(t)

In this case Hc(f) = F {δ(t)} = 1 (flat frequency response)

4. Multipath Interference

α1, τ1

α2, τ2

α3, τ3

α4, τ4

rc(t) =
∑
i αivc(t− τi) + wc(t)

– multiple transmission paths between transmitter and receiver

– each path has a different attenuation (αi) and delay (τi)

– typically, these change over time

rc(t) =
∑
i

αi(t)vc
(
t− τi(t)

)
+ wc(t)

– Usually, there are lots of paths:

rc(t) =

∫ ∞
−∞

vc(t− τ)hc(τ ; t) dτ + wc(t)

where
hc(τ ; t) =

∑
i

αi
(
t+ τi(t)− τ

)
δ
(
τi(t)− τ

)
is the time-variant channel impulse response.

5. Adjacent Channel Interference

rc(t) = vc(t) + vACI(t) + wc(t)

– vACI(t) = data signal used in an adjacent channel (e.g., different frequency or time slot)

6. Co-Channel Interference

T1 T2

R1 R2

vc(t) vCCI(t)

rc(t) = vc(t) + vCCI(t) + wc(t)

– vCCI(t) = data signal using the same channel, but usually far away.
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Vector Space Concepts

Let {v0, v1, . . . , vM−1} be a set of K-dimensional vectors, with each vector characterized by its K components,
vm = (vm,0, vm,1, . . . , vm,K−1) .

Definitions:

1. Inner product (dot product)

vm • vn
4
=

K−1∑
k=0

vm,kvn,k

2. Orthogonality

Two vectors are orthogonal if their inner product is zero.

3. Norm (length)

‖vm‖
4
=
√
vm • vm =

√√√√K−1∑
k=0

v2
m,k

4. Orthonormal

A set of vectors are orthonormal if the vectors are orthogonal and each vector has a norm of unity.

5. Linear independence

A set of vectors are linearly independent if no one vector can be represented as a linear combination of the other
vectors.

NOTE: Orthonormal vectors are linearly independent.

6. Triangle inequality

‖vm + vn‖ ≤ ‖vm‖+ ‖vn‖

7. Cauchy-Schwartz inequality

|vm • vn| ≤ ‖vm‖ ‖vn‖

8. Vector space

A set of K orthonormal vectors, {ek|0 ≤ k ≤ K − 1} can be used to define a K-dimensional vector space. In this
case the orthonormal vectors are referred to as the basis vectors. The span of the vector space is the set of all
possible vectors that can be generated as a linear combination of the basis vectors. That is, the set of all vectors
{v} given by

v =

K−1∑
k=0

vkek

for all vk ∈ (−∞,∞).
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Signal Space Concepts

Let {s0(t), s1(t), . . . , sM−1(t)} be a set of real- or complex-valued signals defined on some interval [a, b].

Definitions:

1. Inner product

〈sm(t), sn(t)〉 4=
∫ b

a

sm(t)s∗n(t) dt

2. Orthogonality

Two signals are orthogonal if their inner product is zero.

3. Norm

‖sm(t)‖ 4=
√
〈sm(t), sm(t)〉 =

√∫ b

a

∣∣∣sm(t)
∣∣∣2 dt

4. Orthonormal

A set of signals are orthonormal if they are all orthogonal and their norms are all unity.

5. Linear independence

A set of signals are linearly independent if no one signal can be represented as a linear combination of the other
signals.

NOTE: Orthonormal signals are linearly independent.

6. Triangle inequality

‖sm(t) + sn(t)‖ ≤ ‖sm(t)‖+ ‖sn(t)‖

7. Cauchy-Schwartz inequality

|〈sm(t), sn(t)〉| ≤ ‖sm(t)‖ ‖sn(t)‖

or ∣∣∣∣∣
∫ b

a

sm(t)s∗n(t) dt

∣∣∣∣∣
2

≤
∫ b

a

∣∣∣sm(t)
∣∣∣2 dt ∫ b

a

∣∣∣sn(t)
∣∣∣2 dt

8. Signal space

A set of K orthonormal signals, {φk(t)|0 ≤ k ≤ K − 1} can be used to define a K-dimensional signal space. In
this case the orthonormal signals are referred to as the basis signals. The span of the signal space is the set of all
possible signals that can be generated as a linear combination of the basis signals. That is, the set of all signals
{s(t)} given by

s(t) =

K−1∑
k=0

skφk(t)

for all sk ∈ (−∞,∞).
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Gram-Schmidt Orthogonalization Procedure

For a set of M signals, {s0(t), s1(t), . . . , sM−1(t)}, defined on some interval [a, b], find a set of K orthonormal basis
signals, {φ0(t), φ1(t), . . . , φK−1(t)}, such that each sm(t) can be represented as a linear combination of the basis signals.
Also, find the appropriate weights {sm,k} so that

sm(t) =

K−1∑
k=0

sm,kφk(t)

for all 0 ≤ m ≤M − 1.

Note: K is the minimum number of signals required. If {sm(t)} are linearly independent then K = M . Otherwise
K < M .

Description of Algorithm
Let Em be the energy of sm(t):

Em =
∥∥∥sm(t)

∥∥∥2

=

∫ b

a

∣∣∣sm(t)
∣∣∣2 dt

1. Find the first basis signal:

φ0(t) =
s0(t)∥∥∥s0(t)

∥∥∥ =
s0(t)√
E0

Clearly,

s0(t) =
√
E0φ0(t)

= s0,0φ0(t)
s0,k =

{√
E0 , for k = 0
0 , for 1 ≤ k ≤ K − 1

2. Find the second basis signal:
Calculate the projection of s1(t) onto φ0(t):

s1,0 = 〈s1(t), φ0(t)〉 =

∫ b

a

s1(t)φ∗0(t) dt

Calculate the error signal:

g1(t) = s1(t)− s1,0φ0(t)

Note: g1(t) is orthogonal to φ0(t).

The second basis signal is

φ1(t) =
g1(t)∥∥∥g1(t)

∥∥∥
Clearly,

s1(t) = s1,0φ0(t) + g1(t)

= s1,0φ0(t) + s1,1φ1(t)
s1,k =


〈s1(t), φ0(t)〉 , for k = 0∥∥∥g1(t)

∥∥∥ , for k = 1

0 , for 2 ≤ k ≤ K − 1

3. Find the mth basis signal:
Calculate the projection of sm(t) onto φk(t) for k = 0, 1, . . . ,m− 1:

sm,k = 〈sm(t), φk(t)〉 =

∫ b

a

sm(t)φ∗k(t) dt

Calculate the error signal:

gm(t) = sm(t)−
m−1∑
k=0

sm,kφk(t)

Note: gm(t) is orthogonal to {φ0(t), φ1(t), . . . , φm−1(t)}. i.e. 〈gm(t), φk(t)〉 = 0 for all 0 ≤ k ≤ m− 1.

SYSC 5504 21 Fall 2017/18



The mth basis signal is

φm(t) =
gm(t)∥∥∥gm(t)

∥∥∥
Clearly,

sm(t) =

m−1∑
k=0

sm,kφk(t) + gm(t)

=

m∑
k=0

sm,kφk(t)

sm,k =


〈sm(t), φk(t)〉 , for 0 ≤ k ≤ m− 1∥∥∥gm(t)

∥∥∥ , for k = m

0 , for m+ 1 ≤ k ≤ K − 1

Note: If gm(t) = 0 for all t ∈ [a, b], then sm(t) can be expressed as a linear combination of

{s0(t), s1(t), . . . , sm−1(t)} .
Therefore {sm(t) | 0 ≤ m ≤M−1} are not linearly independent. In this case no additional basis signal
is required to represent sm(t), so K ≤M .

Example:

-

6

t

s0(t)

A

−A
T
2

T

-

6

t

s1(t)

A

−A
T
2

T

-

6

t

s2(t)

A

−A
T
2

T

E0 =
∥∥∥s0(t)

∥∥∥2

=

∫ b

a

∣∣∣s0(t)
∣∣∣2 dt

= A2T

E1 = A2T

2
E2 = A2T

1. Find the first basis signal:

φ0(t) =
s0(t)√
E0

=
s0(t)

A
√
T

-

6

t

φ0(t)
1√
T

− 1√
T

T
2

T

s0(t) = s0,0φ0(t)

s0,0 =
√
E0 = A

√
T

∥∥∥φ0(t)
∥∥∥ =

√(
1√
T

)2

T = 1 (normal)

2. Find the second basis signal:
Calculate the projection of s1(t) onto φ0(t):

s1,0 = 〈s1(t), φ0(t)〉 =

∫ T

0

s1(t)φ∗0(t) dt

=

∫ T
2

0

(−A)
1√
T
dt =

−A√
T

T

2
= −A

2

√
T
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Calculate the error signal:

g1(t) = s1(t)− s1,0φ0(t)

=

−A−
(
−A
2

√
T
)

1√
T
, 0 ≤ t < T

2

0−
(
−A
2

√
T
)

1√
T

, T
2 ≤ t < T

=

{
−A2 , 0 ≤ t < T

2
A
2 , T

2 ≤ t < T

-

6

t

g1(t)
A
2

−A2
T
2

T

∥∥∥g1(t)
∥∥∥ =

√(
−A

2

)2
T

2
+

(
A

2

)2
T

2
=

√
A2T

4
=
A

2

√
T

The second basis signal is

φ1(t) =
g1(t)∥∥∥g1(t)

∥∥∥ -

6

t

φ1(t)
1√
T

− 1√
T

T
2

T

∥∥∥φ1(t)
∥∥∥ =

√(
−1√
T

)2
T

2
+

(
1√
T

)2
T

2
= 1 (normal)

Note: φ0(t) and φ1(t) are orthonormal:

〈φ0(t), φ1(t)〉 =

∫ T

0

φ0(t)φ∗1(t) dt = 0

s1(t) = s1,0φ0(t) + s1,1φ1(t)

s1,0 = −A
2

√
T

s1,1 =
A

2

√
T

3. Find the third basis signal:
Calculate the projection of s2(t) onto φ0(t):

s2,0 = 〈s2(t), φ0(t)〉 =

∫ T

0

s2(t)φ∗0(t) dt

=

∫ T
2

0

(−A)
1√
T
dt+

∫ T

T
2

(A)
1√
T
dt =

−A√
T

T

2
+

A√
T

T

2
= 0

Calculate the projection of s2(t) onto φ1(t):

s2,1 = 〈s2(t), φ1(t)〉 =

∫ T

0

s2(t)φ∗1(t) dt

=

∫ T
2

0

(−A)

(
−1√
T

)
dt+

∫ T

T
2

(A)

(
1√
T

)
dt =

A√
T

T

2
+

A√
T

T

2
= A
√
T

Calculate the error signal

g2(t) = s2(t)− s2,0φ0(t)− s2,1φ1(t) = s2(t)−A
√
Tφ1(t)

=

{
−A−A

√
T −1√

T
, 0 ≤ t < T

2

A−A
√
T 1√

T
, T

2 ≤ t < T

=

{
0 , 0 ≤ t < T

2

0 , T
2 ≤ t < T

= 0

Therefore

s2(t) = s2,0φ0(t) + s2,1φ1(t) = A
√
Tφ1(t)

so a third basis signal is not required to represent s2(t).
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Summary:

-

6

t

φ0(t)
1√
T

− 1√
T

T
2

T

-

6

t

φ1(t)
1√
T

− 1√
T

T
2

T

s0(t) = A
√
Tφ0(t) s0 =

(
A
√
T , 0

)
s1(t) = −A2

√
Tφ0(t) + A

2

√
Tφ1(t) s1 =

(
−A2
√
T , A2

√
T
)

s2(t) = A
√
Tφ1(t) s2 =

(
0, A
√
T
)

Signal Space Diagram:

-

6

?

�
φ0(t)

φ1(t)

@@��

s0

@@��

s1

@@��s2

A
2

√
T

A
√
T

−A2
√
T A

√
T

Proof of the Gram-Schmidt Orthogonalization Procedure
Show that {φ0(t), φ1(t), . . . , φK−1(t)} are orthonormal when determined by the Gram-Schmidt Procedure.

Assume that {φ0(t), φ1(t), . . . , φk−1(t)} are orthonormal for some k < K − 1.
Then, for any l, 0 ≤ l ≤ k − 1,

〈φk(t), φl(t)〉 = 1∥∥∥gk(t)

∥∥∥ 〈gk(t), φl(t)〉

(
φk(t) = gk(t)∥∥∥gk(t)

∥∥∥
)

= 1∥∥∥gk(t)

∥∥∥
〈[
sk(t)−

k−1∑
i=0

sk,iφi(t)

]
, φl(t)

〉 (
gk(t) = sk(t)−

k−1∑
i=0

sk,iφi(t)

)

= 1∥∥∥gk(t)

∥∥∥
[
〈sk(t), φl(t)〉 −

k−1∑
i=0

sk,i 〈φi(t), φl(t)〉
]

= 1∥∥∥gk(t)

∥∥∥
[
〈sk(t), φl(t)〉 −

k−1∑
i=0

sk,iδl−i

] (
〈φi(t), φl(t)〉 = δl−i

)

= 1∥∥∥gk(t)

∥∥∥ [sk,l − sk,l]

(
〈sk(t), φl(t)〉 = sk,l

)
= 0

Therefore φk(t) is orthogonal with {φl(t)|0 ≤ l ≤ k − 1}. Since

φk(t) =
gk(t)∥∥∥gk(t)

∥∥∥ =⇒
∥∥∥φk(t)

∥∥∥ =

∥∥∥gk(t)
∥∥∥∥∥∥gk(t)
∥∥∥ = 1 ,

{φ0(t), φ1(t), . . . , φk(t)} are orthonormal.

Since {φ0(t)} forms a one-dimensional orthonormal basis, it follows by recursion that

{φ0(t), φ1(t), . . . , φK−1(t)}
are orthonormal.
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Also, since

gm(t) = sm(t)−
m−1∑
k=0

sm,kφk(t)

the signals are given by

sm(t) = gm(t) +

m−1∑
k=0

sm,kφk(t)

=
∥∥∥gm(t)

∥∥∥φm(t) +

m−1∑
k=0

sm,kφk(t)

=

m∑
k=0

sm,kφk(t) with sm,m =
∥∥∥gm(t)

∥∥∥
Note: When using the Gram-Schmidt Procedure it is sometimes helpful to use the following property:∥∥∥gm(t)

∥∥∥2

=

∥∥∥∥∥sm(t)−
m−1∑
k=0

sm,kφk(t)

∥∥∥∥∥
2

=

∫ b

a

∣∣∣∣∣sm(t)−
m−1∑
k=0

sm,kφk(t)

∣∣∣∣∣
2

dt

=

∫ b

a

∣∣∣sm(t)
∣∣∣2 dt− ∫ b

a

sm(t)

m−1∑
k=0

s∗m,kφ
∗
k(t) dt−

∫ b

a

s∗m(t)

m−1∑
k=0

sm,kφk(t) dt

+

∫ b

a

∣∣∣∣∣
m−1∑
k=0

sm,kφk(t)

∣∣∣∣∣
2

dt

=
∥∥∥sm(t)

∥∥∥2

−
m−1∑
k=0

s∗m,k 〈sm(t), φk(t)〉 −
m−1∑
k=0

sm,k 〈s∗m(t)φ∗k(t)〉

+

m−1∑
k=0

m−1∑
l=0

sm,ks
∗
m,l

∫ b

a

φk(t)φ∗l (t) dt

=
∥∥∥sm(t)

∥∥∥2

−
m−1∑
k=0

s∗m,ksm,k −
m−1∑
k=0

sm,ks
∗
m,k +

m−1∑
k=0

m−1∑
l=0

sm,ks
∗
m,lδl−k

=
∥∥∥sm(t)

∥∥∥2

− 2
m−1∑
k=0

∣∣∣sm,k∣∣∣2 +

m−1∑
k=0

∣∣∣sm,k∣∣∣2
= Em −

m−1∑
k=0

∣∣∣sm,k∣∣∣2
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Geometric Representation of Bandpass Signals

M -ary Amplitude Shift Keying (Pulse Amplitude Modulation)
Transmitted Signals:

For m ∈ {0, 1, . . . ,M − 1}

sm(t) =

{
Am cos (2πfct) , for 0 ≤ t ≤ T

0 , elsewhere
Am = mA

It is useful to express sm(t) in terms of a unit energy rectangular pulse,

hT (t) =

{ 1√
T
, for 0 ≤ t ≤ T

0 , elsewhere
so

sm(t) = Am
√
T hT (t) cos (2πfct)

Basis Signals:

Only one basis signal is required to represent {sm(t) | m = 0, 1, . . . ,M − 1}:
φ0(t) = hT (t)

√
2 cos (2πfct)

Note: φ0(t) is normalized:∥∥∥φ0(t)
∥∥∥2

=

∫ ∞
−∞

∣∣∣φ0(t)
∣∣∣2 dt =

∫ ∞
−∞

∣∣∣hT (t)
√

2 cos (2πfct)
∣∣∣2 dt

=

∫ T

0

(
1

T

)
(2) cos2 (2πfct) dt =

2

T

[
t

2
+

sin (4πfct)

8πfc

]T
0

=
2

T

[
T

2
+

sin (4πfcT )

8πfc

]
= 1 +

sin (4πfcT )

4πfcT
∼= 1

since fcT � 1 (e.g., fc = 1 Ghz, T = 1µs, fcT = 103). Equality holds if fcT = n
4 for some integer n.

Signals:

For m ∈ {0, 1, . . . ,M − 1}

sm(t) = Am

√
T

2
φ0(t)

= sm,0φ0(t)

with

sm,0 = Am

√
T

2

Signal Space Diagram (M=4):

φ0(t)

s0 s1 s2 s3

0
A
√

T
2 2A

√
T
2 3A

√
T
2

Equivalent lowpass signal:

sm(t) = Am
√
T hT (t) cos (2πfct)

= Am
√
T hT (t)Re

{
ej2πfct

}
= Re

{
Am

√
T

2
hT (t)

√
2ej2πfct

}
= Re

{
sl,m(t)

√
2ej2πfct

}
where

sl,m(t) = Am

√
T

2
hT (t)

SYSC 5504 26 Fall 2017/18



is the equivalent lowpass signal for sm(t). Also, define

sm = Am

√
T

2
so

sl,m(t) = smhT (t)
M -ary Phase Shift Keying

Transmitted Signals:

For m ∈ {0, 1, . . . ,M − 1}

sm(t) = A
√
T hT (t) cos (2πfct+ θm) θm =

2π

M
m

Basis Signals:

Note: sm(t) can also be written as

sm(t) = A
√
T hT (t) cos θm cos (2πfct)−A

√
T hT (t) sin θm sin (2πfct)

Note: cos(2πfct) and sin(2πfct) are orthogonal over [0, T ]:

〈cos(2πfct), sin(2πfct)〉 =

∫ T

0

cos(2πfct) sin(2πfct) dt

=

[
sin2 (2πfct)

4πfc

]T
0

=

[
sin2 (2πfcT )

4πfc

]
∼= 0

since fc is typically very large.

Therefore, only two basis signals are required to represent {sm(t) | m = 0, 1, . . . ,M − 1}:
φ0(t) = hT (t)

√
2 cos (2πfct)

φ1(t) = −hT (t)
√

2 sin (2πfct)

Signals:

For m ∈ {0, 1, . . . ,M − 1}

sm(t) = A

√
T

2
cos θmφ0(t) +A

√
T

2
sin θmφ1(t)

= sm,0φ0(t) + sm,1φ1(t)

with

sm,0 = A

√
T

2
cos θm sm,1 = A

√
T

2
sin θm
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Signal Space Diagram:

M = 4

φ0(t)

φ1(t)

s0

s1

s2

s3

A
√

T
2

Quaternary Phase Shift Keying (QPSK)

M = 8

φ0(t)

φ1(t)

s0

s1

s2

s3

s4

s5

s6

s7

A
√

T
2

Equivalent lowpass signal:

sm(t) = A
√
T hT (t) cos (2πfct+ θm)

= A
√
T hT (t)Re

{
ej(2πfct+θm)

}
= Re

{
A

√
T

2
ejθmhT (t)

√
2ej2πfct

}
= Re

{
sl,m(t)

√
2ej2πfct

}
where

sl,m(t) = A

√
T

2
ejθmhT (t)

is the equivalent lowpass signal for sm(t). Also, define

sm = A

√
T

2
ejθm

so

sl,m(t) = smhT (t)

Quadrature Amplitude Modulation (QAM)
Because cos(2πfct) and sin(2πfct) are orthogonal, it is possible to double the capacity of PAM.

Transmitted Signals:

For m ∈ {0, 1, . . . ,M − 1}
sm(t) = Ac,m

√
T hT (t) cos (2πfct)−As,m

√
T hT (t) sin (2πfct)

where Ac,m is the amplitude of the cos carrier (the in-phase component), and As,m is the amplitude of the sin
carrier (the quadrature phase component).

Basis Signals:

φ0(t) = hT (t)
√

2 cos (2πfct)

φ1(t) = −hT (t)
√

2 sin (2πfct)
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Signals:

For m ∈ {0, 1, . . . ,M − 1}

sm(t) = Ac,m

√
T

2
φ0(t) +As,m

√
T

2
φ1(t)

= sm,0φ0(t) + sm,1φ1(t)

with

sm,0 = Ac,m

√
T

2
sm,1 = As,m

√
T

2

Signal Space Diagram:

M = 4

φ0(t)

φ1(t)

−A
√

T
2 A

√
T
2

A
√

T
2

−A
√

T
2

s0s1

s2 s3

M = 16

φ0(t)

φ1(t)

s0 s1 s2 s3

s4 s5 s6 s7

s8 s9 s10 s11

s12 s13 s14 s15

−3A
√

T
2

−A
√

T
2

A
√

T
2

3A
√

T
2

−3A
√

T
2

−A
√

T
2

A
√

T
2

3A
√

T
2
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M = 8

φ0(t)

φ1(t)

s0 s1 s2 s3

s4 s5 s6 s7

−3A
√

T
2

−A
√

T
2

A
√

T
2

3A
√

T
2

−A
√

T
2

A
√

T
2

Equivalent lowpass signal:

sm(t) = Ac,m
√
T hT (t) cos (2πfct)−As,m

√
T hT (t) sin (2πfct)

= Re
{

[Ac,m + jAs,m]
√
T hT (t) [cos(2πfct) + j sin(2πfct)]

}
= Re

{
[Ac,m + jAs,m]

√
T

2
hT (t)

√
2ej2πfct

}
= Re

{
sl,m(t)

√
2ej2πfct

}
where

sl,m(t) = [Ac,m + jAs,m]

√
T

2
hT (t)

is the equivalent lowpass signal for sm(t). Also, define

sm = [Ac,m + jAs,m]

√
T

2
so

sl,m(t) = smhT (t)

M -ary Frequency Shift Keying (FSK)
Transmitted Signals:

For m ∈ {0, 1, . . . ,M − 1}
sm(t) = A

√
T hT (t) cos (2πfmt) fm = fc +m∆fc

Basis Signals:

One basis signal is required for each transmitted signal:

φm(t) = hT (t)
√

2 cos (2πfmt)

For proper operation, the transmitted signals should all be orthogonal:

〈φk(t), φl(t)〉 =

∫ ∞
−∞

φk(t)φ∗l (t) dt

=

∫ ∞
−∞

hT (t)
√

2 cos(2πfkt)h
∗
T (t)
√

2 cos(2πflt) dt

=

∫ ∞
−∞

∣∣∣hT (t)
∣∣∣2 2 cos(2πfkt) cos(2πflt) dt

=
2

T

∫ T

0

cos(2πfkt) cos(2πflt) dt

=
2

T

[
sin(2π[fk − fl]t)

4π[fk − fl]
+

sin(2π[fk + fl]t)

4π[fk + fl]

]T
0

=
2

T

[
sin(2π[fk − fl]T )

4π[fk − fl]
+

sin(2π[fk + fl]T )

4π[fk + fl]

]
=

sin(2π[fk − fl]T )

2π[fk − fl]T
+

sin(2π[fk + fl]T )

2π[fk + fl]T
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=
sin(2π∆fc[k − l]T )

2π∆fc[k − l]T
+

sin(2π[2fc + ∆fc(k + l)]T )

2π[2fc + ∆fc(k + l)]T

∼=
sin(2π∆fc[k − l]T )

2π∆fc[k − l]T
To ensure orthogonality, ∆fcT must be an integer multiple of 1/2.

Signals:

For m ∈ {0, 1, . . . ,M − 1}

sm(t) = A

√
T

2
φm(t)

= sm,mφm(t)

with

sm,n = A

√
T

2
δm−n =

{
A
√

T
2 , if m = n

0 , otherwise

Signal Space Diagram (M = 2):

φ0(t)

φ1(t)

s0

s1

A
√

T
2

A
√

T
2

Equivalent lowpass signal:

sm(t) = A
√
T hT (t) cos (2πfmt)

= A
√
T hT (t)Re

{
ej2π(fc+∆fcm)t

}
= Re

{
A

√
T

2
ej2πm∆fcthT (t)

√
2ej2πfct

}
= Re

{
sl,m(t)

√
2ej2πfct

}
where

sl,m(t) = A

√
T

2
ej2πm∆fcthT (t)

is the equivalent lowpass signal for sm(t).
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Bandpass Transmitter Structures
Amplidute-only Modulation Schemes

{an} Signal
Generator

πfT
sinπfT hT (t)

√
2 cos 2πfct

vc(t)
vp(t) vi(t) v(t)

Pulse Shaping Filter Modulator

Data Source:
– transmit a block of Na symbols,

a = a0 a1 a2 . . . aNa−1

with an ∈ {0, 1, . . . ,M − 1}.
– a is referred to as the transmitted message.
– an is referred to as a message symbol.

a = 0 1 1 0 1

Signal Generator:
– converts message symbols into amplitudes
– generates rectangular pulse train

vp(t) =

Na−1∑
n=0

vnp(t− nT )

– {vn} = transmitted amplitudes
– p(t) = rectangular pulse (with unit energy)
– 1/T = symbol transmission rate

v = 0 A A 0 A

t

vp(t)

Pulse Shaping Filter:
– converts rectangular pulses into desired pulse shape
– first stage converts pulses into impulses

vi(t) =

Na−1∑
n=0

vnδ(t− nT )

– second stage applies pulse shape

v(t) =

Na−1∑
n=0

vnhT (t− nT )

– hT (t) = desired pulse shape

t

vi(t)

t

v(t)

Modulator:
– modulates the amplitude of the carrier wave

vc(t) =

Na−1∑
n=0

vnhT (t− nT )
√

2 cos 2πfct

– fc = carrier frequency

t

vc(t)
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Amplitude and Phase Modulation Schemes

{an} Signal
Generator

πfT
sinπfT hT (t)

πfT
sinπfT hT (t)

∼

90◦ vc(t)

vI,p(t)

vQ,p(t)

vI,i(t)

vQ,i(t)

vI(t)

vQ(t)

√
2 cos 2πfct

−
√

2 sin 2πfct

vI,c(t)

vQ,c(t)

Pulse Shaping Filter

Pulse Shaping Filter

Modulator

Signal Generator:

– generates separate amplitudes for in-phase and quadrature-phase channels

vI,p(t) =

Na−1∑
n=0

vI,np(t− nT ) vQ,p(t) =

Na−1∑
n=0

vQ,np(t− nT )

Pulse Shaping Filters:

– applies desired pulse shape

vI(t) =

Na−1∑
n=0

vI,nhT (t− nT ) vQ(t) =

Na−1∑
n=0

vQ,nhT (t− nT )

Modulator:

– generates in-phase and quadrature-phase carriers

vI,c(t) =

Na−1∑
n=0

vI,nhT (t− nT )
√

2 cos 2πfct vQ,c(t) = −
Na−1∑
n=0

vQ,nhT (t− nT )
√

2 sin 2πfct

– combines carriers
vc(t) = vI,c(t) + vQ,c(t)

=

Na−1∑
n=0

vI,nhT (t− nT )
√

2 cos 2πfct−
Na−1∑
n=0

vQ,nhT (t− nT )
√

2 sin 2πfct

= Re

{
Na−1∑
n=0

vnhT (t− nT )
√

2ej2πfct

}
= Re

{
v(t)
√

2ej2πfct
}

where
vn = vI,n + jvQ,n

and

v(t) = vI(t) + jvQ(t) =

Na−1∑
n=0

vnhT (t− nT )
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Complex lowpass equivalent representation:

{an}
Symbol
Mapper

hT (t)

√
2ej2πfct

Re {•} vc(t)
{vn} v(t)

Symbol Mapper:

– converts data into complex-valued points in the signal constellation

Example: 4-QAM

φ0(t)

φ1(t)

s0 s1

s2 s3

−A A

−A

A

vn ∈


−A −jA
A −jA
−A +jA
A +jA
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Spectral Characteristics of Baseband Signals

Consider the transmitted pulse train

v(t) =

∞∑
n=−∞

vnhT (t− nT )

where T is the symbol duration (symbol period), hT (t) is the transmitted pulse shape, and {vn} are the transmitted
symbols.
Autocorrelation of v(t):

The autocorrelation function of v(t) is:

φv(t; τ)
4
= E [v∗(t)v(t+ τ)]

= E

[( ∞∑
n=−∞

v∗nh
∗
T (t− nT )

)( ∞∑
b=−∞

vbhT (t+ τ − bT )

)]

=

∞∑
n=−∞

∞∑
b=−∞

E [v∗nvb]h
∗
T (t− nT )hT (t+ τ − bT )

=
∞∑

n=−∞

∞∑
m=−∞

E [v∗nvn+m]h∗T (t− nT )hT (t+ τ − (n+m)T )

=

∞∑
n=−∞

∞∑
m=−∞

φv(n;m)h∗T (t− nT )hT (t+ τ − (n+m)T )

Since v is typically a stationary discrete random process, we have

φv(n;m)
4
= E [v∗nvn+m] = φv(m)

That is, the autocorrelation function of v does not depend on n, so

φv(t; τ) =

∞∑
n=−∞

∞∑
m=−∞

φv(m)h∗T (t− nT )hT (t+ τ − (n+m)T )

Note that φv(t; τ) depends on t, so v(t) is not stationary. However, because

φv(t+ T ; τ) =

∞∑
n=−∞

∞∑
m=−∞

φv(m)h∗T (t+ T − nT )hT (t+ T + τ − (n+m)T )

=

∞∑
n=−∞

∞∑
m=−∞

φv(m)h∗T (t− (n− 1)T )hT (t+ τ − (n− 1 +m)T )

=

∞∑
n=−∞

∞∑
m=−∞

φv(m)h∗T (t− nT )hT (t+ τ − (n+m)T )

= φv(t; τ)

we observe that v(t) is cyclostationary. To find the PSD of a cyclostationary random process, we need the time-
averaged autocorrelation function:

φv(τ)
4
=

1

T

∫ T

0

φv(t; τ) dt

=
1

T

∫ T

0

∞∑
n=−∞

∞∑
m=−∞

φv(m)h∗T (t− nT )hT (t+ τ − (n+m)T ) dt

=
1

T

∞∑
m=−∞

φv(m)

∞∑
n=−∞

∫ T

0

h∗T (t− nT )hT (t+ τ − (n+m)T ) dt

=
1

T

∞∑
m=−∞

φv(m)

∞∑
n=−∞

∫ −nT+T

−nT
h∗T (u)hT (u+ τ −mT ) du

=
1

T

∞∑
m=−∞

φv(m)

∫ ∞
−∞

h∗T (t)hT (t+ τ −mT ) dt
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Power Spectral Density:
The power spectral density of v(t) is:

Φv(f)
4
=

∫ ∞
−∞

φv(τ)e−j2πfτ dτ

=

∫ ∞
−∞

1

T

∞∑
m=−∞

φv(m)

∫ ∞
−∞

h∗T (t)hT (t+ τ −mT ) dt e−j2πfτ dτ

=
1

T

∞∑
m=−∞

φv(m)

∫ ∞
−∞

h∗T (t)

∫ ∞
−∞

hT (t+ τ −mT )e−j2πfτ dτ dt

=
1

T

∞∑
m=−∞

φv(m)

∫ ∞
−∞

h∗T (t)

∫ ∞
−∞

hT (α)e−j2πf(α−t+mT ) dα dt

=
1

T

∞∑
m=−∞

φv(m)

∫ ∞
−∞

h∗T (t)

∫ ∞
−∞

hT (α)e−j2πfα dα ej2πf(t−mT ) dt

=
1

T

∞∑
m=−∞

φv(m)

∫ ∞
−∞

h∗T (t)ej2πft dt HT (f)e−j2πfmT

=
1

T

∞∑
m=−∞

φv(m)H∗T (f)HT (f)e−j2πfmT

=

(
1

T

∞∑
m=−∞

φv(m)e−j2πfmT

)∣∣∣HT (f)
∣∣∣2

From the equation for the PSD given above we see that the PSD of the transmitted signal depends not only on the
pulse shape (|HT (f)|2), but also on the autocorrelation function of the transmitted symbols, φv(m). Some line-coding
techniques, such as alternate mark inversion (AMI) exploit this properly by artificially introducing correlation between
the symbols as part of the encoding process.
For memoryless coding schemes, where the symbols in v are independent (that is, vn and vn+m are independent for all
m 6= 0), a more simple expression for the PSD can be found. Let µv = E [vn] be the mean of vn, and σ2

v = E
[
|vn|2

]
−|µv|2

be its variance. Then the autocorrelation function of v can be expressed as

φv(m)
4
= E [v∗nvn+m]

=

{
E
[
|vn|2

]
if m = 0

E [v∗n] E [vn+m] if m 6= 0

=

{
σ2
v + |µv|2 if m = 0
|µv|2 if m 6= 0

=
(
σ2
v + |µv|2

)
δm + |µv|2 (1− δm)

= σ2
vδm + |µv|2

The power spectral density is then given by

Φv(f) =

(
1

T

∞∑
m=−∞

φv(m)e−j2πfmT

)∣∣∣HT (f)
∣∣∣2

=
1

T

∞∑
m=−∞

(
σ2
vδm + |µv|2

)
e−j2πfmT

∣∣∣HT (f)
∣∣∣2

=
σ2
v

T

∣∣∣HT (f)
∣∣∣2 +

|µv|2

T

∣∣∣HT (f)
∣∣∣2 ∞∑
m=−∞

e−j2πfmT

=
σ2
v

T

∣∣∣HT (f)
∣∣∣2 +

|µv|2

T

∣∣∣HT (f)
∣∣∣2 1

T

∞∑
m=−∞

δ
(
f − m

T

)
=
σ2
v

T

∣∣∣HT (f)
∣∣∣2 +

|µv|2

T 2

∞∑
m=−∞

∣∣∣HT

(m
T

)∣∣∣2 δ (f − m

T

)
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Spectral Characteristics of Bandpass Signals

The transmitted baseband signal, vc(t), can be expressed in terms of the complex lowpass equivalent signal, v(t), as

vc(t) = Re
{
v(t)
√

2ej2πfct
}

where

v(t) =

∞∑
n=−∞

vnhT (t− nT )

To find the PSD of vc(t), we start with the autocorrelation function,

φvc(t; τ)
4
= E [vc(t)vc(t+ τ)]

= E
[
Re
{
v(t)
√

2ej2πfct
}

Re
{
v(t+ τ)

√
2ej2πfc(t+τ)

}]
= E

[√
2

2

(
v(t)ej2πfct + v∗(t)e−j2πfct

) √2

2

(
v(t+ τ)ej2πfc(t+τ) + v∗(t+ τ)e−j2πfc(t+τ)

)]
= 1

2E [v(t)v(t+ τ)] ej2πfc(2t+τ) + 1
2E [v(t)v∗(t+ τ)] e−j2πfcτ

+ 1
2E [v∗(t)v(t+ τ)] ej2πfcτ + 1

2E [v∗(t)v∗(t+ τ)] e−j2πfc(2t+τ)

= 1
2φv(t; τ)ej2πfcτ + 1

2φ
∗
v(t; τ)e−j2πfcτ

+ 1
2E [v(t)v(t+ τ)] ej2πfc(2t+τ) + 1

2E [v∗(t)v∗(t+ τ)] e−j2πfc(2t+τ)

since the complex sinusoids vary much more quickly than v(t).
Averaging the autocorrelation function over one period gives

φvc(τ) =
1

T

∫ T

0

φvc(t; τ) dt

=
1

2T

∫ T

0

φv(t; τ) dt ej2πfcτ +
1

2T

∫ T

0

φ∗v(t; τ) dt e−j2πfcτ

+
1

2T

∫ T

0

E [v(t)v(t+ τ)] ej2πfc(2t+τ) dt+
1

2T

∫ T

0

E [v∗(t)v∗(t+ τ)] e−j2πfc(2t+τ) dt

∼= 1
2φv(τ)ej2πfcτ + 1

2φ
∗
v(τ)e−j2πfcτ

The PSD can then be found by taking the Fourier transform of the time-averaged autocorrelation function:

Φvc(f) =

∫ ∞
−∞

φvc(τ)e−j2πfτ dτ

=

∫ ∞
−∞

[
1
2φv(τ)ej2πfcτ + 1

2φ
∗
v(t; τ)e−j2πfcτ

]
e−j2πfτ dτ

= 1
2

∫ ∞
−∞

φv(τ)e−j2π(f−fc)τ dτ + 1
2

∫ ∞
−∞

φ
∗
v(τ)e−j2π(f+fc)τ dτ

= 1
2Φv(f − fc) + 1

2Φ
∗
v(−f − fc)
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f

Φv(f)

f

Φvc(f)

−fc fc

If the data symbols are independent (i.e. vn and vm are independent for all m 6= n) and stationary, then

Φv(f) =
σ2
v

T

∣∣∣HT (f)
∣∣∣2 +

|µv|2

T 2

∞∑
m=−∞

∣∣∣HT

(m
T

)∣∣∣2 δ (f − m

T

)
where

HT (f) = F {hT (t)}
µv = E [vn]

σ2
v = E

[∣∣∣vn∣∣∣2]− ∣∣∣µv∣∣∣2
Typically µv = 0, in which case

Φv(f) =
σ2
v

T

∣∣∣HT (f)
∣∣∣2 =

Es
T

∣∣∣HT (f)
∣∣∣2

where Es = E

[∣∣∣vn∣∣∣2] is the average transmitted energy per symbol. Therefore

Φvc(f) = 1
2

Es
T

∣∣∣HT (f − fc)
∣∣∣2 + 1

2

Es
T

∣∣∣HT (−f − fc)
∣∣∣2

If hT (t) is real, then H∗T (−f) = HT (f), so

Φvc(f) = 1
2

Es
T

∣∣∣HT (f − fc)
∣∣∣2 + 1

2

Es
T

∣∣∣HT (f + fc)
∣∣∣2

Notes: 1. The PSD does not depend on the actual locations of the points in the constellation (vv), just on the average
energy, Es.

2. The PSD does not depend on the number of points (M) in the constellation. For example, the PSD of
64-QAM is the same as BPSK (if Es is the same).

Example: For the rectangular pulse:

HT (f) =

∫ ∞
−∞

hT (t)e−j2πft dt

=

∫ T

0

1√
T
e−j2πft dt

=
1√
T

[
1

−j2πf
e−j2πft

]T
0

=
1

−j2πf
√
T

[
e−j2πfT − 1

]
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=
1

−j2πf
√
T

[
e−jπfT − ejπfT

]
e−jπfT

=
sin(πfT )

πf
√
T

e−jπfT

=
√
T

sin(πfT )

πfT
e−jπfT

and the power spectrum is

Φv(f) = Es

[
sin(πfT )

πfT

]2
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Bandwidth: Strictly speaking, the bandwidth of a signal v(t), is the size of the range of frequencies for which Φv(f) is non-
zero. Since all time-limited signals have infinite bandwidth, this strict definition is somewhat irrelevant.
However, since most time-limited signals are essentially bandlimited, a number of arbitrary alternative
definitions are used instead:

1. The 3dB bandwidth is the separation between the two points around fc where the power spectrum
drops below 1/2 its maximum value.

2. The null-to-null bandwidth is the separation between the two points around fc where the power
spectrum first drops to zero.

3. The 99% power bandwidth is the range of frequencies which contain 99% of the total signal power.

Example: For the rectangular pulse

1. 3dB Bandwidth ∼= 0.886
T Hz

2. Null-to-Null Bandwidth = 2
T Hz

3. 99% Power Bandwidth ∼= 20
T Hz

Spectral Efficiency:
Each symbol transmission last T seconds, requires a bandwidth of B Hz, and conveys log2M bits of information.
The spectral efficiency of these modulation schemes is

η = log2M/T/B

which has units of bits/second/Hz. Using the null-to-null bandwidth definition, the spectral efficiency is

η =
log2M

2
bits/second/Hz

For binary PSK (M = 2) the spectral efficiency is 1/2 bits/second/Hz, and for quaternary (M = 4) PSK the
spectral efficiency is 1 bit/second/Hz. PAM and QAM have the same spectral efficency as PSK for the same values
of M .
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To reduce the bandwidth, different pulse shapes can be used. Consider this pulse:

hT (t) =

√
2

3T

[
1 + cos

2π

T

(
t− T

2

)]
0 ≤ t ≤ T

Its Fourier transform is

HT (f) =

√
2T

3

sin(πfT )

πfT (1− f2T 2)
e−jπfT

and its power spectrum is∣∣∣HT (f)
∣∣∣2 =

2T

3

sin2(πfT )

[πfT (1− f2T 2)]2
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Bandwidth: 1. 3dB Bandwidth ∼= 1.446
T Hz

2. Null-to-Null Bandwidth = 4
T Hz

3. 99% Power Bandwidth = 2
√

2
T Hz

Frequency Shift Keying:
When FSK is used, the PSD is well-approximated by∣∣∣Φv(f)

∣∣∣2 ∼= Es
MT

M−1∑
m=0

∣∣∣HT (f −m∆fc)
∣∣∣2
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Bandwidth: The bandwidth depends on the frequency separation, ∆fc, and on the number of signals, M . For the
spectrum shown above with ∆fc = 2/T and M = 2, the null-to-null bandwidth is 4/T . In general,
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the null-to-null bandwidth is

B =
1

T
[2 + (M − 1)∆fcT ]

Although the smallest choice for ∆fc is 1
2T to ensure the signals are orthogonal, simple, noncoherent receivers

require ∆fc to be at least as large as 1/T . For M = 4, the bandwidth is 5/T and the resulting spectrum is
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Spectral Efficiency:

The spectral efficiency of FSK is

η = log2M bits per symbol / T seconds per symbol / B Hz

= log2M/T/

(
1

T
[2 + (M − 1)∆fcT ]

)
=

log2M

2 + (M − 1)∆fcT
bits/second/Hz

When ∆fc = 1/T , the spectral efficiency of binary FSK is 1/3 bits/second/Hz, and of 4-FSK is 2/5 bits/second/Hz.
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The Matched Filter
Suppose a signal, sc(t), is transmitted over an additive white Gaussian noise (AWGN) channel. The received signal is

rc(t) = sc(t) + wc(t)
where wc(t) is the noise component.

AWGN: By definition, wc(t) is a stationary random process with the following properties:

– Gaussian probability distribution at all time, t.
– zero mean ⇒ µwc = E [wc(t)] = 0
– white noise ⇒ φwc(τ) = E [wc(t)wc(t+ τ)] = N0

2 δ(τ)

The objective is to detect the signal in the noise, using the receiver shown below:

rc(t) hc(t)
t = T

ro(T )
ro(t)

The received signal is filtered then sampled at some observation time, T . The output of the filter, which has an impulse
response of hc(t), is

ro(t) = rc(t)�∗ hc(t)
= [sc(t) + wc(t)]�∗ hc(t)
= sc(t)�∗ hc(t) + wc(t)�∗ hc(t)
= so(t) + wo(t)

where �∗ denotes convolution, so(t) is the data signal component of the filtered signal, and wo(t) is the noise component
of the filtered signal. To reduce the effects of the noise, we want the filter to make the signal power to be considerably
greater than the noise power at the output. In particular, we want to maximize the signal-to-noise ratio (SNR) of the
output at time t = T . Therefore, we must find hc(t) such that the SNR

γ =

∣∣∣so(T )
∣∣∣2

E

[∣∣∣wo(T )
∣∣∣2]

is maximized.
Signal Power:

The filtered data signal is

so(t) =

∫ ∞
−∞

sc(t− τ)hc(τ) dτ =

∫ ∞
−∞

Sc(f)Hc(f)ej2πft df

where Hc(f) is the frequency response of the filter. The instantaneous signal power at time t = T is∣∣∣so(T )
∣∣∣2 =

∣∣∣∣∫ ∞
−∞

Sc(f)Hc(f)ej2πfT df

∣∣∣∣2
Noise Power:

The filtered noise component is

wo(t) =

∫ ∞
−∞

wc(t− τ)hc(τ) dτ

The average noise power at time t = T is

E

[∣∣∣wo(T )
∣∣∣2] = E

[∫ ∞
−∞

∫ ∞
−∞

wc(T − τ1)w∗c (T − τ2)hc(τ1)h∗c(τ2) dτ1 dτ2

]
=

∫ ∞
−∞

∫ ∞
−∞

E [wc(T − τ1)w∗c (T − τ2)]hc(τ1)h∗c(τ2) dτ1 dτ2

=

∫ ∞
−∞

∫ ∞
−∞

[
N0

2
δ(τ1 − τ2)

]
hc(τ1)h∗c(τ2) dτ1 dτ2

=
N0

2

∫ ∞
−∞

hc(τ2)h∗c(τ2) dτ2

=
N0

2

∫ ∞
−∞

∣∣∣hc(τ)
∣∣∣2 dτ

=
N0

2

∫ ∞
−∞

∣∣∣Hc(f)
∣∣∣2 df
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The signal-to-noise ratio is then

γ =

∣∣∣∫∞−∞ Sc(f)Hc(f)ej2πfT df
∣∣∣2

N0

2

∫∞
−∞

∣∣∣Hc(f)
∣∣∣2 df

We must find Hc(f) which maximizes γ.

Cauchy-Schwarz Inequality:
For any two finite-energy functions, g1(x) and g2(x),∣∣∣∣∫ ∞

−∞
g1(x)g2(x) dx

∣∣∣∣2 ≤ ∫ ∞
−∞

∣∣∣g1(x)
∣∣∣2 dx ∫ ∞

−∞

∣∣∣g2(x)
∣∣∣2 dx

with equality holding if and only if g2(x) = Kg∗1(x) where K is an arbitrary constant.

Using the Cauchy-Schwarz inequality with g1(f) = Sc(f)ej2πfT and g2(f) = Hc(f), we have∣∣∣∣∫ ∞
−∞

Sc(f)Hc(f)ej2πfT df

∣∣∣∣2 ≤ ∫ ∞
−∞

∣∣∣Sc(f)
∣∣∣2 df ∫ ∞

−∞

∣∣∣Hc(f)
∣∣∣2 df .

Therefore

γ ≤

∫∞
−∞

∣∣∣Sc(f)
∣∣∣2 df ∫∞−∞ ∣∣∣Hc(f)

∣∣∣2 df
N0

2

∫∞
−∞

∣∣∣Hc(f)
∣∣∣2 df =

2

N0

∫ ∞
−∞

∣∣∣Sc(f)
∣∣∣2 df

To find the transfer function of the filter which maximizes γ, it is necessary to find Hc,opt(f) which satisfies the equality
condition of the Cauchy-Schwarz inequality. This is

Hc,opt(f) = KS∗c (f)e−j2πfT

The corresponding impulse response is:

hc,opt(t) = K

∫ ∞
−∞

S∗c (f)e−j2πf(T−t) df

= Ks∗c(T − t)
For a real signal sc(t), the impulse response is

hc,opt(t) = Ksc(T − t)
The impulse response of the optimum filter is a time-reversed and delayed version of sc(t), with an arbitrary scaling
factor. Such a filter is called a matched filter. When a matched filter is used, the maximum possible SNR is realized:

γmax =
2

N0

∫ ∞
−∞

∣∣∣Sc(f)
∣∣∣2 df =

ES
N0/2

where ES is the energy of sc(t).
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Optimal Receivers for the AWGN Channel
Transmitter Model:

Consider a generic M -ary communication system where signal sm(t) is used to convey symbol m ∈ M, where
M = {0, 1, . . . ,M − 1} is the symbol alphabet. The set of signals, {sm(t) | m ∈ M}, can be represented with K
orthonormal basis signals {φk(t) | k = 0, 1, . . . ,K − 1}, with

sm(t) =

K−1∑
k=0

sm,kφk(t)

where the weights are

sm,k = 〈sm(t), φk(t)〉 =

∫ T

0

sm(t)φk(t) dt

for all m ∈M and k ∈ {0, 1, . . . ,K − 1}.

Note: The Gram-Schmidt procedure not only describes how to find the basis signals and the weights, but also
proves that a set of basis signals exists for any set of finite-energy data signals.

Additive White Gaussian Noise (AWGN) Channel Model:
Suppose symbol m ∈M was transmitted. The received signal is represented by

rc(t) = sm(t) + wc(t)

where

sm(t) = transmitted data signal

wc(t) = additive white Gaussian noise signal

– stationary random process
– Gaussian distribution
– zero mean ⇒ µw = E [wc(t)] = 0
– white noise ⇒ φw(τ) = E [wc(t)wc(t+ τ)] = N0

2 δ(τ)
Receiver:

The purpose of the receiver is to determine the transmitted symbol, m, based on observations of rc(t). Because of
uncertainty introduced by the noise it is impossible to guarantee that the receiver will be able to correctly determine
the transmitted symbol.

Optimal Receiver: An optimal receiver is one that is designed to minimize the probability that a decision error
occurs. There exists no other receiver structure that can provide a lower probability of error.

The optimal receiver can be separated into two stages, a detector, which filters and samples the received signal,
and a decision device, which uses the samples to make its decision.

rc(t) Detector
Decision
Device

m̂
r

Detector – extracts a set of “sufficient statistics” from rc(t).
Decision Device – attempts to determine the transmitted symbol, m, based on r = [r0 r1 · · · rK−1].
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Optimal Detector:
– filters and samples the received signal.
– optimal detector is composed of a bank of K matched filters (or correlators).
– filters are matched to the basis signals, {φk(t) | k = 0, 1, . . . ,K − 1}.

rc(t) φ0(T − t)
t = T

r0

φ1(T − t)
t = T

r1

φK−1(T − t)
t = T

rK−1

or
equivalently

rc(t)

φ0(t)

∫ T
0
dt

t = T
r0

φ1(t)

∫ T
0
dt

t = T
r1

φK−1(t)

∫ T
0
dt

t = T
rK−1

For k ∈ {0, 1, . . . ,K − 1}, the received samples are

rk =

∫ T

0

rc(t)φk(t) dt [but rc(t) = sm(t) + wc(t)]

=

∫ T

0

sm(t)φk(t) dt +

∫ T

0

wc(t)φk(t) dt

= sm,k + wk ,

where

wk =

∫ T

0

wc(t)φk(t) dt

represents a sample of noise, and {sm,k} are the weights for signal sm(t). That is,

sm,k = 〈sm(t), φk(t)〉 =

∫ T

0

sm(t)φk(t) dt

The samples r represent the projection of the received signal onto the signal space defined by {φk(t)|k = 0, 1, . . . ,K−
1}.
Properties of wk:

– Since wc(t) is a Gaussian random process, wk is a Gaussian random variable.
– Mean:

E [wk] = E

[∫ T

0

wc(t)φk(t) dt

]
=

∫ T

0

E [wc(t)]φk(t) dt = 0 .

– Covariance:

E [wkwl] = E

[∫ T

0

wc(t1)φk(t1) dt1

∫ T

0

wc(t2)φl(t2) dt2

]

=

∫ T

0

∫ T

0

E [wc(t1)wc(t2)]φk(t1)φl(t2) dt1 dt2

=

∫ T

0

∫ T

0

N0

2
δ(t2 − t1)φk(t1)φl(t2) dt1 dt2

=
N0

2

∫ T

0

φk(t2)φl(t2) dt2

=

{
N0/2, if k = l

0, if k 6= l

=
N0

2
δl−k .
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Properties of rk:

– Mean:
E [rk] = E [sm,k + wk] = sm,k + E [wk] = sm,k .

– Covariance:

E
[(
rk −E [rk]

) (
rl −E [rl]

)]
= E [wkwl]

=
N0

2
δl−k

=

{
N0/2, if k = l

0, if k 6= l
.

– Distribution: {rk} are a set of independent Gaussian random variables, with rk ∼ N(sm,k,N0/2).

Residue:

In general, we cannot perfectly reconstruct rc(t) from the samples r, so by sampling the filter outputs, some
information has been lost. This lost information is the residual error,

re(t) = rc(t) −
K−1∑
k=0

rkφk(t) .

However, re(t) contains no relevant information to help in determining m.

Proof:

re(t) = sm(t) + wc(t)−
K−1∑
k=0

[sm,k + wk]φk(t)

= sm(t)−
K−1∑
k=0

sm,kφk(t) + wc(t)−
K−1∑
k=0

wkφk(t)

= sm(t)− sm(t) + wc(t)−
K−1∑
k=0

wkφk(t)

= wc(t)−
K−1∑
k=0

wkφk(t)

= we(t) ,
where

we(t) = wc(t)−
K−1∑
k=0

wkφk(t) .

Since wc(t) and wk are not based on m, we(t) has the same value regardless of the transmitted signal.
Therefore it will be of no direct assistance in determining m. However, we(t) may provide some information
about wk, which could be used indirectly to determine m. But

E [wkwe(t)] = E

[
wk

(
wc(t)−

K−1∑
l=0

wlφl(t)

)]

= E [wkwc(t)]−E

[
wk

K−1∑
l=0

wlφl(t)

]

= E

[∫ T

0

wc(τ)φk(τ) dτ wc(t)

]
−
K−1∑
l=0

E [wkwl]φl(t)

=

∫ T

0

E [wc(τ)wc(t)]φk(τ) dτ −
K−1∑
l=0

N0

2
δl−kφl(t)

=

∫ T

0

N0

2
δ(t− τ)φk(τ) dτ − N0

2
φk(t)

=
N0

2
φk(t)− N0

2
φk(t)

= 0 .
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– Therefore, we(t) and wk are uncorrelated for all t ∈ [0, T ] and k ∈ {0, 1, . . . ,K − 1}.
– Therefore, we(t) is independent of wk for all t ∈ [0, T ] and k ∈ {0, 1, . . . ,K − 1}.
– Therefore, we(t) contains no information about wk.
– Therefore, knowledge of we(t) is of no assistance in determining m.
– The samples r are a set of sufficient statistics for determining m. There is no additional information

in rc(t) that is relevant.
Optimal Decision Device

The decision device must make a decision about which symbol was transmitted based on the received observations,
r. An optimal decision device is one that makes this decision in such a manner that the probability of a symbol
error is minimized. Let m̂ be the decision made by the device.

Defn: The a priori probability distribution is the probability distribution of the transmitted symbols before any
data has been received. It is denoted by Pr {m sent}. Typically, each symbol is equally likely to have been
transmitted, so Pr {m sent} = 1/M .

Defn: The a posteriori probability distribution (APP) is the probability distribution of the transmitted symbols
after the received signal has been observed. It is denoted by Pr {m sent | r received}.

Defn: The conditional probability density function fr(r | m sent) is the pdf of observing r at the output of the
detector, given that symbol m was transmitted. This is referred to as the likelihood function.

Maximum A Posteriori Probability (MAP) Decision Rule

To minimize the probability of an error, the decision device must maximize the probability that its decision is
correct. It chooses m̂ = m, for the value of m with the largest a posteriori probability. That is, choose m̂ = m if

Pr {m sent | r received} ≥ Pr {l sent | r received} for all l 6= m ,

or equivalently

m̂ = arg max
m

Pr {m sent | r received} .

This is known as the maximum a posteriori probability (MAP) decision rule.

Example: Consider a system where one of M = 4 possible values could have been transmitted. Suppose, based on
the received signal, the receiver calculates the following APP’s

Pr {0 sent | r received} = 0.2

Pr {1 sent | r received} = 0.1

Pr {2 sent | r received} = 0.4

Pr {3 sent | r received} = 0.3

According to the MAP decision rule, the receiver would chose m̂ = 2, since it is most likely to have been
transmitted based on the observations of the received signal.

Note: The probability of error in this case is 0.6, but any other choice for m̂ would lead to a higher
probability of error.

The APP’s can be calculated from the likelihood function, fr(r |m sent), with

Pr {m sent | r received} =
fr(r |m sent)Pr {m sent}

fr(r)
=

fr(r |m sent) Pr {m sent}∑M−1
m′=0 fr(r |m′ sent) Pr {m′ sent}

For the AWGN channel, since the components of r = [r0 r1 · · · rK−1] are independent, and each rk has a Gaussian
distribution with a mean of sm,k and a variance of N0/2, the likelihood function is

fr(r |m sent) =

K−1∏
k=0

frk(rk|m sent)

=

K−1∏
k=0

1√
2π(N0/2)

exp

{
− (rk − sm,k)2

2(N0/2)

}

=
1

(
√
πN0)K

exp

{
− 1

N0

K−1∑
k=0

(rk − sm,k)2

}
.
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Maximum Likelihood (ML) Decision Rule

Under certain conditions, the MAP decision rule can be simplified. Usually, all the symbols are equally likely to
be transmitted, so the a priori probabilities Pr {m sent} = 1/M , so the MAP decision rule can be expressed as:

m̂ = arg max
m

fr(r |m sent)1/M

fr(r)
or

m̂ = arg max
m

fr(r |m sent) .

This is know as the maximum likelihood (ML) decision rule. Note that the ML decision rule is equivalent to the
MAP decision rule if the a priori probabilities are all equal.

Simplifications to the ML Decision Rule

Using the expression given above for the likelihood function, the ML decision rule can then be expressed as:

m̂ = arg max
m

1

(
√
πN0)K

exp

{
− 1

N0

K−1∑
k=0

(rk − sm,k)2

}
or

m̂ = arg max
m

exp

{
− 1

N0

K−1∑
k=0

(rk − sm,k)2

}
or (by taking the log)

m̂ = arg max
m

(
− 1

N0

K−1∑
k=0

(rk − sm,k)2

)
or

m̂ = arg min
m

K−1∑
k=0

(rk − sm,k)2 .

But,
∑K−1
k=0 (rk−sm,k)2 =

∥∥∥r − sm∥∥∥2

, the square of the distance between r and the point in the signal space diagram

corresponding to sm(t). Therefore the ML decision rule reduces to:

m̂ = arg min
m

∥∥∥r − sm∥∥∥ .
In other words, the optimal decision is that symbol that is “closest” to r in the signal space.

Example: Suppose that r = [0.3, 0.8]
√
Es is observed when QPSK is used. The observation is marked in the signal

space diagram shown below:

φ0(t)

φ1(t)

s0

s1

s2

s3

√
Es

r ∥∥∥r − s0

∥∥∥ =
√

1.13Es∥∥∥r − s1

∥∥∥ =
√

0.13Es∥∥∥r − s2

∥∥∥ =
√

2.33Es∥∥∥r − s3

∥∥∥ =
√

3.33Es

The decoder would choose m̂ = 1.
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Decision Regions:

Each possible received observation will be closest to one of the points in the signal constellation. For each
signalling scheme, it is useful to draw the boundaries of the decision regions on the signal space diagram

φ0(t)

φ1(t)

s0

s1

s2

s3

Region Z0

Region Z1

Region Z2

Region Z3

Further Simplifications to the ML Decision Rule

The ML decision rule can also be expressed as:

m̂ = arg min
m

K−1∑
k=0

(r2
k − 2rksm,k + s2

m,k)

or

m̂ = arg min
m

(
K−1∑
k=0

r2
k − 2

K−1∑
k=0

rksm,k +

K−1∑
k=0

s2
m,k

)
or

m̂ = arg min
m

(
−2

K−1∑
k=0

rksm,k + Em

)
or

m̂ = arg max
m

(
K−1∑
k=0

rksm,k − Em/2

)
.

If all signals have equal energy (i.e., Em = El ∀ m, l), then the ML decision rule can be expressed as:

m̂ = arg max
m

K−1∑
k=0

rksm,k .
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Bandpass Receiver Structures

rc(t)

∼

90◦

√
2 cos 2πfct

−
√

2 sin 2πfct

rI,o(t)
hT (T − t)

rI(t)

t = (n+ 1)T

rI,n

rQ,o(t)
hT (T − t)

rQ(t)

t = (n+ 1)T

rQ,n

Decision
Device

ân

or equivalently

rc(t)

√
2e−j2πfct

ro(t)
hT (T − t)

r(t)

t = (n+ 1)T

rn Decision
Device

ân

Demodulator:
– converts received signal to baseband

ro(t) = rI,o(t) + jrQ,o(t)

= rc(t)
√

2 cos 2πfct− jrc(t)
√

2 sin 2πfct

= rc(t)
√

2e−j2πfct

– received bandpass signal is
rc(t) = vc(t) + wc(t)

so
ro(t) = vc(t)

√
2e−j2πfct + wc(t)

√
2e−j2πfct

= Re
{
v(t)
√

2ej2πfct
}√

2e−j2πfct + wo(t)
(

since vc(t) = Re
{
v(t)
√

2ej2πfct
})

= 1
2

[
v(t)
√

2ej2πfct + v∗(t)
√

2e−j2πfct
]√

2e−j2πfct + wo(t)

= v(t) + v∗(t)e−j4πfct + wo(t)

where wo(t) is the demodulated noise.
– the high frequency component will be removed by the receive filter.

Receive Filter:
– matched to the transmitted pulse shape

hR(t) = hT (T − t)
– maximizes signal-to-noise ratio
– filtered received signal is

r(t) = rI(t) + jrQ(t)

=

∫ ∞
−∞

ro(t− τ)hR(τ) dτ

=

∫ ∞
−∞

[v(t− τ) + wo(t− τ)]hT (T − τ) dτ

=

∫ ∞
−∞

v(t− τ)hT (T − τ) dτ +

∫ ∞
−∞

wo(t− τ)hT (T − τ) dτ

=

∫ ∞
−∞

[
Na−1∑
n=0

vnhT (t− τ − nT )

]
hT (T − τ) dτ + w(t)

=

Na−1∑
n=0

vn

∫ ∞
−∞

hT (t− τ − nT )hT (T − τ) dτ + w(t)
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=

Na−1∑
n=0

vn

∫ ∞
−∞

hT (t+ τ − [n+ 1]T )hT (τ) dτ + w(t)

=

Na−1∑
n=0

vnhTR(t− [n+ 1]T ) + w(t)

where w(t) is the filtered noise, and

hTR(t) =

∫ ∞
−∞

hT (t+ τ)hT (τ) dτ

is the combined impulse response of the transmit and receive filters.
Eye Diagrams:

Suppose a rectangular pulse shape is used for hT (t). For a transmitted lowpass signal, v(t), given by

t

v(t)

and a received demodulated signal, ro(t), of

t

r
o
(t)

the filter output would be

t

r(t)

SYSC 5504 51 Fall 2017/18



By overlaying segments of duration 2T from the above figure, an eye diagram can be created

0 1 2 3 4 5 6 7 8 9 10
−0.2

0

0.2

0.4

0.6

0.8

1

1.2

Signal Sampler:
– sample signal at the symbol rate

rn = rI,n + jrQ,n

= r([n+ 1]T )

=

Na−1∑
m=0

vmhTR([n+ 1]T − [m+ 1]T ) + w([n+ 1]T )

=

Na−1∑
m=0

vmhTR([n−m]T ) + wn

where wn is a noise sample.
– to prevent intersymbol interference (ISI), it is necessary that

hTR(nT ) = δn
so that

rn =

Na−1∑
m=0

vmδn−m + wn

= vn + wn
All unit-energy pulse shapes that are non-zero over only the interval [0, T ] possess this property.

Note: There are many other pulse shapes of longer duration that also fulfill this requirement. Although the
transmitted symbols will overlap in time as the signal is transmitted, as long as the pulse shape has
the property∫ ∞

−∞
hT (nT + τ)hT (τ) dτ = δn

then ISI will not occur.
Longer durations for the pulse shape can lead to narrower bandwidth signals.
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Signal Space Diagram:
The received samples can be plotted on the signal space diagram:

−2 −1 0 1 2
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

Decision Device:
– select the point in the signal constellation closest to the received sample to estimate the transmitted symbol
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Probability of a Symbol Error

Binary Signalling

Consider the case of binary signalling with signals s0 = (s0,0, s0,1) and s1 = (s1,0, s1,1). where s0 and s1 are equally likely
to be transmitted (that is, they have equal a priori probabilities, Pr {“0” sent} = Pr {“1” sent} = 1

2 ).
The optimal maximum likelihood decision rule is:

Choose m̂ = 0 if∥∥∥r − s0

∥∥∥2

<
∥∥∥r − s1

∥∥∥2

Example:

φ0(t)

φ1(t)

s0

s1

1 2

1

2

d01

Region Z1

Region Z0

s0 = (s0,0, s0,1) = (2, 0)

s1 = (s1,0, s1,1) = (1, 2)

E0 = 4

E1 = 5

d01 =
√

5

Suppose that a “0” is sent. An error occurs if r is closer to s1 than to s0. The probability of error is

Pε|0 = Pr

{∥∥∥r − s0

∥∥∥2

>
∥∥∥r − s1

∥∥∥2 ∣∣∣ “0” sent

}
If “0” is sent then r = s0 + w, where w = (w0, w1). w0 and w1 are independent Gaussian random variables, each with
zero mean and variance of N0/2. Therefore

Pε|0 = Pr

{∥∥∥s0 + w − s0

∥∥∥2

>
∥∥∥s0 + w − s1

∥∥∥2
}

= Pr

{∥∥∥w∥∥∥2

>
∥∥∥w + s0 − s1)

∥∥∥2
}

= Pr
{
w2

0 + w2
1 > (w0 + s0,0 − s1,0)2 + (w1 + s0,1 − s1,1)2

}
= Pr

{
w2

0 + w2
1 > w2

0 + 2w0(s0,0 − s1,0) + (s0,0 − s1,0)2 + w2
1 + 2w1(s0,1 − s1,1) + (s0,1 − s1,1)2

}
= Pr

{
−2w0(s0,0 − s1,0)− 2w1(s0,1 − s1,1) > (s0,0 − s1,0)2 + (s0,1 − s1,1)2

}
= Pr

{
w0(s0,0 − s1,0) + w1(s0,1 − s1,1) < − 1

2

∥∥∥s0 − s1

∥∥∥2
}

= Pr
{
w0(s0,0 − s1,0) + w1(s0,1 − s1,1) < − 1

2d
2
01

}
where d01 is the distance between s0 and s1 in the signal space diagram.
Define

X = w0(s0,0 − s1,0) + w1(s0,1 − s1,1)
Since w0 and w1 are Gaussian, X is also Gaussian, with a mean of

µX = E [X]

= E [w0] (s0,0 − s1,0) + E [w1] (s0,1 − s1,1)

= (0)(s0,0 − s1,0) + (0)(s0,1 − s1,1)

= 0
and a variance of

σ2
X = E

[
X2
]
− µ2

X

= E
[
[w0(s0,0 − s1,0) + w1(s0,1 − s1,1)]

2
]
− (0)2

= E
[
w2

0

]
(s0,0 − s1,0)2 + 2E [w0w1] (s0,0 − s1,0)(s0,1 − s1,1) + E

[
w2

1

]
(s0,1 − s1,1)2
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=
N0

2
(s0,0 − s1,0)2 +

N0

2
(s0,1 − s1,1)2 =

N0

2
d2

01

The probability of error, given that “0” was sent, is
Pε|0 = Pr

{
X < − 1

2d
2
01

}
=

∫ − 1
2d

2
01

−∞
fX(x) dx

=

∫ − 1
2d

2
01

−∞

1√
2πσ2

X

exp

{
− 1

2σ2
X

(x− µX)2

}
dx

=

∫ − 1
2d

2
01

−∞

1√
πN0d2

01

exp

{
− 1

N0d2
01

x2

}
dx

(
let u =

−x√
N0d2

01

)

=

∫ ∞
d2
01

2
√
N0d

2
01

1√
π
e−u

2

du

= 1
2erfc

(
d2

01

2
√
N0d2

01

)

= 1
2erfc

(
d01

2
√
N0

)
Now assume that a “1” was sent. The probability of error is

Pε|1 = Pr

{∥∥∥r − s0

∥∥∥2

<
∥∥∥r − s1

∥∥∥2

| “1” sent

}
By symmetry,

Pε|1 = Pε|0

= 1
2erfc

(
d01

2
√
N0

)
The average probability of error is

Pε = Pr {“0” sent}Pε|0 + Pr {“1” sent}Pε|1
= 1

2Pε|0 + 1
2Pε|1

= 1
2erfc

(
d01

2
√
N0

)
which depends only on the distance between the two signals in the signal space diagram, and not on their actual positions.
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M-ary Signalling

If symbol m is transmitted, a correct decision is made only if the sample, r, falls within the decision region for symbol m
in the signal space diagram. The probability of making a correct decision is therefore the probability that r falls within
the decision region, which is denoted by Zm.

PC|m =

∫
Zm

fr(r |m sent) dr ,

where fr(r |m sent) is the joint conditional pdf of r given that m was sent (the likelihood function). For the AWGN
channel

fr(r |m sent) =
1(√

πN0

)K exp

{
− 1

N0

K−1∑
k=0

(rk − sm,k)
2

}
where sm = [sm,0 sm,1 . . . sm,K−1] is the point for symbol m in the signal space diagram. The average probability of a
correct decision is:

PC =

M−1∑
m=0

PC|mPr {m sent}

=
1

M

M−1∑
m=0

PC|m

for symbols with equal a priori probabilities.
The probability of a symbol error is:

Pε = 1− PC = 1− 1

M

M−1∑
m=0

PC|m

Example: 4-QAM

φ0(t)

φ1(t)

−
√
Es
2

√
Es
2

−
√
Es
2

√
Es
2

s0s1

s3s2

Region Z0Region Z1

Region Z3Region Z2

s0 =

(√
Es
2
,

√
Es
2

)

s1 =

(
−
√
Es
2
,

√
Es
2

)

s2 =

(
−
√
Es
2
, −
√
Es
2

)

s3 =

(√
Es
2
, −
√
Es
2

)

Es = Energy per symbol

PC|0 =

∫
Z0

fr(r | “0” sent) dr

=

∫ ∞
0

∫ ∞
0

fr0,r1(r0, r1 | “0” sent) dr0 dr1

=

∫ ∞
0

∫ ∞
0

1

πN0
exp

− 1

N0

(r0 −
√
Es
2

)2

+

(
r1 −

√
Es
2

)2
 dr0 dr1

=

∫ ∞
0

1√
πN0

exp

− 1

N0

(
r0 −

√
Es
2

)2
 dr0

∫ ∞
0

1√
πN0

exp

− 1

N0

(
r1 −

√
Es
2

)2
 dr1

=

 1√
π

∫ √ Es
2N0

−∞
e−u

2
0 du0

  1√
π

∫ √ Es
2N0

−∞
e−u

2
1 du1


with

u0 = − r0−
√
Es
2√

N0

u1 = − r1−
√
Es
2√

N0
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=

[
1− 1√

π

∫ ∞√
Es

2N0

e−u
2

du

]2

=

[
1− 1

2erfc

(√
Es

2N0

)]2

Because of the symmetric nature of the points in the signal space, PC|0, PC|1, PC|2, and PC|3 are all equal.
Therefore

PC|m =

[
1− 1

2erfc

(√
Es

2N0

)]2

for all m ∈ {0, 1, 2, 3}.
The probability of a symbol error is

Pε = 1− 1

4

3∑
m=0

PC|m

= 1−

[
1− 1

2erfc

(√
Es

2N0

)]2

= erfc

(√
Es

2N0

)
− 1

4
erfc2

(√
Es

2N0

)

∼= erfc

(√
Es

2N0

)
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Note: In general, the integral to find PC|m is not always easy to evaluate.

SYSC 5504 57 Fall 2017/18



Union Bound on the Error Probability

Defn: Union Bound
The probability of a finite union of events is upper-bounded by the sum of the probabilities of the constituent
events.

Let
Am,l = the event that r is closer to sl than sm when symbol m is sent.

The probability of a symbol error when m is sent is
Pε|m = Pr {r is closer to sl than sm for some l 6= m | m sent}

= Pr


M−1⋃
l=0
l 6=m

Am,l


≤

M−1∑
l=0
l 6=m

Pr {Am,l}

Example:

φ0(t)

φ1(t)

s0

s1

s2

s3

√
Es

√
Es

−
√
Es

−
√
Es

If symbol “1” is sent, an error occurs if r falls in the
shaded region.

The probability of an error if “1” is sent is less than or equal to the sum of the probabilities that r falls in the
shaded regions of the three graphs below:

φ0(t)

φ1(t)

s0

s1

√
Es

√
Es

Event A1,0 occurs if r falls
in this region.

φ0(t)

φ1(t)

s1

s2

√
Es

−
√
Es

Event A1,2 occurs if r falls
in this region.

φ0(t)

φ1(t)

s1

s3

√
Es

−
√
Es

Event A1,3 occurs if r falls
in this region.
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From the discussion on error probability for binary signalling,

Pr {Am,l} = 1
2erfc

(
dm,l

2
√
N0

)
where dm,l is the distance between points sm and sl in the signal space diagram.
Using the union bound, the probability of a symbol error is upper-bounded by

Pε|m ≤
M−1∑
l=0
l6=m

1
2erfc

(
dm,l

2
√
N0

)
so

Pε ≤
1

M

M−1∑
m=0

M−1∑
l=0
l 6=m

1
2erfc

(
dm,l

2
√
N0

)
Example: For the QPSK example:

d1,0 =
√

2Es d1,2 =
√

2Es d1,3 = 2
√
Es

Pε|1 ≤ Pr {A1,0}+ Pr {A1,2}+ Pr {A1,3}

= 1
2erfc

( √
2Es

2
√
N0

)
+ 1

2erfc

( √
2Es

2
√
N0

)
+ 1

2erfc

(
2
√
Es

2
√
N0

)
= erfc

(√
Es

2N0

)
+

1

2
erfc

(√
Es
N0

)
By symmetry

Pε|m = Pε|1 ≤ erfc

(√
Es

2N0

)
+

1

2
erfc

(√
Es
N0

)
Therefore

Pε =
1

4

3∑
m=0

Pε|m ≤ erfc

(√
Es

2N0

)
+

1

2
erfc

(√
Es
N0

)
Note: Since QPSK differs from 4-QAM only by a rotation of the bases, the error probability for QPSK is the

same as for 4-QAM. That is,

Pε = erfc

(√
Es

2N0

)
− 1

4
erfc2

(√
Es

2N0

)
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Probability of a Bit Error
Usually, the probability of a bit error is of greater interest than the probability of a symbol error. The probability of a
bit error given that symbol m was transmitted is

Pb|m =

M−1∑
l=0

Pr {m̂ = l | m sent} ×
(

# of bit positions in which m and l differ

# of bits per symbol

)
where

Pr {m̂ = l | m sent} =

∫
Zl

fr(r |m sent) dr

is the probability that the decision device decides in favour of symbol l when m was transmitted.
The average probability of a bit error is

Pb =

M−1∑
m=0

Pb|m Pr {m sent}

Example: 4-QAM
Likelihood function:

fr(r | 0 sent) =
1

πN0
exp

{
− 1

N0

[
(r0 − 1)2 + (r1 − 1)2

]}

−2
−1

0
1

2

−2

−1

0

1

2
0

0.2

0.4

0.6

0.8

1

φ0(t)

φ1(t)

s0s1

s2 s3

−1 1

−1

1

0.91110.0434

0.0021 0.0434

P0|0 = Pr {m̂ = 0 | “0” sent} = 0.9111

P1|0 = Pr {m̂ = 1 | “0” sent} = 0.0434

P2|0 = Pr {m̂ = 2 | “0” sent} = 0.0021

P3|0 = Pr {m̂ = 3 | “0” sent} = 0.0434

If a “0” (00) is sent, one bit error occurs if a “1” (01) is received, one bit error occurs if a “2” (10) is received,
and two bit errors occur if a “3” (11) is received. The probability of a bit error is:

Pb|0 = 0
2P0|0 + 1

2P1|0 + 1
2P2|0 + 2

2P3|0]

= 0.06615

Note: The probability of a bit error depends on the order in which symbols are mapped to signals.
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Example: 4-QAM
Now, suppose the symbols are mapped to signals as follows:

φ0(t)

φ1(t)

s0s1

s3 s2

−1 1

−1

1

0.91110.0434

0.0021 0.0434

P0|0 = Pr {m̂ = 0 | “0” sent} = 0.9111

P1|0 = Pr {m̂ = 1 | “0” sent} = 0.0433

P2|0 = Pr {m̂ = 2 | “0” sent} = 0.0433

P3|0 = Pr {m̂ = 3 | “0” sent} = 0.0021

The probability of a bit error is:

Pb|0 = 0
2P0|0 + 1

2P1|0 + 1
2P2|0 + 2

2P3|0]

= 0.0455

Gray Mapping:
To reduce the probability of a bit error, care must be taken when assigning symbols to points in the signal
constellation. When symbol errors occur, the received sample usually falls within one of the adjacent decision
regions, and not in one that is far-removed from the transmitted signal. Symbols that occupy adjacent regions in
the signal space diagram should differ by only one bit, if possible.

Example: 8-PSK

φ0(t)

φ1(t)

s0 (000)

s1 (001)

(011) s3

(010) s2

(110) s6

(111) s7

s5 (101)

s4 (100)

√
Es

When Gray Mapping is used, usually there is only a single bit error if a symbol error occurs. The probability of a bit
error is therefore

Pb ∼=
Pε

log2M
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Example: Probability of a Bit Error of 4-PAM
Signal Space Diagram:

φ0

−3A −2A −A A 2A 3A

10 11 01 00

First, calculate the probability of receiving 00, 01, 10, and 11 if a 00 was transmitted. If 00 was transmitted then
r = 3A+ w

where w is the AWGN, with a Gaussian distribution with zero mean and a variance of N0/2. The likelihood function is

fr(r | 00 sent) =
1√
πN0

exp

{
− 1

N0
(r − 3A)2

}
fr(r | 00 sent)

r
−4A −3A −2A −A 0 A 2A 3A 4A

P00|00 = Pr {r > 2A | 00 sent}
= Pr {3A+ w > 2A}
= Pr {w > −A}
= 1− Pr {w < −A}
= 1− Pr {w > A}

= 1− 1
2erfc

(
A√
N0

)
= 1−Q1

where, to simplify notation, Qn is defined as

Qn
4
= 1

2erfc

(
nA√
N0

)
= Pr {w < −nA} = Pr {w > nA}

is the area under the tail of the Gaussian pdf from −∞ to −nA.

fw(w)

w
−4A −3A −2A −A 0 A 2A 3A 4A

P01|00 = Pr {0 < r ≤ 2A | 00 sent} = Pr {−3A < w ≤ −A} = Q1 −Q3

P11|00 = Pr {−2A < r ≤ 0 | 00 sent} = Pr {−5A < w ≤ −3A} = Q3 −Q5

P10|00 = Pr {r ≤ −2A | 00 sent} = Pr {w ≤ −5A} = Q5

The probability of a bit error given that 00 was sent is

Pb|00 =

M−1∑
l=0

Pr
{
k̂ = l | 00 sent

}
×
(

# of bit positions in which 00 and l differ

# of bits per symbol

)
= 0

2P00|00 + 1
2P01|00 + 1

2P10|00 + 2
2P11|00

=
1

2
[0(1−Q1) + 1(Q1 −Q3) + 1(Q5) + 2(Q3 −Q5)]

=
1

2
[Q1 +Q3 −Q5]
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If 01 was transmitted then
r = A+ w

The likelihood function is

fr(r | 01 sent) =
1√
πN0

exp

{
− 1

N0
(r −A)2

}
fr(r | 01 sent)

r
−4A −3A −2A −A 0 A 2A 3A 4A

P00|01 = Pr {r > 2A | 01 sent} = Pr {w > A} = Q1

P01|01 = Pr {0 < r ≤ 2A | 01 sent} = Pr {−A < w ≤ A} = 1− 2Q1

P11|01 = Pr {−2A < r ≤ 0 | 01 sent} = Pr {−3A < w ≤ −A} = Q1 −Q3

P10|01 = Pr {r ≤ −2A | 01 sent} = Pr {w ≤ −3A} = Q3

The probability of a bit error given that 01 was sent is
Pb|01 = 1

2P00|01 + 0
2P01|01 + 2

2P10|01 + 1
2P11|01

=
1

2
[1(Q1) + 0(1− 2Q1) + 2(Q3) + 1(Q1 −Q3)]

=
1

2
[2Q1 +Q3]

By symmetry, if 10 is transmitted,

Pb|10 = Pb|00 =
1

2
[Q1 +Q3 −Q5]

and if 11 is transmitted

Pb|11 = Pb|01 =
1

2
[2Q1 +Q3]

The average probability of a bit error is

Pb =

3∑
m=0

Pb|mPr {m sent}

=
1

4

[
Pb|00 + Pb|01 + Pb|10 + Pb|11

]
=

1

8
[(Q1 +Q3 −Q5) + (2Q1 +Q3) + (Q1 +Q3 −Q5) + (2Q1 +Q3)]

=
1

4
[3Q1 + 2Q3 −Q5]

Substituting for Qn yields

Pb =
1

8

[
3erfc

(
A√
N0

)
+ 2erfc

(
3A√
N0

)
− erfc

(
5A√
N0

)]
The average transmitted energy per bit is

Eb = 1
2Es =

1

2

3∑
m=0

EmPr {m sent} =
1

8

3∑
m=0

Em

=
1

8

[
(3A)2 + (A)2 + (−3A)2 + (−A)2

]
=

1

8
20A2 =

5

2
A2

The average probability of a bit error, expressed in terms of Eb, is

Pb =
1

8

[
3erfc

(√
2Eb
5N0

)
+ 2erfc

(
3

√
2Eb
5N0

)
− erfc

(
5

√
2Eb
5N0

)]
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Synchronization
Consider the more general AWGN channel model

rc(t) = αvc(t− τ) + wc(t)

vc(t) – transmitted bandpass signal
wc(t) – bandpass AWGN signal
rc(t) – received bandpass signal

τ – transmission delay
α – channel attenuation

In general, the transmission delay and channel attenuation are unknown, and their effects must be taken into considera-
tion.

Carrier Recovery

Suppose

vc(t) = Re
{
v(t)
√

2ej2πfct
}

is transmitted, where v(t) is the complex lowpass equivalent transmitted signal. The received signal is
rc(t) = αvc(t− τ) + wc(t)

= αRe
{
v(t− τ)

√
2ej2πfc(t−τ)

}
+ wc(t)

= αRe
{
v(t− τ)

√
2ej2πfctejφc

}
+ wc(t)

where φc = −2πfcτ is the carrier phase uncertainty introduced by the unknown transmission delay.
If the transmission delay could be estimated extremely accurately, then it would be possible to estimate the carrier phase
uncertainty. However, since the carrier frequency is usually very large, any slight error in estimating τ will lead to great
uncertainty about φc.

Example: Suppose the carrier frequency is fc = 1 GHz, and the transmission delay is τ = 2 µsec. The carrier phase
uncertainty is φc = −2πfcτ = −4000π = 0 radians. If the estimate of the transmission delay is τ̂ = 2.0005
µsec, the estimate of the phase uncertainty would be φ̂c = −2πfcτ̂ = −4001π = π radians, for an error of π
radians.

Furthermore, a carrier phase uncertainty will result if there is a carrier frequency mismatch between the transmitter and
receiver. If the carrier phase uncertainty is neglected, reliable data transmission is impossible.
Two basic approaches to carrier recovery are:

1. Pilot signal insertion

– an unmodulated carrier is transmitted with the data-bearing signal
– receiver uses narrowband filter to extract the pilot tone
– use pilot tone for demodulation
– requires additional power to transmit the pilot.

v′c(t) = vc(t) +K cos(2πfct)

V ′c (f) = Vc(f) +
K

2
δ(f − fc) +

K

2
δ(f + fc)

f

V ′c (f)

fc

|Vc(f)|
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2. Suppressed Carrier Extraction

– extract carrier reference signal from data-bearing signal
– use phase locked loop (PLL), squaring loop, Costas loop, etc . . .

Example:

For M -PSK

rc(t)
M th-power

Device

Bandpass
Filter @Mfc

Loop
Filter

VCOsin(2πMfct+Mφ̂c(t))

Frequency
Divider (÷M)

Received
Carrier

rMc (t) e(t)

y(t)

M th-power-law
device for carrier

recovery of M -PSK
signals

Ignoring the noise component,

rc(t) = vc(t)

=

Na−1∑
n=0

hT (t− nT )A cos(2πfct+ φc + θn)

where θn = 2π
M an is the transmitted phase, φc is the phase uncertainty, hT (t) is the transmitted pulse shape,

A is an arbitrary signal amplitude, and Na is the number of symbols transmitted in a packet. The problem is
to estimate φc, which is obscured by the transmitted data.

– M th-power-law device generates harmonics of fc.

r2
c (t) =

Na−1∑
n=0

Na−1∑
m=0

hT (t− nT )hT (t−mT )A2 cos(2πfct+ φc + θn) cos(2πfct+ φc + θm)

=

Na−1∑
n=0

h2
T (t− nT )A2 cos2(2πfct+ φc + θn)

=

Na−1∑
n=0

h2
T (t− nT )

A2

2
[1 + cos(4πfct+ 2φc + 2θn)]

r4
c (t) =

Na−1∑
n=0

Na−1∑
m=0

h2
T (t− nT )h2

T (t−mT )
A4

4
[1 + cos(4πfct+ 2φc + 2θn)]

× [1 + cos(4πfct+ 2φc + 2θm)]

=

Na−1∑
n=0

h4
T (t− nT )

A4

4
[1 + cos(4πfct+ 2φc + 2θn)]

2

=

Na−1∑
n=0

h4
T (t− nT )

A4

4

[
1 + 2 cos(4πfct+ 2φc + 2θn) + cos2(4πfct+ 2φc + 2θn)

]
=

Na−1∑
n=0

h4
T (t− nT )

A4

4

[
1 + 2 cos(4πfct+ 2φc + 2θn) + 1

2 + 1
2 cos(8πfct+ 4φc + 4θn)

]
In general,

rMc (t) = · · ·+
Na−1∑
n=0

hMT (t− nT )2

(
A

2

)M
cos(2πMfct+Mφc +Mθn)

= · · ·+
Na−1∑
n=0

hMT (t− nT )2

(
A

2

)M
cos(2πMfct+Mφc +M

2π

M
an)
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= · · ·+
Na−1∑
n=0

hMT (t− nT )2

(
A

2

)M
cos(2πMfct+Mφc)

= · · ·+ x(t) cos(2πMfct+Mφc)
where

x(t) = 2

(
A

2

)M Na∑
n=0

hMT (t− nT )

depends on the pulse shape, but not on the actual transmitted data.

f

|F
{
rMc (t)

}
|

2fc 4fc

– the bandpass filter isolates the harmonic
x(t) cos(2πMfct+Mφc)

– the output of the multiplier is
e(t) = x(t) cos(2πMfct+Mφc) sin(2πMfct+Mφ̂c(t))

= x(t) 1
2

[
sin(4πMfct+M [φc + φ̂c(t)]) + sin(M [φc − φ̂c(t)])

]
where φ̂c(t) is an estimate of the carrier phase uncertainty.

– the loop filter (a narrowband filter) removes the high-frequency component, and most of x(t), leaving

y(t) = K sinM [φc − φ̂c(t)] ∼= KM [φc − φ̂c(t)]
– the voltage controlled oscillator (VCO) produces a sinusoid sin[α(t)], whose instantaneous phase is

α(t) = 2πMfct+
1

K

∫ t

−∞
y(τ) dτ

where K is a gain constant.
If at time t = t1,

α(t1) = 2πMfct1 +Mφ̂c(t1)
then at time t2 > t1

α(t2) = 2πMfct2 +Mφ̂c(t1) +
1

K

∫ t2

t1

y(τ) dτ

∼= 2πMfct2 +Mφ̂c(t1) +
1

K

∫ t2

t1

KM [φc − φ̂c(τ)] dτ

∼= 2πMfct2 +Mφ̂c(t1) +M [φc − φ̂c(t1)](t2 − t1)
As t→∞, α(t)→ 2πMfct+Mφc.

– the frequency divider output is

sin
(

2πfct+ φ̂c(t)
)

– as t→∞, φ̂c(t)→ φc, (mod 2π
M )

– the phase tracking loop can lock onto φc with an offset of any integer multiple of 2π
M .

– these carrier extraction techniques introduce a phase ambiguity that is an integer multiple of 2π
M .

Note: this problem can be overcome by differentially encoding the signal prior to transmission, and differen-
tially decoding the signal at the receiver.
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Differentially Encoded M -PSK (M -DPSK)

To overcome the phase ambiguity introduced by the phase tracking loop, differential phase encoding is often
used.

– For traditional (absolutely-encoded) M -PSK, if an is the symbol transmitted in the nth symbol interval,
with an ∈ {0, 1, . . . ,M − 1}, then the phase transmitted in the nth symbol interval is

θn =
2π

M
an

– For differentially encoded M -PSK, the phase transmitted in the nth symbol interval is

θn = θn−1 +
2π

M
an

where θn−1 is the phase transmitted in the previous symbol interval.
– Because of the phase ambiguity, the receiver decides that

θ̂n−1 = θn−1 + θε
θ̂n = θn + θε

(
ignoring error
due to noise

)
where θε is the phase ambiguity, with θε ∈

{
2π
M k

∣∣∣ k = 0, 1, . . . ,M − 1
}

– The difference between these two is
θ̂n − θ̂n−1 = θn + θε − θn−1 − θε

= θn − θn−1

=
2π

M
an

– Taking errors due to noise into account, note that an error in θ̂n will cause not only an error in ân, but
also in ân+1. As a result, the probability of error for M -DPSK is about twice that of M -PSK.

Noncoherent Receivers

An alternative to carrier recovery

– Coherent Receivers - perform carrier recovery

– Noncoherent Receivers - do not perform carrier recovery
Noncoherent receivers can only be used with certain signalling schemes

1. Noncoherent detection of frequency shift keying

rc(t)

√
2e−j2πf0t

∫ T
0
• dt

t = T

r0 | • |2

√
2e−j2πfM−1t

∫ T
0
• dt

t = T

rM−1
| • |2

select
largest k̂

rm =

∫ T

0

rc(t)
√

2e−j2πfmt dt

=

∫ T

0

[
A
√

2 cos(2πfkt+ φc) + wc(t)
]√

2e−j2πfmt dt

= 2A

∫ T

0

cos(2πfkt+ φc)e
−j2πfmt dt+ wm

= A

∫ T

0

[
ej2πfktejφc + e−j2πfkte−jφc

]
e−j2πfmt dt+ wm

= A

∫ T

0

ej2π(fk−fm)tejφc dt+A

∫ T

0

e−j2π(fk+fm)te−jφc dt+ wm
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= A
ejφc

j2π(fk − fm)

[
ej2π(fk−fm)t

]T
0

+A
e−jφc

−j2π(fk + fm)

[
e−j2π(fk+fm)t

]T
0

+ wm

= A
ejφc

j2π(fk − fm)

[
ej2π(fk−fm)T − 1

]
+A

e−jφc

−j2π(fk + fm)

[
e−j2π(fk+fm)T − 1

]
+ wm

= A
ejφc

j2π(fk − fm)

[
ejπ(fk−fm)T − e−jπ(fk−fm)T

]
ejπ(fk−fm)T

+A
e−jφc

−j2π(fk + fm)

[
e−jπ(fk+fm)T − ejπ(fk+fm)T

]
e−jπ(fk+fm)T + wm

= Aejφc
sin(π[fk − fm]T )

π(fk − fm)
ejπ(fk−fm)T +Ae−jφc

sin(π[fk + fm]T )

π(fk + fm)
e−jπ(fk+fm)T + wm

= Aejφc
sin(π[fk − fm]T )

π(fk − fm)
ejπ(fk−fm)T + wm

If fk − fm = (k −m)∆fc = k−m
T then

rm = Aejφcδk−m + wm

and ∣∣∣rm∣∣∣2 = A2δk−m + noise terms

2. Noncoherent M -DPSK

rc(t)

√
2e−j2πfct

∫ T
0
• dt

t = (n+ 1)T

rn

z−1 ∗

Decision
Device

ân

r∗n−1

xn

rn =
√
Esejθnejφc + wn

xn = rnr
∗
n−1

= Esej(θn+φc−θn−1−φc) + noise terms

= Esej
2π
M an + noise terms

Timing Recovery (Symbol Synchronization)

The receiver must sample the matched filter outputs at the precise sampling instants, tn = nT + τ .
The receiver must know

– the symbol rate, 1/T , and

– the transmission delay τ .
For correct sampling, the receiver requires a synchronized clock signal. Some approaches include:

1. Master Clock

– transmitter and receiver are synchronized to an external master clock
– receiver must still estimate and compensate for transmission delay

– OK if τ << T

2. Transmitted Clock

– clock signal is transmitted along with the data
– receiver uses narrowband filter to extract clock signal from data
– good timing recovery since clock signal has same delay as data signal
– requires power to transmit clock, reducing power available for data
– clock signal requires additional bandwidth
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3. Extract clock signal from received data signal
Early-Late Gate Synchronization

– one possible approach
– based on the fact that the matched filter output is at a maximum at the correct sampling instant:

Example: rectangular pulse

t

hT (t)
1√
T

T
t

hTR(t)
1

T 2T

– if T̂ is an estimate of the correct sampling instant, take two additional samples, one at T̂ − δ and one at
T̂ + δ

– if T̂ < T then

t

hTR(t)
1

T 2TT̂T̂ − δ T̂ + δ

– if T̂ > T then

t

hTR(t)
1

T 2TT̂T̂ − δ T̂ + δ

– If |r(T̂ − δ)| < |r(T̂ + δ)| then T̂ < T , so the sampling instant should be delayed.
– If |r(T̂ − δ)| > |r(T̂ + δ)| then T̂ > T , so the sampling instant should be advanced.

received
signal

Advance
by δ

∫ T
0
• dt Sampler |•|

Delay
by δ ∫ T

0
• dt Sampler |•|

Loop
Filter

VCC
Symbol

Waveform
Generator

+

−

VCC:
Voltage

Controlled
Clock
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Summary of Bandpass Signalling

Notation:
Es = transmitted energy per symbol γs = Es

N0

Eb = transmitted energy per bit γb = Eb
N0

Coherent M -ary Phase Shift Keying (M -PSK)

sm(t) = A cos(2πfct+ θm) with θm ∈
{

0,
2π

M
, 2

(
2π

M

)
, . . . , (M − 1)

2π

M

}
Es = 1

2A
2T

Signal Space Diagram (M = 8):

φ0

φ1

s0

s1

s3

s2

s6

s7

s5

s4

√
Es−

√
Es

√
Es

−
√
Es

φ0(t) =

√
2

T
cos(2πfct) φ1(t) = −

√
2

T
sin(2πfct)

Pε =
M − 1

M
− 1

2erf
(√

γs sin
π

M

)
− 1√

π

∫ √γs sin π
M

0

erf
(
u cot

π

M

)
exp{−u2} du

∼= erfc
(√

γs sin
π

M

)
Pb ∼=

Pε
log2M

• M = 2

Pb = 1
2erfc (

√
γb)

• M = 4

Pε = erfc

(√
γs
2

)
− 1

4
erfc2

(√
γs
2

)
Pb = 1

2erfc (
√
γb)
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Coherent M -ary Differential Phase Shift Keying (M -DPSK)
M -DPSK uses the same signalling scheme as M -PSK, except data is transmitted as the relative difference in the
carrier phase between two consecutive symbol intervals, as opposed to the absolute carrier phase in each symbol
interval.

• M = 2

Pb = erfc (
√
γb)
[
1− 1

2erfc (
√
γb)
]

• M = 4

Pε = 2erfc

(√
γs
2

)
− 2erfc2

(√
γs
2

)
+ erfc3

(√
γs
2

)
− 1

4
erfc4

(√
γs
2

)
Pb = erfc (

√
γb)
[
1− 1

2erfc (
√
γb)
]

Noncoherent M -ary Differential Phase Shift Keying (M -DPSK)
Noncoherent M -DPSK is similar to coherent M -DPSK, except no attempt is made to estimate the carrier phase
uncertainty.

Pε =
sin 2π

M

2π

∫ π/2

−π/2

exp
{
−γs

[
1− cos 2π

M cosu
]}

1− cos 2π
M cosu

du

∼= erfc

(
√
γs sin

π√
2M

)
Pb ∼=

Pε
log2M

• M = 2

Pb = 1
2 exp {−γb}

• M = 4

Pb = Q1(a, b)− 1
2I0(
√

2γb) exp {−2γb}

with a =

√
2γb(1−

√
1
2 ) and b =

√
2γb(1 +

√
1
2 ), where Q1(a, b) is the Markum Q function, given by

Q1(a, b) = exp{−(a2 + b2)/2}
∞∑
k=0

(
a

b
)kIk(ab) ,

and Ik(·) is the modified Bessel function of order k.
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Pulse Amplitue Modulation (M -PAM)
sm(t) = Am cos(2πfct) with Am ∈ {−(M − 1)A, . . . ,−3A,−A,A, 3A, . . . , (M − 1)A}

Es =
1

6
(M2 − 1)A2T

Signal Space Diagram (M = 4):

φ0

s0 s1 s3 s2

−3
√
Es/5 −

√
Es/5

√
Es/5 3

√
Es/5

φ0(t) =

√
2

T
cos(2πfct)

Pε =
M − 1

M
erfc

(√
3

(M2 − 1)
γs

)

Pb ∼=
Pε

log2M

• M = 2

Pb = 1
2erfc (

√
γb)

• M = 4

Pε =
3

4
erfc

(√
γs
5

)

Pb =
3

8
erfc

(√
2

5
γb

)
+

1

4
erfc

(
3

√
2

5
γb

)
− 1

8
erfc

(
5

√
2

5
γb

)
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M -ary Quadrature Amplitude Modulation (M -QAM)
sm(t) = Acm cos(2πfct) +Asm sin(2πfct)

with

Acm, Asm ∈ {−(
√
M − 1)A, . . . ,−3A,−A,A, 3A, . . . , (

√
M − 1)A}

Es =
1

3
(M − 1)A2T

Signal Space Diagram (M = 16):

φ0

φ1

s0 s1 s3 s2

s4 s5 s7 s6

s12 s13 s15 s14

s8 s9 s11 s10

−3
√
Es
10 −

√
Es
10

√
Es
10 3

√
Es
10

−3
√
Es
10

−
√
Es
10

√
Es
10

3
√
Es
10

φ0(t) =

√
2

T
cos(2πfct) φ1(t) = −

√
2

T
sin(2πfct)

Pε = 2

(
1− 1√

M

)
erfc

(√(
3

2(M − 1)

)
γs

)[
1− 1

2

(
1− 1√

M

)
erfc

(√(
3

2(M − 1)

)
γs

)]

Pb ∼=
Pε

log2M

• M = 4

Pε = erfc

(√
γs
2

)
− 1

4
erfc2

(√
γs
2

)
Pb = 1

2erfc (
√
γb)

• M = 16

Pε =
3

2
erfc

(√
γs
10

)
− 9

16
erfc2

(√
γs
10

)

Pb =
3

8
erfc

(√
2

5
γb

)
+

1

4
erfc

(
3

√
2

5
γb

)
− 1

8
erfc

(
5

√
2

5
γb

)
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Coherent M -ary Frequency Shift Keying (M -FSK)

sm(t) = A cos[2π(fc +m∆fc)t] with ∆fc =
1

2T
Es = 1

2A
2T

φk(t) =

√
2

T
cos[2π(fc + k∆fc)t]

Pε = 1− 1√
π

∫ ∞
−∞

[
1− 1

2erfc (u+
√
γs)
]M−1

exp{−u2} du

∼= 1
2 (M − 1)erfc

(√
1
2γs

)
Pb =

M/2

M − 1
Pε

• M = 2

Pb = 1
2erfc

(√
1
2γb

)
• M = 4

Pε ∼=
3

2
erfc

(√
1
2γs

)
Pb ∼= erfc (

√
γb)
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Noncoherent M -ary Frequency Shift Keying (M -FSK)
Noncoherent M -FSK is the same as M -FSK, except that no attempt at carrier phase recover is made by the
receiver.

Pε =

M−1∑
m=1

(−1)m+1

(
M − 1

m

)
1

m+ 1
exp

{
− m

m+ 1
γs

}
Pb =

M/2

M − 1
Pε

• M = 2

Pb = 1
2 exp

{
− 1

2γb
}

• M = 4

Pε =
3

2
exp{− 1

2γs} − exp{− 2
3γs}+ 1

4 exp{− 3
4γs}

Pb = exp{−γb} −
2

3
exp{− 4

3γb}+
1

6
exp{− 3

2γb}
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Information Theory and Channel Capacity
Motivation:

Consider M -FSK. According to the union bound, the probability of a symbol error is

Pε = Pε|k ≤
M−1∑
l=0
l6=k

1
2erfc

(
dk,l

2
√
N0

) (
dk,l =

√
2Es
)

= (M − 1) 1
2erfc

(√
Es

2N0

) (
Eb =

Es
log2M

)

= (M − 1) 1
2erfc

(√
log2M

2

Eb
N0

)
.

Question: What happens to Pε as M →∞?

Fact: 1
2erfc (x) ≤ e−x2

for x ≥ 0.

Therefore

Pε ≤ (M − 1) exp

{
− log2M

2

(
Eb
N0

)}
< M exp

{
− log2M

2

(
Eb
N0

)} (
M = elnM = elog2M ln 2

)
= exp {log2M ln 2} exp

{
− log2M

2

(
Eb
N0

)}
= exp

{
− log2M

2

(
Eb
N0
− 2 ln 2

)}
.

This is an upper bound on the probability of a symbol error.

If
Eb
N0

> 2 ln 2 = 1.39 (1.42 dB) then Pε → 0 as M →∞ .

Note: The union bound is not very tight for small EbN0

The actual probability of error is

Pε =

∫ ∞
−∞

(
1−

[
1− 1

2erfc (u)
]M−1

) 1√
π

exp

−
(
u−

√
Es
N0

)2
 du

A tighter bound (for Eb/N0 < 4 ln 2) is

Pε < 2 exp

{
− log2M

(
Eb
N0
− ln 2

)}
If
Eb
N0

> ln 2 = 0.693 (-1.6 dB) then Pε → 0 as M →∞ .

Note: This minimum SNR is the Shannon limit for the AWGN channel.

If the SNR is greater than the Shannon limit it is possible to achieve an arbitrarily low probability of error. To do
so using M -FSK signalling, however, requires unlimited bandwidth.

Question: Is it possible to achieve an arbitrarily low probability of error with finite bandwidth?
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An alternative approach to achieving an arbitrarily low probability of error is through the use of channel coding
(error correction).
Consider the L-repetition code, where each bit is transmitted L times (for some odd-valued L).

0 → 000 · · · 0
1 → 111 · · · 1︸ ︷︷ ︸

L

Suppose each code bit is transmitted over a binary symmetric channel with a cross-over probability of p < 1
2 .

Note: Binary Symmetric Channel (BSC)

0

1

0

1

1− p

1− p

p

p

input output

Channel Transition Probabilities:

Pr {0 received | 0 sent} = 1− p
Pr {1 received | 0 sent} = p

Pr {0 received | 1 sent} = p

Pr {1 received | 1 sent} = 1− p

Use the majority logic decision rule: If more 0’s are received than 1’s, decide that the message bit was a 0, other-
wise decide that the message bit was a 1.

Let Yk ∈ {0, 1} denote the value of the kth received code bit, for 1 ≤ k ≤ L, and let

D =

L∑
k=1

Yk

be the total number of 1’s received. D is a binomial random variable.
The majority logic decision rule is:

If D < L/2 decide that the message bit was a 0.
If D > L/2 decide that the message bit was a 1.

The probability of a message bit error is

Pmb = Pmb|0 = Pr {D > L/2 | message 0 sent}

=

L∑
l=dL2 e

Pr {D = l | message 0 sent}

=

L∑
l=dL2 e

(
L

l

)
pl(1− p)L−l

For large L, use the Chernoff bound:

Pmb = Pr {D > L/2 | message 0 sent}
≤ [4p(1− p)]L/2

For p < 1
2 , Pmb → 0 as L→∞.

However, since L channel uses are required to transmit a single message bit, the transmission rate is

R =
1

L
message bits per channel use

As L→∞, R→ 0.

Question: Is it possible to achieve an arbitrarily low probability of error without reducing the transmission rate to
zero?

Channel Coding Theorem:

It is possible to transmit information reliably (with an arbitrarily low probability of error) at any rate R which
is less than the channel capacity, C. Furthermore, it is not possible to transmit information reliably at a rate
greater than the channel capacity.
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Introduction to Information Theory
Discrete Memoryless Source:

A discrete memoryless source draws symbols randomly from an alphabet

X = {x0, x1, . . . , xK−1}
containing K symbols. The output is modelled as a random variable, X, with probabilities

P (xk) = Pr {X = xk} ∀ 0 ≤ k ≤ K − 1

That is, P (xk) is the probability that the source emits symbol xk ∈ X .

Discrete → symbols are drawn from a discrete set
Memoryless → output at time n does not depend on outputs at other times.

Information:
How much information does a certain event represent?

– information is related to uncertainty or surprise.
– the occurrence of an unlikely event provides more information than the occurrence of a likely event.
– information is inversely proportional to probability.

Logarithmic Measure of Information:
The information gained after observation of event X = xk is

I(xk) = logb
1

P (xk)
If b = 2 then units are bits
If b = e then units are nats

Properties of I(xk):

1. I(xk) = 0 if P (xk) = 1.
No information is gained if we are certain of the outcome of an event before it occurs.

2. I(xk) ≥ 0 since 0 < P (xk) ≤ 1.
The observation of an event never leads to a loss of information.

3. I(xk) > I(xl) if P (xk) < P (xl).
More information is gained when low-probability events occur.

Entropy:
The entropy of a discrete memoryless source is

H(X) = E [I(xk)]

=

K−1∑
k=0

I(xk)Pr {X = xk}

=

K−1∑
k=0

P (xk) log2

1

P (xk)

This is a measure of the average information produced by the source per symbol.

Example: Fair Coin Toss

X =

{
H, with a probability of 1

2
T , with a probability of 1

2

The entropy is

H(X) = 1
2 log2

1

1/2
+ 1

2 log2

1

1/2
= 1

2 + 1
2 = 1 bit

Example:

Binary Memoryless Source
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X =

{
0, with probability 1− p
1, with probability p

The entropy is

H(X) = (1− p) log2

1

(1− p)
+ p log2

1

p

4
= h(p)

where h(p) is the binary entropy function.
p

h(p)

1
2

1

1

Discrete Memoryless Channel (DMC):
– input and output alphabets are discrete.
– output at time n depends only on input at time n.

The channel is specified by an input alphabet
X = {x0, x1, . . . , xK−1} ,

an output alphabet
Y = {y0, y1, . . . , yL−1} ,

and a set of transition probabilities
P (yl|xk) = Pr {Y = yl | X = xk}

X DMC Y

for 0 ≤ k ≤ K − 1 and 0 ≤ l ≤ L− 1. The input and output are modelled as discrete random variables.

Example: Binary Symmetric Channel (BSC)

X = {0, 1} (K = 2)

Y = {0, 1} (L = 2)

0

1

0

1

1− p

1− p

p
p

X Y

P (0|0) = 1− p P (0|1) = p P (1|0) = p P (1|1) = 1− p
Note: For the AWGN channel with BPSK, the crossover probability is

p = 1
2erfc

(√
Eb
N0

)
Conditional Information:

The conditional information is defined as

I(xk|yl) = log2

1

P (xk|yl)
This is information about the event X = xk after event Y = yl has been observed.

Conditional Entropy:
The conditional entropy, which is based on the conditional information, is

H(X|Y ) = E [I(xk|yl)]

=

K−1∑
k=0

L−1∑
l=0

P (xk, yl) log2

1

P (xk|yl)

This measures the amount of uncertainty remaining in X after observing Y .

Theorem: 0 ≤ H(X|Y ) ≤ H(X).

Proof: Since 0 ≤ P (xk|yl) ≤ 1,

log2

1

P (xk|yl)
≥ 0

Since P (xk, yl) is also non-negative, H(X|Y ) ≥ 0.
To show the upper bound, we use the following lemma.
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Lemma: The Fundamental Inequality
Let {pi} and {si} be any two sets of N real numbers with the properties

N−1∑
i=0

pi = 1 ,

N−1∑
i=0

si = 1 , pi ≥ 0, si ≥ 0 .

Then
N−1∑
i=0

pi ln
si
pi
≤ 0 (equal iff si = pi ∀ i)

As a result,
N−1∑
i=0

pi ln
1

pi
≤
N−1∑
i=0

pi ln
1

si
(equal iff si = pi ∀ i)

Proof:

lnx ≤ x− 1 (equal iff x = 1)

ln
si
pi
≤ si
pi
− 1 (equal iff

si
pi

= 1 or si = pi ∀ i)

pi ln
si
pi
≤ si − pi (equal iff si = pi ∀ i)

N−1∑
i=0

pi ln
si
pi
≤

N−1∑
i=0

(si − pi) =

N−1∑
i=0

si −
N−1∑
i=0

pi = 0 (equal iff si = pi ∀ i)

Since

H(X) =

K−1∑
k=0

P (xk) log2

1

P (xk)
=

K−1∑
k=0

P (xk) log2

1

P (xk)

L−1∑
l=0

P (yl|xk) =

K−1∑
k=0

L−1∑
l=0

P (xk, yl) log2

1

P (xk)

We have

H(X|Y )−H(X) =

K−1∑
k=0

L−1∑
l=0

P (xk, yl)

[
log2

1

P (xk|yl)
− log2

1

P (xk)

]

=

K−1∑
k=0

L−1∑
l=0

P (xk, yl) log2

P (xk)

P (xk|yl)

=

K−1∑
k=0

L−1∑
l=0

P (xk, yl) log2

P (xk)P (yl)

P (xk, yl)

Using the fundamental inequality, with pk,l = P (xk, yl) and sk,l = P (xk)P (yl), we have

H(X|Y )−H(X) ≤ 0

with equality iff P (xk, yl) = P (xk)P (yl) for all k, l. Therefore

H(X|Y ) ≤ H(X)

with equality iff X and Y are independent.

Since 0 ≤ H(X|Y ) ≤ H(X), the uncertainty remaining in X after observing Y will never exceed the uncertainty
in X prior to observing Y .
If X and Y are independent then observing Y will not change the uncertainty in X.
If Y = X then observing Y will leave no uncertainty in X.

Average Mutual Information:
The average mutual information is

I(X;Y ) = H(X)−H(X|Y )

This is the amount of information about X that is conveyed by observing Y .

Note: I(X;Y ) ≥ 0
Some information is conveyed, unless X and Y are independent.

SYSC 5504 82 Fall 2017/18



The average mutual information can be expressed as

I(X;Y ) =

K−1∑
k=0

L−1∑
l=0

P (xk, yl) log2

P (xk|yl)
P (xk)

=

K−1∑
k=0

L−1∑
l=0

P (xk, yl) log2

P (yl|xk)

P (yl)
= I(Y ;X)

Note: The average mutual information is symmetric. That is, the information gained about X by observing Y
equals the information gained about Y by observing X.

The average mutual information can also be expressed as

I(X;Y ) =

K−1∑
k=0

L−1∑
l=0

P (xk)P (yl|xk) log2

P (yl|xk)∑K−1
i=0 P (xi)P (yl|xi)

which depends only on the channel transition probabilities, P (yl|xk), and on the input probability distribution,
P (xk).
Note: The amount of information conveyed depends not only on the channel, but also on the input distribution.

Channel Capacity:
The channel capacity is the maximum average mutual information that can be conveyed per use of the channel,
where the maximization is performed over the input probability distribution.

C = max
{P (Xk)}

I(X;Y ) bits per channel use

Example:

Binary Symmetric Channel
Source

Pr {X = 0} = 1− α
Pr {X = 1} = α

Channel
Pr {Y = 0|X = 0} = 1− p
Pr {Y = 0|X = 1} = p
Pr {Y = 1|X = 0} = p
Pr {Y = 1|X = 1} = 1− p

For a given cross-over probability, p, find α which maximizes the average mutual information

I(X;Y ) = H(X)−H(X|Y )

= H(Y )−H(Y |X)

Note: The conditional entropy H(Y |X) can be expressed as

H(Y |X) =

K−1∑
k=0

L−1∑
l=0

P (xk, yl) log2

1

P (yl|xk)

=

K−1∑
k=0

(
L−1∑
l=0

P (yl|xk) log2

1

P (yl|xk)

)
P (xk)

=

K−1∑
k=0

H(Y |X = xk)P (xk)

where

H(Y |X = xk) =

L−1∑
l=0

P (yl|xk) log2

1

P (yl|xk)

For the BSC,

H(Y |X = 0) =

1∑
l=0

Pr {Y = l | X = 0} log2

1

Pr {Y = l | X = 0}

= p log2

1

p
+ (1− p) log2

1

1− p
= h(p)

and

H(Y |X = 1) =

1∑
l=0

Pr {Y = l | X = 1} log2

1

Pr {Y = l | X = 1}

= (1− p) log2

1

(1− p)
+ p log2

1

p

= h(p)
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so

H(Y |X) = H(Y |X = 0)Pr {X = 0}+H(Y |X = 1)Pr {X = 1}
= (1− α)h(p) + αh(p)

= h(p)

which does not depend on the input probability distribution (α). The average mutual information is therefore

I(X;Y ) = H(Y )− h(p)

To find the channel capacity it is necessary to find α which maximizes H(Y ).

Since

Pr {Y = 0} = Pr {Y = 0|X = 0}Pr {X = 0}+ Pr {Y = 0|X = 1}Pr {X = 1}
= (1− p)(1− α) + pα

= q ,

where q = (1− p)(1− α) + pα, and

Pr {Y = 1} = 1− Pr {Y = 0} = 1− q ,
the entropy of Y is

H(Y ) = q log2

1

q
+ (1− q) log2

1

1− q
= h(q) ,

which is the binary entropy function evaluated at q.

Since h(q) is at a maximum at q = 1
2 , it is necessary to find α such that

(1− p)(1− α) + pα = 1
2

Case 1: p = 1
2

Then 1
2 (1− α) + 1

2α = 1
2 , or 1 = 1, so α can be arbitrarily between 0 and 1.

Case 2: p 6= 1
2

1− p− α+ pα+ pα = 1
2

α(2p− 1) = 1
2 − 1 + p

α =
p− 1

2

2p− 1
= 1

2

Therefore, H(Y ) is maximized when α = 1
2 .

Therefore, I(X;Y ) is maximized when α = 1
2 .

The channel capacity for the binary symmetric channel is

C = h( 1
2 )− h(p) = 1− h(p) bits per channel use

p

C

1
2

1

1

Channel Coding Theorem:
It is possible to transmit information reliably at any rate R which is less than the channel capacity, C. Furthermore,
it is not possible to transmit information reliably at a rate greater than the channel capacity.
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Continuously-Distributed Discrete-Time Channels
Now suppose we wish to convey a continuously distributed random variable over
a continuously defined channel. X is the input to the channel and Y is the
output, where X and Y are continuous random variables with a joint pdf of
fX,Y (x, y), marginal pdf’s of fX(x) and fY (y), and conditional pdf’s of fX|Y (x|y)
and fY |X(y|x).

X Channel Y

To calculate the capacity of the channel it is necessary to extend the concepts of information theory to continuous random
variables.
Differential Entropy:

For a continuous random variable, X, with pdf fX(x), the differential entropy is

H(X) = E

[
log2

1

fX(x)

]
=

∫ ∞
−∞

fX(x) log2

1

fX(x)
dx

This definition is similar to ordinary entropy of a discrete random variable

Note: Differential entropy is NOT a measure of information. Since X can take on an infinite number of values, an
infinite number of bits is required to represent X.

Example: Uniform Distribution

fX(x) =

{
1
b−a , a ≤ x ≤ b
0 , otherwise

H(X) =

∫ b

a

1

b− a
log2(b− a) dx = log2(b− a)

Note: For b− a < 1, H(X) < 0.
Differential entropy can be negative.

Example: Gaussian Distribution, X ∼ N(µX , σ
2
X)

fX(x) =
1√

2πσ2
X

exp

{
− (x− µX)2

2σ2
X

}

H(X) =

∫ ∞
−∞

1√
2πσ2

X

exp

{
− (x− µX)2

2σ2
X

}
log2

(√
2πσ2

X exp

{
(x− µX)2

2σ2
X

})
dx

=
1√
π

∫ ∞
−∞

e−u
2

log2

(√
2πσ2

Xe
u2

)
du

(
with u =

x− µX√
2σ2

X

)

=
1√
π

∫ ∞
−∞

e−u
2

(
log2

√
2πσ2

X + u2 log2 e

)
du

=
1√
π

∫ ∞
−∞

e−u
2

du 1
2 log2(2πσ2

X) +
1√
π

∫ ∞
−∞

u2e−u
2

du log2 e

= 1
2 log2(2πσ2

X) + 1
2 log2 e

= 1
2 log2(2πeσ2

X)

Theorem: Gaussian random variables have a larger differential entropy than all other random variables with the
same mean and variance.

Proof: Consider two random variables, U and V , where U ∼ N(µU , σ
2
U ), and V has the same mean and variance

as U , but not necessarily the same distribution. From the fundamental inequality

H(V ) =

∫ ∞
−∞

fV (v) log2

1

fV (v)
dv ≤

∫ ∞
−∞

fV (v) log2

1

fU (v)
dv

with equality iff fU (v) = fV (v) (i.e., iff U and V are identically distributed).
Since U is Gaussian,

fU (u) =
1√

2πσ2
U

exp

{
− 1

2σ2
U

(u− µU )2

}
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so

H(V ) ≤
∫ ∞
−∞

fV (v)

(
log2

√
2πσ2

U +
1

2σ2
U

(v − µU )2 log2 e

)
dv

=

∫ ∞
−∞

fV (v) dv 1
2 log2(2πσ2

U ) +
1

2σ2
U

∫ ∞
−∞

(v − µU )2fV (v) dv log2 e

Since µU = µV and σ2
U = σ2

V ,

H(V ) ≤ 1
2 log2(2πσ2

U ) +
1

2σ2
V

∫ ∞
−∞

(v − µV )2fV (v) dv log2 e

= 1
2 log2(2πσ2

U ) +
1

2σ2
V

E
[
(V − µV )2

]
log2 e

= 1
2 log2(2πσ2

U ) +
1

2σ2
V

σ2
V log2 e

= 1
2 log2(2πσ2

U ) + 1
2 log2 e

= 1
2 log2(2πeσ2

U )

= H(U)

Therefore the differential entropy of V is always less than or equal to the differential entropy of a Gaussian
random variable with the same mean and variance, with equality if and only if V is also Gaussian.

Conditional Differential Entropy:
The conditional differential entropy is

H(X|Y ) =

∫ ∞
−∞

∫ ∞
−∞

fX,Y (x, y) log2

1

fX|Y (x|y)
dx dy

which has the same form as differential entropy.
Average Mutual Information:

The average mutual information is

I(X;Y ) = H(X)−H(X|Y )

or

I(X;Y ) =

∫ ∞
−∞

∫ ∞
−∞

fX,Y (x, y) log2

fX|Y (x|y)

fX(x)
dx dy

This DOES represent the amount of information gained about X by observing Y .
Channel Capacity

Consider an additive Gaussian channel, with

Y = X +W

where W is a Gaussian random variable, with zero mean and variance σ2
W . The channel capacity is

C = max
{fX(x)}

I(X;Y )

where

I(X;Y ) = H(X)−H(X|Y ) = H(Y )−H(Y |X)

Theorem: H(Y |X) = H(W )

Proof:

H(Y |X) =

∫ ∞
−∞

∫ ∞
−∞

fY |X(y|x)fX(x) log2

1

fY |X(y|x)
dy dx

=

∫ ∞
−∞

∫ ∞
−∞

fW (y − x)fX(x) log2

1

fW (y − x)
dy dx

(
since fY |X(y|x) = fW (y − x)

)
=

∫ ∞
−∞

∫ ∞
−∞

fW (w) log2

1

fW (w)
dwfX(x) dx (let w = y − x)

=

∫ ∞
−∞

H(W )fX(x) dx

= H(W )
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Therefore

I(X;Y ) = H(Y )−H(W )

To find the channel capacity we must find fX(x) which maximizes H(Y ). To produce meaningful results, we restrict
our attention to the case where X has a fixed variance, σ2

X .

Note: H(Y ) is maximized if Y has a Gaussian distribution.

If Y must be Gaussian, then X must also be Gaussian, since W is Gaussian and X = Y −W .
If σ2

X is the variance of X, then the variance of Y is σ2
Y = σ2

X + σ2
W .

Note: H(Y ) = 1
2 log2(2πeσ2

Y ) and H(W ) = 1
2 log2(2πeσ2

W )

For fixed σ2
X , the channel capacity is

C = 1
2 log2(2πeσ2

Y )− 1
2 log2(2πeσ2

W )

= 1
2 log2(

σ2
Y

σ2
W

)

= 1
2 log2(1 +

σ2
X

σ2
W

) (bits per channel use)
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Continuous-Time Waveform Channels
Suppose a random process is transmitted over a band-limited AWGN channel. The
input, X(t), is band-limited to W Hz, and the output, Y (t), is related to the input
through

Y (t) = X(t) +W (t)

X(t) Channel Y (t)

where W (t) is the result of passing an AWGN process through a lowpass filter with bandwidth W .
Since Y (t) is band-limited, it can be sampled at the Nyquist rate. The samples are

Yn = Y (nT ) = X(nT ) +W (nT ) = Xn +Wn

where T = 1
2W . The noise samples are independent Gaussian random variables with zero mean and variance

σ2
W = N0W

For a block of N received samples, Y N = [Y1 Y2 . . . YN ] for the transmitted samples XN = [X1 X2 . . . XN ], the channel
capacity is

C = lim
N→∞

1

N
max

{fX
N

(xN )}
I(XN ;Y N )

Fact: I(XN ;Y N ) = H(Y N )−H(Y N |XN ) = H(Y N )−H(WN )
where H(WN ) = N 1

2 log2(2πeσ2
W )

Theorem: The differential entropy of a vector of random variables is largest only if the component random variables are
independent.

Proof: From the fundamental inequality

H(Y N ) =

∫ ∞
−∞
· · ·
∫ ∞
−∞

fY
N

(y
N

) log2

1

fY N (y
N

)
dy
N
≤
∫ ∞
−∞
· · ·
∫ ∞
−∞

fY
N

(y
N

) log2

1∏N
n=1 fYn(yn)

dy
N

with equality iff
∏N
n=1 fYn(yn) = fY N (y

N
) (i.e., iff the components of Y N are independent). Therefore

H(Y N ) ≤
∫ ∞
−∞
· · ·
∫ ∞
−∞

fY N (y
N

) log2

1∏N
n=1 fYn(yn)

dy
N

=

N∑
n=1

∫ ∞
−∞
· · ·
∫ ∞
−∞

fY
N

(y
N

) log2

1

fYn(yn)
dy
N

=

N∑
n=1

∫ ∞
−∞

fYn(yn) log2

1

fYn(yn)
dyn

=

N∑
n=1

H(Yn)

Therefore, the received samples Y N must be independent. Since the noise samples are independent this implies that the
components of XN must also be independent. In this case the average mutual information is

I(XN ;Y N ) =

N∑
n=1

H(Yn)−
N∑
n=1

H(Wn) =

N∑
n=1

[H(Yn)−H(Wn)] =

N∑
n=1

I(Xn;Yn)

As was shown earlier, I(Xn;Yn) is maximized when Xn has a Gaussian distribution, in which case

I(Xn;Yn) = 1
2 log2

(
1 +

σ2
X

σ2
W

)
The channel capacity is therefore

C = lim
N→∞

1

N

N∑
n=1

1
2 log2

(
1 +

σ2
X

σ2
W

)
= lim

N→∞
1
2 log2

(
1 +

σ2
X

σ2
W

)
= 1

2 log2

(
1 +

σ2
X

σ2
W

)
for fixed σ2

X . Since the channel capacity does not depend on the mean of X(t), we can restrict our attention to zero-mean
input random processes with fixed average power,

Pav = E
[
X2(t)

]
= σ2

X
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C = 1
2 log2

(
1 +

Pav

N0W

)
(bits per sample)

Since one sample is transmitted every T seconds, the channel capacity per unit time is

C =
1

2T
log2

(
1 +

Pav

N0W

)
(bits per second)

Since T = 1/(2W ), the information capacity of an AWGN channel bandlimited to W Hz is

C = W log2

(
1 +

Pav

N0W

)
(bits per second)

where Pav is the average transmitted signal power and N0 is the single-sided noise power spectral density.
To illustrate the importance of the channel capacity and the channel coding theorem, consider a source that produces
information at a rate of Rb bits per second.

Source Transmitter Channel Receiver Sink
Rb X(t) Y (t)

Provided that the information rate, Rb, is less than the channel capacity, C, then there exists a coding/modulation
scheme which will provide arbitrarily low probability of error. If Rb > C, no such scheme exists. In this case either the
source information rate must be slowed, or the channel capacity must be increased, either by increasing the bandwidth
or increasing the average transmitted power.

It is often more useful to consider bandwidth efficiency instead of the information rate. If information is transmitted at
a rate Rb over a channel with bandwidth W , the bandwidth efficiency is Rb/W bits per second per Hz.
If the channel is operating at capacity it can convey C bits per second with an average power of Pav, so the energy per
information bit is

Eb =
Pav

C
.

As a result,
C

W
= log2

(
1 +

C

W

Eb
N0

)
bits per second per Hz

This can be plotted in a bandwidth efficiency diagram.
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Eb
N0

(dB)

Rb/W

5 10 15 20

10

5

4

3

2

0.5

0.4

0.3

0.2

0.1

−1.6

Rb > C

Rb < C

Rb = C

Note that at capacity,
Eb
N0

=
2C/W − 1

C/W
As W →∞,

Eb
N0
→ ln 2 = 0.693 = −1.6 dB

which is the Shannon limit.

Remark: Although the channel coding theorem guarantees us that a suitable coding/modulation scheme exists to ensure
reliable communication at information rates less than the channel capacity, it does not tell us how to do it.

SYSC 5504 90 Fall 2017/18



Error Control Techniques

To improve the reliability of digital communication, error control techniques are typically employed. Generally, these
involve inserting carefully controlled redundancy into the transmitted data, and exploiting this redundancy at the receiver
to detect and/or correct transmission errors.

Data
Source

Error
Control
Encoder

Digital
Channel

Error
Control
Decoder

Data
Sink

m c r m̂

Notation:
m ⇒ message word (message block)

m = [m0 m1 . . . mk−1]
k ⇒ # of message bits per message word

c ⇒ code word
c = [c0 c1 . . . cn−1]
n⇒ # of code bits per code word

R ⇒ code rate
R = k

n
Examples:

Consider the binary symmetric channel (BSC) with cross-over probability p.

a Digital
Channel

â

0

1

0

1

a â
p

p

1− p

1− p

For the AWGN channel with antipodal signalling,

p = 1
2erfc

(√
Eb
N0

)
No error control

Each message bit is sent without any encoding, so k = 1, n = 1, and c = m. The probability of a message bit
error is

Pε = p

Double-repitition code

Send each bit twice, and if the received bits differ, an error is detected. In this case, k = 1, n = 2, and the
code is defined by

m c
0 → 00
1 → 11

Suppose the message bit is m = [0], so the transmitted codeword is c = [00]. The received codeword is

r =


00 with probability (1− p)2

01 with probability (1− p)p
10 with probability p(1− p)
11 with probability p2

The probability that an error is detected is

Pd = 2p(1− p)
In this event, the receiver requests the transmitter to resend the codeword. This type of error control technique
is known as automatic repeat request (ARQ).
The probability of an undetected error is

Pε = p2
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Triple-repitition code

Send each message bit three times, so k = 1, n = 3, and

m c
0 → 000
1 → 111

If all the received bits are not the same, the receiver can detect that an error occured. The probability of
detecting an error is

Pd = Pr {one or two code bits are in error}
= 3p(1− p)2 + 3p2(1− p)

The probability of an undetected error is

Pε = Pr {all three code bits are in error}
= p3

This code has a lower probability of undetected errors than the double-repitition code.

This code could also be used for forward error correction (FEC), where instead of merely detecting the
occurance of errors, the receiver tries to correct them. For the triple-repitition code the receiver would make
a majority rule decision:

If more zeros are received than ones, assume the message bit was a zero. Otherwise the receiver assumes
the message bit was a one.

The possibility exists that the receiver could make a mistake by following this decision rule if errors occur in
too many code bits. The probability of a message bit error is:

Pε = Pr {2 or 3 code bits are in error}
= 3p2(1− p) + p3

= 3p2 − 2p3

Warning
The discussion above is somewhat flawed because it neglects some important constraints on coded systems.

Because of the increased number of bits that need to be transmitted, a higher channel bandwidth is required.

In addition, to provide a fair comparison between different coding schemes, the comparison must be made for equal
transmitted energy per message bit, Emb. The transmitted energy per code bit is then Ecb = REmb. Since the
cross-over probability depends on the transmitted energy per code bit, different codes will operate with different
cross-over probabilities. It is important to verify that the increase in the cross-over probability due to the decrease
in the transmitted energy does not negate the improvements in performance due to coding.
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Linear Block Codes
Defn: An (n, k) binary code, C, consists of a set of 2k binary code words, each of length n bits, and a mapping function

between message words and code words.

eg. Binary (5, 2) code with rate R = 2
5 .

Code C = {01100, 10101, 10111, 11000}
m c
00 01100
01 10101
10 10111
11 11000

Defn: The rate of the code is defined as R = k
n .

Objective: Pick the code words so they are as far apart as possible. In general, this is a difficult task.
Code C above is a bad code because the code words for 01 and 10 differ by only one bit.

Defn: An (n, k) linear block code is defined by a generator matrix, G, such that the code word c for message m is obtained
from

c = m G

or

[c1 c2 · · · cn] = [m1 m2 · · · mk]


g1,1 g1,2 · · · g1,n

g2,1 g2,2 · · · g2,n

...
...

. . .
...

gk,1 gk,2 · · · gk,n


where modulo-2 arithmetic is used.

Note: Each codeword of a linear code is just some linear combination of the rows of G.

Note: The rows of G must be linearly independent. Otherwise, two or more messages may map to the same code
word.

Example: n-repititon code – an (n,1) code.
C = {00 · · · 0, 11 · · · 1}
G = [11 · · · 1]

R =
1

n

Example: Single parity check code (even parity) – a (k+1,k) code.

ck+1 = m1 ⊕m2 ⊕ · · · ⊕mk

G =


1 0 · · · 0 1
0 1 · · · 0 1
...

...
. . .

... 1
0 0 · · · 1 1

 R =
k

k + 1

Defn: The Hamming weight of a word is the number of 1’s in the word.

eg. wH(110110) = 4

Defn: The minimum weight of a code, C, is the Hamming weight of the smallest weight non-zero codeword of C.

ie. wmin = min{wH(c) | c ∈ C, c 6= 0}

eg. For code C = {00000, 01011, 10101, 11110}

wmin = wH(01011) = 3
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Defn: The Hamming distance between two words, a and b, is the number of positions in which a and b differ.

eg. dH(01011, 11110) = 3

Fact: The Hamming distance between words a and b is equal to the Hamming weight of a⊕ b.

ie. dH(a, b) = wH(a⊕ b)

Defn: The minimum distance of a code, C, is the minimum Hamming distance between any two different codewords in
C.

ie. dmin = min{dH(a, b) | a, b ∈ C, a 6= b}

eg. For code C = {00000, 01011, 10101, 11110}

dmin = 3

Theorem: For all linear block codes, dmin = wmin.

Proof: Suppose the minimum distance for code C is between code words c1 = m1G and c2 = m2G. The minimum
distance is

dH(c1, c2) = wH(c1 ⊕ c2) = wH(m1G⊕m2G) = wH([m1 ⊕m2]G)

Since m1 ⊕m2 is a valid message word, [m1 ⊕m2]G is a valid code word in C.

Defn: A systematic code is one in which the first k bits in each codeword are equal to the k message bits. i.e.
c = k message bits (n− k) parity bits

For a systematic code,

G =

 I
k

p1,1 p1,2 · · · p1,n−k
p2,1 p2,2 · · · p2,n−k

...
...

. . .
...

pk,1 pk,2 · · · pk,n−k

 =
[

I
k
| P
]

where I
k

is the k × k identity matrix.

Defn: Associated with every linear (n, k) code is a (n− k)× n parity check matrix, H, with the property

G HT = 0

For systematic codes,

H =
[
PT | I

n−k

]
Defn: The syndrome of a received word, r, is s = r HT . The syndrome is of length n− k bits.

Theorem: If c is a codeword in C, then c HT = 0.

Proof: Since c = m G for some message word m if c ∈ C

c HT = m G HT = m 0 = 0 .
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Fact: The minimum distance of a code is equal to the minimum number of columns in H that add to the zero vector.

Note: If codeword c is transmitted across a binary symmetric channel, the received word is

r = c⊕ e

where e is the error pattern.

eg.

c = [10101]

e = [11000]

r = [01101]

Fact: If the crossover probability of a BSC is p, then the probability of error pattern e occurring is

Pr {e} = pne(1− p)(n−ne)

where n is the length of e, and ne is the Hamming weight of e (i.e., the number of code bit errors).

Example: A (6,3) systematic code.

G =

 1 0 0 1 1 0
0 1 0 0 1 1
0 0 1 1 0 1

 k = 3
n = 6

R = 3
6

m c
000 000000
001 001101
010 010011
011 011110
100 100110
101 101011
110 110101
111 111000

dmin = 3

The parity check matrix is:

H =

 1 0 1 1 0 0
1 1 0 0 1 0
0 1 1 0 0 1


Suppose r = [110101] is received. The syndrome is

s = r HT = [110101]


1 1 0
0 1 1
1 0 1
1 0 0
0 1 0
0 0 1

 = [000]

Therefore, r is a valid codeword (no errors are detected).
Now, suppose r = [100101] is received.

s = r HT = [011]

Therefore, r is not a valid codeword, so an error is detected.

Note: If an error is detected (i.e., the syndrome is non-zero), the decoder can either take actions to locate the errors and
correct them (FEC), or request the retransmission of the codeword (ARQ).
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Error Detection and Automatic Repeat Request (ARQ)
Error Detection:

– First compute the syndrome, s of the received word, r as

s = r HT = (c⊕ e) HT

= c HT ⊕ e HT

= e HT

– If s = 0 then r is assumed error-free and is accepted.

– If s 6= 0 then an error is detected.

Note: If the error pattern, e, matches a code word then an error will not be detected. If the error pattern does not
match a code word then an error will be detected.
A linear block code can detect all error patterns that are not valid code words.

Theorem: A code with minimum distance dmin can detect all combinations of dmin − 1 or fewer errors.

Proof: Any error pattern, e, of weight dmin − 1 or less is not a codeword and therefore yields a non-zero syndrome.

Defn: The random-error detecting capability of a linear block code is dmin − 1.

Example:
Suppose we would like to transmit message words of k = 3 bits, with a signal-to-noise ratio of Emb/N0‖dB = 6 dB,
or Emb/N0

∼= 3.98.

Scheme 1: No coding, just send the 3 bits directly over the channel. The probability of a bit error is

p =
1

2
erfc

(√
Emb

N0

)
=

1

2
erfc

(√
100.6

)
∼= 0.00239

The probability of a message being correctly transmitted is PC = (1− p)3 ∼= 0.993.

The probability of a message error is Pε = 1− PC ∼= 0.00715.

Scheme 2: Use the (6, 3) systematic code given by

G =

 1 0 0 1 1 0
0 1 0 0 1 1
0 0 1 1 0 1


for error detection. Since R = 3

6 the probability of a code bit error is

p =
1

2
erfc

(√
Ecb

N0

)
=

1

2
erfc

(√
REmb

N0

)
=

1

2
erfc

(√
3

6
× 100.6

)
∼= 0.0230

Event 1: No errors. The syndrome is zero and the received word is the transmitted codeword. The
probability of the message being transmitted correctly is PC = (1− p)6 = 0.870

Event 2: Undetected errors. The syndrome is zero but the received word is not the transmitted code-
word. This occurs if the error pattern is the same as a valid non-zero codeword. The unde-
tected error probability is

Pε = Pr {e ∈ C}
= Pr {e = 001101 or e = 010011 or e = 011110 or e = 100110

or e = 101011 or e = 110101 or e = 111000}
= 4p3(1− p)3 + 3p4(1− p)2

∼= 0.00004623

Event 3: Detected errors. The syndrome is non-zero. The erasure or rejection probability (rate) is

Pd = 1− PC − Pε
∼= 0.130

Summary: Although the probability of receiving the message correctly is slightly lower in Scheme 2, the probability
of undetected error is considerably lower.
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Automatic Repeat Request (ARQ) Protocols
– Upon receipt of a block, the receiver detects whether or not a block error has occurred.

– If an error IS NOT detected, the receiver sends a positive acknowledgement (ACK) back to the transmitter.

– If an error IS detected, the receiver sends a negative acknowledgement (NACK) back to the transmitter.

– The transmitter re-sends blocks that are not received correctly according to a repeat protocol:

1. stop-and-wait ARQ

2. continuous ARQ (go-back-N)

3. selective repeat ARQ

– Important parameters of ARQ schemes:
– Pd = the probability of a detected block error.

– Tbl = the block transmission time
Tbl = n/Rc = k/Rm

– Trt = the round-trip transmission delay. This is twice the time it takes for a signal to propagate from the
transmitter to the receiver.

– N = the average number of times a block must be transmitted before it is correctly received.

– T = the average total time it takes for a block to be successfully transmitted.

– η = the effective transmission rate (message bits per second).

Stop-and-wait ARQ

– Transmit one block and wait for acknowledgment.

– If an ACK is received, transmit a new block.
– If a NACK is received, retransmit the same block.

Transmitter

Receiver

Transmitter

Receiver
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B
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B
B

B
B
B
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B
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1 1 2

Time −→

Tbl Trt
� -� -

– Average number of transmitted blocks per correctly received block:

N = 1(1− Pd) + 2(1− Pd)Pd + 3(1− Pd)P 2
d + · · ·+m(1− Pd)Pm−1

d + · · ·

=

∞∑
m=0

m(1− Pd)Pm−1
d = (1− Pd)

∞∑
m=0

d

dPd
(Pmd ) = (1− Pd)

d

dPd

( ∞∑
m=0

Pmd

)

= (1− Pd)
d

dPd

(
1

1− Pd

)
= (1− Pd)

1

(1− Pd)2

(
with

∞∑
n=0

αn =
1

1− α
for α < 1

)

=
1

1− Pd
– Average time to successfully transmit one block:

T = (Tbl + Trt)N

– Effective transmission rate

η =
k

T
=

k

(Tbl + Trt)N
= Rm

k

(k + TrtRm)N
= Rm

k

(k + TrtRm)
(1− Pd)
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= Rm(1− Pd)
1

1 + Trt

Tbl

Continuous ARQ (Go-back-N)

– Blocks are transmitted continuously

– As soon as the transmitter has completed sending one block, it begins sending the next.

– The acknowledgment for a block arrives after a round-trip delay.

– Assume that (N − 1) blocks can be transmitted during a round-trip delay, so N − 1 =
⌈
Trt

Tbl

⌉
.

– When a NACK is received, the transmitter backs up to the block that was rejected, and retransmits that block
followed by the (N − 1) blocks previously transmitted during the round-trip delay.

– The receiver discards the (N − 1) blocks received after an incorrectly received one, so there is no need for buffering
at the receiver.
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Time −→

– Average number of transmitted blocks per correctly received block:

N = 1(1− Pd) + (N + 1)(1− Pd)Pd + (2N + 1)(1− Pd)P 2
d + · · ·+ (mN + 1)(1− Pd)Pmd + · · ·

=

∞∑
m=0

(mN + 1)(1− Pd)Pmd

=
1 + (N − 1)Pd

1− Pd
– Average time to successfully transmit one block:

T =
nN

Rc
= TblN

– Effective transmission rate

η =
k

T
=
kRc

nN
= Rm

1

N
= Rm

1− Pd
1 + (N − 1)Pd

Selective Repeat ARQ

– Variation of continuous ARQ

– Only the block received in error is retransmitted.

– A buffer is needed at the receiver to store blocks correctly received after a rejected block.
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1 2 3 1 4 3 1 5 6

1 2 3 1 4 3 1 5 6
Time −→
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– Average number of transmitted blocks per correctly received block:

N = 1(1− Pd) + 2(1− Pd)Pd + 3(1− Pd)P 2
d + · · ·+m(1− Pd)Pm−1

d + · · ·

=
1

1− Pd
– Average time to successfully transmit one block:

T =
nN

Rc
= TblN

– Effective transmission rate:

η =
k

T
=
kRc

nN
= Rm

1

N
= Rm(1− Pd)
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Forward Error Correction (FEC)
Example: A (6,3) systematic code.

G =

 1 0 0 1 1 0
0 1 0 0 1 1
0 0 1 1 0 1

 H =

 1 0 1 1 0 0
1 1 0 0 1 0
0 1 1 0 0 1


m c

000 000000
001 001101
010 010011
011 011110
100 100110
101 101011
110 110101
111 111000

k = 3
n = 6
R = 3

6 = 1
2

dmin = 3

Suppose we send message m = 110, so the transmitted code word is c = m G = 110101.
Suppose error pattern e = 010000 occurs during transmission, so the received word is r = 100101.
The decoder computes the syndrome s = r HT = 011. Since the syndrome is non-zero, the decoder knows that
some errors have occurred during transmission. Now it must try to determine the transmitted message.

Objective: Determine the transmitted message from r.
Since r = c⊕e, then r⊕e = c⊕e⊕e = c. So, if the decoder can determine e, then it can find c. For systematic codes
the first k bits of c give the message, m. Therefore, the decoder only needs to find e to determine the transmitted
message.

Solution: Find e from s.
For systematic codes,

H =
[

PT | I
n−k

]
=


p1,1 p2,1 · · · pk,1 1 0 · · · 0
p1,2 p2,2 · · · pk,2 0 1 · · · 0

...
...

. . .
...

...
...

. . .
...

p1,n−k p2,n−k · · · pk,n−k 0 0 · · · 1


Since s = r HT = e HT , s = [s1 s2 . . . sn−k] can be expressed as:

s1 = e1p1,1 ⊕ e2p2,1 ⊕ · · ·⊕ ekpk,1 ⊕ek+1

s2 = e1p1,2 ⊕ e2p2,2 ⊕ · · ·⊕ ekpk,2 ⊕ek+2

...
...

...
. . .

...
...

sn−k=e1p1,n−k⊕e2p2,n−k⊕ · · ·⊕ekpk,n−k⊕ en

We would like the decoder to solve these equations for e = [e1 e2 . . . en].

Example: The decoder must solve the following for e:

0=e1⊕e3⊕e4

1=e1⊕e2⊕e5

1=e2⊕e3⊕e6

Problem: There are n unknowns but only n− k equations. Therefore there is not a unique solution.

Fact: For each syndrome there are exactly 2k possible solutions. i.e., there are 2k error possible patterns that result in
each syndrome. The true error pattern is one of them.

Example: The following eight error patterns all yield the same syndrome s = 011.

{010000, 011101, 000011, 001110, 110110, 111011, 100101, 101000}

Problem: The decoder must select one of the 2k error patterns, but if the wrong one is selected a correction error will
result.
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Solution: Minimize the probability of a correction error.
Of the 2k possible error patterns for a given syndrome, the decoder assumes that the most probable error pattern
is the true error pattern.
For a BSC, this corresponds to choosing the error pattern with the smallest Hamming weight.

Example:
Since ê = 010000 has the smallest weight of the eight error patterns listed above, the decoder assumes this is the
true error pattern. Decoding continues with ĉ = r ⊕ ê = 100101 ⊕ 010000 = 110101, and m̂ is just the first three
bits of ĉ, so m̂ = 110. Since m̂ = m, the transmission error has been corrected.

Standard Array Decoding

Defn: The standard array is a 2n−k×2k matrix containing all 2n possible received words. From the position of a received
word in the standard array, the most probable transmitted code word can be determined.

Figure: Standard Array
c1 = 0 c2 · · · c2k
e2 e2 ⊕ c2 · · · e2 ⊕ c2k
...

...
. . .

...
e2n−k e2n−k ⊕ c2 · · · e2n−k ⊕ c2k

ci ∈ C ∀ i ∈
{

1, 2, . . . , 2k
}

Defn: Each row of the standard array is a coset. There are 2n−k cosets.

Defn: The first element of a coset is the coset leader.

Algorithm: How to construct the standard array.
1. Put the all-zero code word as the first element of the first row.

2. Put the remaining 2k − 1 code words in the rest of the first row (the order is not important).

3. Select the coset leader e2 as any word that is not a code word and has the least possible weight. Put e2 as the
first element of the second row. Fill in the rest of the row by adding e2 to the code word at the top of each
column.

4. Select the coset leader e3 as any word that is not already in the table and has the least possible weight. Fill
in the third row as above.

5. Repeat step (4) for all remaining cosets.

Demonstration:
Find the standard array for the code defined by

G =

[
1 0 1 1 0
0 1 1 0 1

]
The code words are C = {00000, 01101, 10110, 11011}.

Example:
The standard array for the main example in this section is:

000000 001101 010011 011110 100110 101011 110101 111000
000001 001100 010010 011111 100111 101010 110100 111001
000010 001111 010001 011100 100100 101001 110111 111010
000100 001001 010111 011010 100010 101111 110001 111100
001000 000101 011011 010110 101110 100011 111101 110000
010000 011101 000011 001110 110110 111011 100101 101000
100000 101101 110011 111110 000110 001011 010101 011000
001010 000111 011001 010100 101100 100001 111111 110010
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Decoding: Find the received word, r in the standard array. The code word at the top of the column is the most likely
transmitted one.

Example: r = 100101 is found in the seventh column of the sixth coset, so the most likely code word is ĉ = 110101. This
corresponds to message m̂ = 110.

Note: The coset leader gives the most probable error pattern.

Example: For r = 100101 the coset leader is ê = 010000.

Syndrome Decoding

Theorem: All words in a coset have the same syndrome.

Proof: Let ri,j be the word in the jth column of the ith coset, so

ri,j = ei ⊕ cj

The syndrome of ri,j is

si,j = ri,j HT = ei HT ⊕ cj HT = ei HT

which does not depend on the column, j.

Fact: Each coset leader has a different syndrome.

Defn: The syndrome table gives the most probable error pattern for each possible syndrome.

Algorithm: How to construct the syndrome table.
1. For each coset leader in the standard array, compute the syndrome.

2. Sort the table by syndrome.

Example: Syndrome Table
coset leader syndrome

000000 000
000001 001
000010 010
000100 100
001000 101
010000 011
100000 110
001010 111

=⇒

syndrome coset leader
000 000000
001 000001
010 000010
011 010000
100 000100
101 001000
110 100000
111 001010

Algorithm: Alternate algorithm for constructing the syndrome table.
Let T [·] denote the syndrome table, containing 2n−k entries, where T [s] is the most likely error pattern for syndrome
s. To construct the table without first finding the standard array, do the following:

1. Set T [0] = 0.

2. For all error patterns, e, of weight 1,

(a) compute the syndrome for that error pattern, s = e HT .

(b) if the table entry for the syndrome is empty, set T [s] = e. Otherwise, this error pattern can not be
corrected.

3. Repeat step (2), but for all error patterns of weight 2.

4. Continue this process until the table is full.

Decoding: Syndrome Decoding
1. Compute the syndrome s = r HT .

2. Look up the corresponding error pattern, ê, from the syndrome table.

3. Estimate the transmitted code word as ĉ = r ⊕ ê.
4. Estimate the transmitted message, m̂, as the first k bits of ĉ.
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Error Correcting Capability

Fact: A block code with minimum distance dmin guarantees correcting all patterns of t or fewer errors, where t =
⌊
dmin−1

2

⌋
(Note: bxc is the largest integer ≤ x).

Defn: t is the random-error correcting capability of the code.

Note: A block code with random-error correcting capability t is usually capable of correcting some patterns of t + 1
errors. It is capable of correcting 2n−k − 1 different error patterns.

Defn: A block code with minimum distance dmin that can correct all error patterns of weight t or less, but can not
correct any patterns of weight t+ 1 or more is referred to as a perfect code.

Some Examples of Block Codes

Hamming Codes
For any m ≥ 3 there exists a Hamming code with

n = 2m − 1

k = 2m −m− 1

p = n− k = m

dmin = 3

The parity check matrix of a Hamming code consists of all 2m − 1 non-zero words of length m.

Example: The (7,4) Hamming code (m = 3)

H =

 1 0 1 0 1 0 1
0 1 1 0 0 1 1
0 0 0 1 1 1 1

 or H =

 1 1 0 1 1 0 0
1 0 1 1 0 1 0
0 1 1 1 0 0 1



G =


1 0 0 0 1 1 0
0 1 0 0 1 0 1
0 0 1 0 0 1 1
0 0 0 1 1 1 1


Example: The (15,11) Hamming code (m = 4)

H =


1 1 0 1 1 0 1 0 1 0 1 1 0 0 0
1 0 1 1 0 1 1 0 0 1 1 0 1 0 0
0 1 1 1 0 0 0 1 1 1 1 0 0 1 0
0 0 0 0 1 1 1 1 1 1 1 0 0 0 1


All Hamming codes can detect all error patterns of weight 2 or less, and can correct all single errors. Hamming
codes are perfect codes.

Shortened Hamming Codes
Reduce the number of message and code bits in a Hamming code by l, without reducing the number of parity bits.

n = 2m − 1− l
k = 2m −m− 1− l
p = n− k = m

dmin ≥ 3

Example: The (6,3) shortened Hamming code (m = 3, l = 1)

G =

 1 0 0 1 1 0
0 1 0 1 0 1
0 0 1 0 1 1
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Cyclic Codes
Cyclic codes are linear block codes with the additional constraint that every cyclic shift of a codeword is also a codeword.
If

c = (c0, c1, c2, . . . , cn−1) ∈ C
then

c(1) = (cn−1, c0, c1, . . . , cn−2) ∈ C
where c(1) is the right cyclic shift of c.

Example: If 0100111 is a code word of a code, so is 1010011.

Codes with this structure allow for simple implementations of the encoder and the syndrome calculator using shift
registers. There is no need for complex matrix multiplications.

Note: Cyclic codes are generally discussed in terms of polynomials.

Note: Every codeword can be represented by a polynomial

i.e. c = (c0, c1, c2, . . . , cn−1)⇐⇒ c(X) = c0 + c1X + c2X
2 + · · · cn−1X

n−1

where ci ∈ {0, 1} for binary cyclic codes.

Note: Cyclic shifts can be expressed in terms of polynomials

c(1)(X) = cn−1 + c0X + c1X
2 + · · ·+ cn−2X

n−1

= cn−1 +Xc(X)− cn−1X
n

= cn−1 +Xc(X) + cn−1X
n

= Xc(X) + cn−1(Xn + 1)

i.e., c(1)(X) is the remainder from dividing Xc(X) by (Xn + 1).
In general,

c(i)(X) is the remainder from dividing Xic(X) by (Xn + 1)

c(i)(X) = Xic(X) + (cn−i +Xcn−i+1 + · · ·+Xi−1cn−1)(Xn + 1)

Defn: Cyclic codes are defined by a generator polynomial

g(X) = 1 + g1X + g2X
2 + · · · gn−k−1X

n−k−1 +Xn−k

of degree n− k, with gi ∈ {0, 1} for binary cyclic codes.

Encoding of cyclic codes:
Message polynomial m(X) is encoded to code polynomial c(X) with

c(X) = m(X)g(X)

The generator matrix for a cyclic code can be expressed (in non-systematic form) as

G =


1 g1 g2 · · · gn−k−1 1 0 0 · · · 0 0
0 1 g1 · · · gn−k−2 gn−k−1 1 0 · · · 0 0
...

...
...

. . .
...

...
...

...
. . .

...
...

0 0 0 · · · 1 g1 g2 g3 · · · gn−k−1 1


Note: It is possible to find an equivalent cyclic code in systematic form.
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Systematic encoding of cyclic codes
Systematic cyclic codes can be encoded using a shift register.

pn−k−1

gn−k−1

pn−k−2 p2

g2

p1

g1

p0

Input

Gate 1

2
Output

1. Close gate, set switch to position 1.

2. Shift in the k message bits

3. Open gate, set switch to position 2.

4. Shift out contents of shift register.

Example: n = 7, k = 4, n− k = 3.
g(X) = 1 +X +X3 ⇐⇒ g = 1101

p2 p1 p0

Input

Gate 1

2
Output

m = 1100

message feedback code
bit bit p2 p1 p0 bit

0 0 0
1 1 1 0 1 1
1 0 0 1 0 1
0 0 0 0 1 0
0 1 1 0 1 0

0 0 1 0 1
0 0 0 1 0
0 0 0 0 1

c = 1100101

Gsys =


1 0 0 0 1 1 0
0 1 0 0 0 1 1
0 0 1 0 1 1 1
0 0 0 1 1 0 1
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Syndrome Calculation:
The syndrome of systematic cyclic codes can also be calculated easily using a shift register.

Input sn−k−1

gn−k−1

sn−k−2 s2

g2

s1

g1

s0

1. Shift in the n received bits.

2. Syndrome is stored as the contents of shift register.

Example: n = 7, k = 4, n− k = 3.
g(X) = 1 +X +X3 ⇐⇒ g = 1101

Input s2 s1 s0

r = 1100110

received
bit s2 s1 s0

0 0 0
1 1 0 0
1 1 1 0
0 0 1 1
0 1 0 0
1 1 1 0
1 1 1 1
0 1 1 0

s = 011

SYSC 5504 106 Fall 2017/18



Cyclic Redundancy Check (CRC) Codes
Often used for error detection with ARQ schemes. One commonly used generator is

g(X) = 1 +X2 +X15 +X16

g = 10100000000000011

Bose-Chaudhuri-Hocqunghem (BCH) Codes
A large class of cyclic codes. For any m ≥ 3 and t ≥ 1 there is a BCH code with

n = 2m − 1

p = n− k ≤ mt
dmin = 2t+ 1

These codes can correct all combinations of t or fewer errors.

Reed-Solomon Codes
Non-binary BCH codes, which work with symbols of k bits each. Message words consist of K m-bit symbols, and
codewords consists of N m-bit symbols, where

N = 2m − 1

The code rate is

R =
K

N
Reed-Solomon codes can correct up to

t =
⌊

1
2 (N −K)

⌋
symbol errors. Good for correcting error bursts.

Example: (31,15) Reed-Solomon Code
m = 5 bits per symbol

K = 15 symbols, or 75 bits

N = 31 symbols, or 155 bits

This code can correct up to 8 symbol errors.
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Convolutional Codes
As opposed to block codes, which operate on finite-length blocks of message bits, a convolutional encoder operates on a
continuous sequence of message symbols. Let

a = a1 a2 a3 . . .
denote the message sequence and

c = c1 c2 c3 . . .
denote the code sequence.

At each clock cycle, a (n, k,m) convolutional encoder takes one message symbol of k message bits and produces one
code symbol of n code bits. Typically k and n are small integers (less than 5), with k < n. The parameter m refers to
the memory requirement of the encoder. Increasing m improves the performance of the code, but at increased decoder
complexity (typically m ≤ 8).

The basis for generating convolutional codes is the convolution of the message sequence with a set of generator sequences.
Let

g = g0 g1 g2 . . . gL
denote a generator sequence of length L+ 1 bits, and let the convolution of a and g be b = b1 b2 b3 . . ., with each output
bit given by

bi =

L∑
l=0

ai−l gl .

(2, 1,m) Convolutional Codes

For a rate 1/2 convolutional code, two generator sequences, denoted by g(1) and g(2), are used. The two convolution

output sequences are c(1) and c(2), with

c
(1)
i =

L∑
l=0

ai−l g
(1)
l c

(2)
i =

L∑
l=0

ai−l g
(2)
l .

These two sequences are multiplexed together, so the resulting code sequence is

c = c
(1)
1 c

(2)
1 c

(1)
2 c

(2)
2 c

(1)
3 c

(2)
3 . . . .

The code is generated by passing the message sequence through an L-bit shift register, as shown below.

Message
Bits

ai

g
(1)
0

g
(2)
0

s
(1)
i

ai−1

g
(1)
1

g
(2)
1

s
(2)
i

ai−2

g
(1)
2

g
(2)
2

s
(L)
i

ai−L

g
(1)
L

g
(2)
L

c
(1)
i

c
(2)
i

MUX
Code
Bits

This is a rate 1/2 encoder because for each encoder clock cycle one message bit (k = 1) enters the encoder and two code
bits (n = 2) are produced. The memory, m, is simply equal to L.
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Example: A (2, 1, 2) convolutional encoder with g(1) = 101 and g(2) = 111.

Message
Bits

ai
s

(1)
i

ai−1
s

(2)
i

ai−2

c
(1)
i

c
(2)
i

MUX
Code
Bits

(n, 1,m) Convolutional Codes

Rate 1/n codes can be constructed by using n different generators.
Example: (3, 1, 3) convolutional encoder with g(1) = 1101, g(2) = 1110, and g(3) = 1011.

Message
Bits

ai
s

(1)
i

ai−1
s

(2)
i

ai−2
s

(2)
i

ai−3

c
(1)
i

c
(2)
i

c
(3)
i

MUX
Code
Bits

This is a rate 1/3 encoder because at each clock cycle one message bit (k = 1) enters the encoder and three code
bits (n = 3) are produced. The memory, m, is three bits.
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(n, k,m) Convolutional Codes

By using multiple shift registers, arbitrary rate k/n codes can be constructed. The input sequence is demultiplexed into
k separate streams, which are passed through k shift registers. Thus one message symbol of k message bits enters the
encoder with each encoder clock cycle, and one code symbol of n code bits is produced.
Example: A (3, 2, 3) convolutional encoder, with generators

g(1,1) = 100

g(1,2) = 111

g(1,3) = 001

g(2,1) = 01

g(2,2) = 11

g(2,3) = 10

Message
Bits

DEMUX

a
(1)
i

a
(2)
i

s
(1)
i

s
(2)
i

s
(3)
i

c
(1)
i

c
(2)
i

c
(3)
i

MUX
Code
Bits

This is a rate 2/3 encoder because at each clock cycle two message bits (k = 2) enter the encoder and three code
bits (n = 3) are produced. The total memory, m, is three bits.

Defn: Let Lj denote the length of the jth shift register, for j ∈ {1, 2, . . . , k}, so the total memory of the encoder is

m =

k∑
j=1

Lj .

The length of the longest shift register is

L = max
j
{Lj} .

The constraint length of a convolutional code is defined as

K = max
j
{Lj}+ 1 .

The constraint length specifies the total number of message symbols that are used in determining each code
symbol.

Defn: The state of the encoder at any time is given by the values of the memory bits, s1 s2 . . . sm. The total number
of different states the encoder can be in is NS = 2m.

Fact: The encoder output for any clock cycle is determined only by the k input bits currently entering the encoder and
the m state bits of the encoder.
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Example Use the encoder given below to encode the message a = 110001 . . .

Message
Bits

ai
s

(1)
i

ai−1
s

(2)
i

ai−2

c
(1)
i

c
(2)
i

MUX
Code
Bits

i ai s
(1)
i s

(2)
i c

(1)
i c

(2)
i

1 1 0 0 1 1
2 1 1 0 1 0
3 0 1 1 1 0
4 0 0 1 1 1
5 0 0 0 0 0
6 1 0 0 1 1
...

...
...

...
...

...

c(1) = 111101 . . .

c(2) = 100101 . . .

The transmitted code word is c = 111010110011 . . .
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Code Representations

Tree Diagram: The relationship between message sequences and code sequences can be represented in a tree diagram.
For the (2, 1, 2) code given above, the tree diagram is:

0

1

00

00

11

00

00

11

00

00

11

00

00

11

10

01

10

10

01

10

01

11

00

11

10

01

10

01

10

01

11

00

00

00

11

10

01

10

11

10

01

01

11

00

11

10

01

The thick lines represent the encoding of the message sequence a = 1100 . . ., which, by reading off the
bits along the path, gives the code sequence c = 11101011 . . .

Close observation of the tree diagram reveals that the structure repeats itself after the third stage. That
is, the output in the fourth and following steps does not depend on the first input bit. This is because
the encoder output at time i depends only on the input at time i, and the 2 previous inputs (i.e., the
constraint length is 3).
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State Diagram: The code structure can also be represented as a state diagram, showing the output produced by transi-
tions between encoder states.
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11
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00

11
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11
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10
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Trellis Diagram: Because of the repetitive nature of the tree diagram, the code structure can be represented with a
trellis diagram by merging states.
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11
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01
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Message Bit 0:
1:

Block encoding with convolutional codes

Although convolutional codes are designed to work with a continuous stream of message bits, they may also be used for
finite-length blocks. When encoding a block of Na message symbols with a rate k/n convolutional encoder, performance
can be improved by feeding sufficient zeros into the encoder after the block has been encoded to drive the encoder state
to 0. A total of K−1 extra zero symbols must be encoded to force all the memory bits to 0. The code symbols produced
during this operation are transmitted along with the regular code sequence. Therefore the total code sequence length is

Nc = Na +K − 1
symbols. The actual rate of the code is therefore

R =
kNa
nNc

=
k

n

Na
Na +K − 1
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Tutorial: Constructing Trellis Diagrams

a
(1)
i s

(1)
i s

(2)
i

c
(1)
i

c
(2)
i

Parameters:
k = 1 – # of bits per message symbol
n = 2 – # of bits per code symbol
m = 2 – # of memory bits

NS = 2m = 4 – # of states

Notation:

Message symbol ai = a
(1)
i

Code symbol ci = c
(1)
i c

(2)
i

Encoder state si = s
(1)
i s

(2)
i

Possible states: si ∈ {00, 01, 10, 11}

One section of the trellis will look
something like this:

=⇒

00

01

10

11

si
00

01

10

11

si+1

State Transitions

We need to find the mapping from the current state (si) and input (ai) to the next state (si+1). That is, construct a
look-up table for si+1 = ST[si, ai]. It may be easier to find this mapping by redrawing the encoder without any of the
code symbol output connections.

a
(1)
i s

(1)
i s

(2)
i

⇓
si = s

(1)
i s

(2)
i

si+1 = a
(1)
i s

(1)
i

=⇒ s
(1)
i+1 = a

(1)
i

s
(2)
i+1 = s

(1)
i

=⇒

State Transition Table
a

ST[s, a]
0 1

00 00 10
01 00 10

s
10 01 11
11 01 11

These state transitions can then be placed
on the section of the trellis:
(The number before the slash (/) on each
branch is the value of the message symbol
that will cause the transition.)

=⇒

00

01

10

11

si
00

01

10

11

si+1

0/
1/

0/

1/

0/

1/

0/
1/
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Code Symbols

We can construct a look-up table that gives the code symbol that is generated with each message symbol and state. That
is, construct the mapping ci = SG[si, ai]. The code symbols are calculated with:

c
(1)
i = s

(1)
i ⊕ s

(2)
i

c
(2)
i = a

(1)
i ⊕ s

(1)
i ⊕ s

(2)
i

=⇒

Symbol Generation Table
a

SG[s, a]
0 1

00 00 01
01 11 10

s
10 11 10
11 00 01

These can be used to label the branches
of the trellis section:
(The code symbols are indicated after the
slash (/) on each branch.)

=⇒

00

01

10

11

si
00

01

10

11

si+1

0/001/01

0/11

1/10

0/11

1/10

0/
00

1/01

Trellis Diagram

A complete trellis diagram is produced by repeating the section. The total number of sections should be Na + (K − 1),
where K is the constraint length. In this example, K = 3. If we suppose Na = 4, then the trellis would be:

00

01

10

11

1

1

0/00

1/01

2

2

0/00

1/01

0/
11

1/10

3

3

0/00

1/01

0/
11

1/10

0/
11

1/10

0/
00

1/01

4

4

0/00

1/01

0/
11

1/10

0/
11

1/10

0/
00

1/01

5

5

0/00

0/
11

0/
11

0/
00

6

6

0/00

0/
11

7

7

00

01

10

11

Time

Note that inaccessible states and branches have been removed at the beginning and end of the trellis, since the encoder
always starts and ends each block in the all-zero state.
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Decoding of Convolutional Codes

Notation

Message
Sequence

DEMUX

a
(1)
i

a
(2)
i

...

a
(k)
i

Convolutional
Encoder

(k shift registers)
(n adders)

c
(1)
i

c
(2)
i

c
(3)
i

...

c
(n)
i

MUX
Code

Sequence

Message Sequence:

– consists of Na symbols, with each symbol composed of k bits.

– denoted by

a =
a

(1)
1 a

(2)
1 · · · a

(k)
1︸ ︷︷ ︸

a1

a
(1)
2 a

(2)
2 · · · a

(k)
2︸ ︷︷ ︸

a2

. . . a
(1)
i a

(2)
i · · · a

(k)
i︸ ︷︷ ︸

ai

. . . a
(1)
Na
a

(2)
Na
· · · a(k)

Na︸ ︷︷ ︸
aNa

– ith message symbol is ai = a
(1)
i a

(2)
i . . . a

(k)
i , where a

(j)
i ∈ {0, 1} is a single bit.

– for each encoder clock cycle, one message symbol (of k bits) enters the encoder.

Code Sequence:

– consists of Nc symbols, with each symbol composed of n bits.

– denoted by

c =
c
(1)
1 c

(2)
1 · · · c

(n)
1︸ ︷︷ ︸

c1

c
(1)
2 c

(2)
2 · · · c

(n)
2︸ ︷︷ ︸

c2

. . . c
(1)
i c

(2)
i · · · c

(n)
i︸ ︷︷ ︸

ci

. . . c
(1)
Nc
c
(2)
Nc
· · · c(n)

Nc︸ ︷︷ ︸
cNc

– ith code symbol is ci = c
(1)
i c

(2)
i . . . c

(n)
i , where c

(j)
i ∈ {0, 1} is a single bit.

– for each encoder clock cycle, one code symbol (of n bits) is produced by the encoder.

– Nc = Na + (K − 1) where K is the constraint length of the code.

– The extra (K − 1) symbols arise as the encoder is forced back to the all-zero state.

Received Sequence:

– also consists of Nc symbols, with each symbol composed of n bits.

– denoted by

r =
r

(1)
1 r

(2)
1 · · · r

(n)
1︸ ︷︷ ︸

r1

r
(1)
2 r

(2)
2 · · · r

(n)
2︸ ︷︷ ︸

r2

. . . r
(1)
i r

(2)
i · · · r

(n)
i︸ ︷︷ ︸

ri

. . . r
(1)
Nc
r

(2)
Nc
· · · r(n)

Nc︸ ︷︷ ︸
rNc

– ith received symbol is ri = r
(1)
i r

(2)
i . . . r

(n)
i , where r

(j)
i ∈ {0, 1} is a single bit.

– jth bit of the ith symbol is given by r
(j)
i = c

(j)
i ⊕ e

(j)
i , where e

(j)
i is the bit error indicator which is equal to 1 if the

bit is in error, and 0 otherwise.

– the channel transition probability is

Pr
{
r

(j)
i | c

(j)
i

}
=

{
1− p , if r

(j)
i = c

(j)
i

p , if r
(j)
i 6= c

(j)
i
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As an example, consider the rate 1/3, constraint length K = 3 encoder with generators g(1) = 110, g(2) = 111, and

g(3) = 101 shown below:

a
(1)
i s

(1)
i s

(2)
i

c
(1)
i

c
(2)
i

c
(3)
i

Figure 2.
For a message sequence length of Na = 5 symbols, the corresponding trellis structure is:
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000

111

01
1
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11
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001
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1
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4

000

111

01
1

100

11
0

001

10
1

010

5

5

000

111

01
1

100

11
0

001

10
1

010
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6

000

01
1

11
0

10
1

7

7

000

01
1

8

8

00

01

10

11

Time

– A solid line is used to represent a message symbol of ai = 0, while a dashed line represents ai = 1.

– There are 2k branches entering each state, and 2k branches leaving each state.

– Each branch is labelled with the corresponding output code symbol, ci.

– The trellis contains Nc + 1 time units or levels.

– Since the encoder always starts and ends in the all-zero state, the first K−1 time units correspond to the encoder’s
departure from the all-zero state, and the last K − 1 time units correspond to the encoder’s return to the all-zero
state.

– Therefore, not all states can be reached in the first K − 1 or last K − 1 time units.

– However, in the centre portion, all states can be reached, and the trellis structure repeats with each time unit.

– For example, for the message a = 11001 the encoder follows the highlighted path through the trellis, and the
corresponding code sequence is c = 111 001 101 011 111 110 011.

– Each of the 2kNa possible message sequences (and code sequences) is represented by a unique path through the
trellis.
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Maximum Likelihood Sequence Estimation (MLSE)

As far as the receiver is concerned, one out of a total of 2kNa possible message sequences was transmitted. Based on the
received word, r, the receiver must determine which message sequence was most likely to have been transmitted. If all
possible message sequences have equal a priori probability, the maximimum likelihood decision rule is to choose â = a if

Pr {r | a} ≥ Pr {r | a′}
for all other possible message words, a′. That is, the receiver must find a which maximizes Pr {r | a}.
Because of the one-to-one relationship between message sequences and code sequences, this is equivalent to finding a
which maximizes Pr {r | c}, where c is the code sequence corresponding to a.

If c is transmitted and r is received, the number of code bit errors is the number of bit positions in which c and r differ.
This is given by dH(r, c). Since a total of nNc code bits are transmitted, the probability of receiving r given that c was
transmitted is, for a BSC with crossover probability p,

Pr {r | c} = pdH(r,c)(1− p)nNc−dH(r,c)

=

(
p

1− p

)dH(r,c)

(1− p)nNc

where dH(r, c) is the Hamming distance between the received word r and code sequence c (i.e., the number of bits in
which r 6= c).

Because the log function is monotonically increasing, maximizing the likelihood function is equivalent to maximizing the
log-likelihood function

log Pr {r | c} = log

{(
p

1− p

)dH(r,c)

(1− p)nNc
}

= dH(r, c) log

(
p

1− p

)
+ nNc log(1− p) .

Assuming 0 < p < 0.5 (so that log p
1−p < 0), maximizing the log-likelihood function is equivalent to finding the code

sequence which minimizes the path metric
M(r | c) = dH(r, c) .

The trellis diagram is a useful tool for finding the path metric for each of the 2kNa possible message sequences. Note
that the path metric can be written as

M(r | c) =

Nc∑
i=1

dH(ri, ci) =

Nc∑
i=1

µ(ri | ci) ,

which is the sum of the branch metrics
µ(ri | ci) = dH(ri, ci) .

As an example of using the trellis to calculate the branch metric, suppose that the encoder shown in Fig. 2 is used and
the received sequence is: r = 101 101 101 111 001 110 110. The trellis diagram can be redrawn as below, with the branch
metrics shown in parenthesis for each branch.
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To find the path metric for a given message sequence, the decoder only needs to trace the message through the trellis,
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summing the branch metrics. For example, the path for the message a = 10110 is highlighted in the trellis. The path
metric is

M(r | c) = 1 + 2 + 1 + 2 + 1 + 2 + 2 = 11
By tracing all 2kNa possible paths through the trellis, the decoder can find the path metrics of all 2kNa possible message
sequences, and select that sequence which has the smallest path metric as its estimate of the transmitted message.

The Viterbi Algorithm

The Viterbi algorithm provides a simple method for decoding convolutional codes which is optimal in that it always finds
the path with the smallest path metric.
Algorithm:

1) Beginning at time unit i = K, compute the partial path metric

M([r | c]i−1) =

i−1∑
l=1

µ(rl | cl)

for the single path entering each state. Store the path (called the survivor) and its metric for each state.

2) Increase i by 1. Compute the partial path metric for all paths entering each state by adding the branch metric
entering that state to the partial path metric of the corresponding survivor at the previous time unit. For each
state, store the path with the smallest partial path metric (the survivor) together with its metric, and eliminate
all other paths.

3) If i ≤ Nc, repeat step 2. Otherwise, stop.

Notes:

– For time unit K to Na + 1 there are NS survivors, one for each state.

– After time unit Na + 1 there are fewer survivors since there are fewer valid states while the encoder is returning to
the all-zero state.

– Finally, at time unit Nc + 1 there is only one valid state, the all-zero state, and hence there is only one survivor.

Example: For the encoder of Fig. 2 with r = 101 101 101 111 001 110 110, the trellis diagram below shows the result
of the Viterbi algorithm. The underlined number at each state shows the partial path metric of the survivor
path at that state. Branches marked with an X represent eliminated paths.

00

01

10

11

r =

1

000(2)111(1)

101

2

2

1

000(2)111(1)

11
0(

2)

001(1)

101

3

4

3

3

2

000(2)111(1)

01
1(

2)

100(1)

11
0(

2)

001(1)

10
1(

0)

010(3)

101

4

5

2

4

4

X

X

X

X

000(3)111(0)

01
1(

1)

100(2)

11
0(

1)

001(2)

10
1(

1)

010(2)

111

5

3

5

4

6

X

X

000(1)111(2)

01
1(

1)

100(2)

11
0(

3)

001(0)

10
1(

1)

010(2)

001

6

4

7

5

4

X

X

X

000(2)

01
1(

2)

11
0(

0)

10
1(

2)

110

7

6

5

X

X

000(2)

01
1(

2)

110

8

7
X 00

01

10

11

Time

The final survivor path, highlighted in the trellis, has a path metric of 7, and corresponds to the message
sequence a = 11001.
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Note that at some states neither path is crossed out, indicating a tie. If the final survivor goes through any of
these states, there is more than one maximum likelihood path. Either path can be selected as the best path,
without affecting the average error probability of the decoder.

Theorem: The final survivor â in the Viterbi algorithm is the path with maximum likelihood. That is, it has the smallest
path metric, so

M(r | ĉ) ≤ M(r | c) ∀ c 6= ĉ .

Proof: Suppose the maximum likelihood path is eliminated by the algorithm at time unit i, as illustrated below. This
implies that the partial path metric of the survivor is less than that of the maximum likelihood path at this
point. Now, if the remaining portion of the maximum likelihood path is appended to the survivor at time unit i,
the total metric of this path will be less than the total metric of the maximum likelihood path. This contradicts
the definition of the maximum likelihood path as the path with the smallest metric. Therefore, the maximum
likelihood path cannot be eliminated by the algorithm, and must be the final survivor.
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00
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11
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Maximim Likelihood

Path

Survivor

X

Continuous Decoding

Since a final decision on the maximum likelihood path is not made until the entire received sequence has arrived, this
may cause an unacceptably long decoding delay if the message length is long. Furthermore, the length of the survivor
paths grows over time, placing a burden on memory requirements. To address these issues, some modifications to the
Viterbi algorithm are needed.

In practice, at any time unit i, all survivor paths share a common stem at τi time units back, as illustrated below.

00

01

10

11

00

01

10

11

Common
Stem

Survivor

Survivor

Survivor

Survivor

i− τi i− 1 i
Time

Regardless of which of the NS survivors is the final survivor, the maximum likelihood path will contain the common stem.
The Viterbi algorithm can then modified so that at time unit i the decoder compares all survivors to find a common
stem. If one is found, the message symbols for the stem are emitted by the decoder, and the survivors are truncated to
the last τi message symbols.

This approach is optimal in that the message sequence produced by the decoder is the true maximum likelihood path.
However, the output of the decoder is produced at a variable rate. A long time can pass while the survivors do not
share a common stem, and then suddenly several message symbols are produced all at once when a common stem finally
occurs.

Survivor Truncation:
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A more practical alternative is to pick a fixed delay, τ , and at each time unit, i, make a decision about the message
symbol ai−τ . This can be done simply by assuming that the path with the smallest partial path metric at time i will in
fact turn out to be the maximum likelihood path, and tracing back along that path by τ time units to find ai−τ . Note
that the resulting decoder is sub-optimal since this path is not necessarily the final survivor, but if τ is large enough this
does not have much impact on performance. Experimental and theoretical research has shown that taking τ ≥ 5K is
sufficient.
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Soft-decision (Soft-input) Decoding

The decoder described above is referred to as a hard-decision (or hard-input) decoder because decoding is based on
the received data at the output of the receiver’s decision device (i.e., the BSC output). An advantageous alternative is
soft-decision (or soft-input) decoding, which is based on the received data at the output of the receiver’s matched filter
for an AWGN channel.
Example: Comparison of hard- and soft- decision decoding.

Consider the use of a double-repetition block code to transmit a single bit over an AWGN channel with BPSK.

For a message word of a = 0, the code word is c = 00. The two code bits are sent sequentially over the channel,
and the output of the receiver’s matched filter is

r1 =
√
Ecb + w1

after the first received bit, and

r2 =
√
Ecb + w2

after the second bit, where w1 and w2 are independent Gaussian noise samples.

Suppose it just so happens that w1 = −0.2
√
Ecb and w2 = −1.1

√
Ecb, so r1 = 0.8

√
Ecb and r2 = −0.1

√
Ecb.

s0s1 r1r2

−1.0 −0.1 0.8 1.0

The (hard) output of the decision device would be r = 01, which is the (hard) input to the decoder. Although an
error is detected, the decoder is unable to decide whether the message was a 0 or a 1.

However, if (soft) output of the matched filter is passed directly to the decoder (as soft-input), it can decide that
a 00 was transmitted since the noise would have to be much larger if 11 was transmitted.

ie. (r1, r2) is closer to (
√
Ecb,

√
Ecb) than to (−

√
Ecb,−

√
Ecb).

[(0.8)− (1)]2 + [(−0.1)− (1)]2 = 1.25 < 4.05 = [(0.8)− (−1)]2 + [(−0.1)− (−1)]2

The same idea can be used for decoding convolutional codes with the Viterbi algorithm. Let

r
(j)
i =

√
Ecb

(
1− 2c

(j)
i

)
+ w

(j)
i
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be the sampled output of the receiver’s matched filter for the jth bit of the ith code symbol, where w
(j)
i is a Gaussian

noise sample with zero mean and variance N0/2. Therefore

f
(
r

(j)
i | c

(j)
i

)
=

1√
πN0

exp

{
− 1

N0

∣∣∣r(j)
i −

√
Ecb

(
1− 2c

(j)
i

)∣∣∣2} .

The complete received sample sequence is

r = r
(1)
1 r

(2)
1 · · · r

(n)
1 r

(1)
2 r

(2)
2 · · · r

(n)
2 . . . r

(1)
Nc
r

(2)
Nc
· · · r(n)

Nc
,

and

f(r | c) =

Nc∏
i=1

n∏
j=1

f
(
r

(j)
i | c

(j)
i

)
=

1(√
πN0

)nNc exp

− 1

N0

Nc∑
i=1

n∑
j=1

∣∣∣r(j)
i −

√
Ecb

(
1− 2c

(j)
i

)∣∣∣2
 .

The MLSE decoder must find the path through the trellis which maximizes the likelihood function f(r | c), or equivalently,
maximizes the log-likelihood function log f(r | c). However,

log f(r | c) =

Nc∑
i=1

n∑
j=1

log f
(
r

(j)
i | c

(j)
i

)

=

Nc∑
i=1

n∑
j=1

[
− 1

N0

∣∣∣r(j)
i −

√
Ecb

(
1− 2c

(j)
i

)∣∣∣2]− (√πN0

)nNc
,

so maximizing the log-likelihood function is equivalent to minimizing the path metric

M(r | c) =

Nc∑
i=1

n∑
j=1

∣∣∣r(j)
i −

√
Ecb

(
1− 2c

(j)
i

)∣∣∣2 =

Nc∑
i=1

n∑
j=1

µ(r
(j)
i | c

(j)
i ) =

Nc∑
i=1

µ(ri | ci) ,

where µ(r
(j)
i | c

(j)
i ) =

∣∣∣r(j)
i −

√
Ecb

(
1− 2c

(j)
i

)∣∣∣2 is referred to as the bit metric, and µ(ri | ci) =
∑n
j=1 µ(r

(j)
i | c

(j)
i ) is the

branch metric.

Thus, for soft-decision decoding, the decoder must find the path through the trellis with the minimum Euclidean distance
between the soft-input r and

√
Ecb (1− 2c). This differs from hard-decision decoding which must find the path with the

minimum Hamming distance between the hard-input r and the code word c.

For soft-decision decoding, the Viterbi algorithm is implemented as described above for hard-decision decoding, but the
branch metrics described here are used instead. Again, the decoder is optimal in that it finds the path with the smallest
path metric, but in this case the maximum likelihood path has the smallest Euclidean distance from the received samples.

0 1 2 3 4 5 6 7 8
SNR per message bit (dB)

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

P
ro

ba
bi

lit
y 

of
 a

 b
it 

er
ro

r

Advantage of Soft−Decision Decoding

Hard−decision
Soft−decision
Uncoded

SYSC 5504 122 Fall 2017/18



Performance Analysis of Convolutional Codes
The error correcting capability of a convolutional code is a function of the Hamming distances between codewords. If the
codewords of code C1 are further apart than the codewords of code C2, then code C1 will be able to correct more errors.

Fact: Convolutional codes are linear.

Example: For the rate 1/2 convolutional code generated by g
1

= 110 and g
2

= 101, the code bits are related to the
message bits by

c
(1)
i = ai ⊕ s(1)

i = ai ⊕ ai−1

c
(2)
i = ai ⊕ s(2)

i = ai ⊕ ai−2

This code could also be generated by multiplying the message sequence [a1 a2 a3 a4 · · ·] by the generator
martrix

G =



1 1 1 0 0 1 0 0 0 0 0 0 0 0
0 0 1 1 1 0 0 1 0 0 0 0 0 0
0 0 0 0 1 1 1 0 0 1 0 0 0 0
0 0 0 0 0 0 1 1 1 0 0 1 0 0 · · ·
0 0 0 0 0 0 0 0 1 1 1 0 1 1
0 0 0 0 0 0 0 0 0 0 1 1 1 0
0 0 0 0 0 0 0 0 0 0 0 0 1 1

...
. . .


Note: Since the code is linear, the distances between codeword c and all other codewords in C are the same for all c ∈ C.

i.e. The probability of a bit error is not a function of the transmitted codeword.

Therefore, for the purpose of error analysis, we can assume that the all-zero codeword was transmitted.

Errors occur when the correct path is pruned in favour of an incorrect path. If the partial path metric of the correct path
is greater than the partial path metric of another path, the correct path is discarded and errors will occur. Consider a
path which first separates from the correct path at time A, and merges with the correct path at time B.
Example: Rate 1/2 code with generators g

1
= 101 and g

2
= 111.

00

01

10

11

r =

A

00

11

10

00

10

10

00

10

00

00

00

01

00

01

10

00

11

11
00

01

10

11
B

Correct Path

Incorrect Path

The partial path metric from A to B for the correct path is 6 and the partial path metric for the incorrect path is
5, so in this case the incorrect path would be chosen.
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An expression for the probability that this incorrect path with be selected by the decoder instead of the correct path can
be found.

– Suppose the two paths differ in d bit positions.

– Let N1,d be the number of errors that occur in those positions where the two paths have the same code bits, and
let N2,d be the number of errors that occur in those positions where the two paths have different code bits.

– The partial path metric for the correct path is N1,d +N2,d.

– The partial path metric for the incorrect path is N1,d + d−N2,d.

– The correct path will be selected if N1,d +N2,d < N1,d + d−N2,d, which simplifies to N2,d < d/2.

Note: The value of N1,d is not relevant to the decision between these two paths.

In greater detail, there are three cases:

– If N2,d < d/2 then the correct path will be chosen.

– If N2,d = d/2 then a tie occurs and one of the two paths is selected randomly.

– if N2,d > d/2 then the incorrect path will be chosen.

Note: Since N2,d is a binomial random variable with parameters (d, p), where p is the channel crossover probability, the
probability of getting N2,d = l errors out of d bits is

Pr {N2,d = l} =

(
d

l

)
pl(1− p)d−l .

If d is even, then the probability of selecting the incorrect path is

P (d) =

d∑
l=d/2+1

Pr {N2,d = l}+
1

2
Pr {N2,d = d/2}

where the second term is due to the possibility of a tie.
If d is odd, then a tie is impossible, so the probability of selecting the incorrect path is

P (d) =

d∑
l=(d+1)/2

Pr {N2,d = l}

First-event error probability

At time B there will be many different paths merging with the correct path.

00

01

10

11
A

00

01

10

11
B

The first-event error probability, Pe, is the probability that that correct path is pruned at time B. This occurs if the
metric for the correct path is greater than the metric for any of the other paths. Let M0 be the partial path metric of
the correct path and Mi be the partial path metric of the ith incorrect path. The first-event error probability is

Pe = Pr

{⋃
i

(M0 > Mi)

}

= Pr

{⋃
i

(N2,di ≥ di/2)

}

SYSC 5504 124 Fall 2017/18



Using the union bound gives

Pe <
∑
i

Pr {N2,di ≥ di/2} =
∑
i

P (di)

By grouping paths with the same distance, d, this can be written as

Pe <

∞∑
d=1

adP (d)

where ad is the number of paths which differ from the correct path by d bits and merge with the correct path at time B.
The set {ad} is the codeword weight distribution of the code.

Transfer function

The weight distribution of the code can be found from the state diagram, by examining all paths that start and end in
the zero state.
Example: For the code with generators g

1
= 101 and g

2
= 111, the state diagram is:

a
00

d
01

c
11

b
10

00

11

00

11

01

10

01

10

The weight distribution can easily be determined from the transfer function of the code. To determine the transfer
function, the space diagram is modified slightly:

– The self-loop at the zero state is removed because it does not add anything to the weight of the codeword.
– The zero-state is split into two states.
– A value of Dm is assigned to each branch, where m is the Hamming weight of the code symbol generated by

that branch.

a
00

b
10

c
11

d
01

e
00

D2 (11) D1 (01)

D
1 (1

0)

D1 (01)

D 1
(10)

D0 (00)

D2 (11)
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The state equations for this diagram are:

Xb = D2Xa +Xd

Xc = DXb +DXc

Xd = DXb +DXc

Xe = D2Xd

Solving these equations for Xe in terms of Xa gives

Xe =
D5

1− 2D
Xa

The transfer function is defined as

T (D) =
Xe

Xa
=

D5

1− 2D

Making use of the identity

1

1− α
=

∞∑
i=0

αi

yields

T (D) = D5
[
1 + (2D) + (2D)2 + (2D)3 + · · ·

]
= D5 + 2D6 + 4D7 + 8D8 + · · ·

=

∞∑
d=5

2d−5Dd

=

∞∑
d=5

adD
d

where ad = 2d−5 is the number of codewords of weight d. Thus, there is one path segment of weigth 5, two path
segments of weight 6, four path segments of weight 7, and so on.

Defn: The weight minumum weight path segment that merges with the all-zero path is called the minimum free distance,
dfree, of the code. In the above example, dfree = 5.

The first-event error probability is then bounded by

Pe <

∞∑
d=dfree

adP (d)

A crude approximation is
Pe ∼= adfreeP (dfree)

In general, a code with a larger minimum free distance than another code will give better performance.

Probability of a bit error

A bound for the probability of a bit error can also be found. Suppose an incorrect path that differs from the correct
path in m message bit positions is selected instead of the correct path. This event case will cause m message bits to be
in error. Using the bounding technique described previously, the probability of a bit error is bounded by

Pb <

∞∑
dfree

∞∑
m=1

ad,mmP (d)

where ad,m is the number of codewords of weight d corresponding to message words of weight m.
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Input/ouput weight enumeration function

The input/output weight distribution can be calculated from the state diagram for the code. In addition to labelling
each branch by Di, where i is the weight of the code symbol, each branch is also labelled with Mm, where m is the
weight of the corresponding message symbol.

a
00

b
10

c
11

d
01

e
00

MD2 D1

M
D
1

MD1

D 1

MD0

D2

The transfer function is the solution to the following equations:
Xb = MD2Xa +MXd

Xc = MDXb +MDXc

Xd = DXb +DXc

Xe = D2Xd

Solving these equations for Xe in terms of Xa gives

Xe =
MD5

1− 2MD
Xa

The transfer function is

T (D,M) =
Xe

Xa
=

MD5

1− 2MD
Making use of the identity

1

1− α
=

∞∑
i=0

αi

yields
T (D,M) = MD5

[
1 + (2MD) + (2MD)2 + (2MD)3 + · · ·

]
= MD5 + 2M2D6 + 4M3D7 + 8M4D8 + · · ·

=

∞∑
d=dfree

2d−5Md−4Dd

=

∞∑
d=dfree

∞∑
m=1

2d−5δm−(d−4)M
mDd

=

∞∑
d=dfree

∞∑
m=1

ad,mM
mDd

where ad,m = 2d−5δm−(d−4) is the number of codewords of weight d corresponding to message words of weight m. That
is, there is one codeword of weight 5 corresponding to a message word of weight 1, but no other codewords of weight 5
corresponding to message words of other weights. There are two code words of weight 6, and they both correspond to
message words of weight 2.
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Trellis Coded Modulation (TCM)
Trellis coded modulation involves the combination of convolutional coding with spectrally efficient M -ary modulation.
Objectives: To improve system performance without

– increasing the transmitted energy per bit

– reducing the message transmission rate

– increasing the bandwidth
Example: rate 1/3 convolutional code, sending one code bit at a time with BPSK

– can improve performance over uncoded BPSK without increasing Emb.

– but, we must either slow down the message transmission rate or increase the code bit transmission rate (and
therefore, increase bandwidth) to accommodate the additional parity bits

Example: rate 1/3 convolutional code, sending each code symbol using 8-PSK

– three code bits are sent with each channel use

– one message bit is transmitted with each channel use

– there is no need to increase the bandwidth, and the message bit transmission rate is the same as for uncoded BPSK.
In general, trellis coded modulation involves the use of a rate k/n convolutional code and an M -ary signalling scheme,
where M = 2n. Each code symbol is transmitted in a single use of the channel.

a
(1)
i

a
(2)
i

a
(k)
i

Rate k/n
Convolutional

Encoder

c
(1)
i

c
(2)
i

c
(3)
i

c
(n)
i

M -ary
Signal

Mapper
(M = 2n)

vi

Trellis coded modulation with a rate k/n convolutional code must yield better performance than uncoded modulation with
M = 2k. However, increasing M is known to reduce performance substantially, so the coding gain of the convolutional
code must be large.
Example: Uncoded QPSK vs. uncoded 8-PSK
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If a rate 2/3 convolutional code is used with 8-PSK, the code must be able to improve the performance of uncoded
8-PSK by at least 3.5 dB.
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Example: Consider the following rate 2/3 convolutional code used with Gray-mapped 8-PSK.

a
(1)
i

a
(2)
i

s
(1)
i

s
(2)
i

s
(3)
i

c
(1)
i

c
(2)
i

c
(3)
i

8-PSK
Signal

Mapper

vi

The performance of this code/modulation scheme is
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Note: In this case, the performance of the coded scheme is worse than uncoded QPSK. There is a clear disadvantage
to using coding in this case. The coding gain does not offset the degradation due to the higher-order
modulation scheme.

The degradation could be overcome be using a more powerful code (longer constraint length), but this solution
involves increasing the complexity of the decoder (because the number of states has increased).

To effectively use M -ary modulation with a convolutional code, care must be taken when assigning code symbols to
points in the signal constellation. The goal is to maximize the Euclidean distance between symbol sequences. This can
be accomplished through set partioning.
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Set Partitioning:
Set partitioning involves dividing the signal constellation into subsets with larger minimum distance between points
in the subset than the minimum distance between points in the original constellation.

Example: 8-PSK

The signal constellation for 8-PSK is

A

√
Es

The minimum distance between two points in set A (the original 8-PSK constellation) is

d0 =

√
(2−

√
2)Es .

Divide the constellation into two subsets, B0 and B1 as shown below

B0

√
Es

B1

√
Es

The minimum distance between two points in subset B0 is

d1 =
√

2Es
The minimum distance between two points in subset B1 is also

d1 =
√

2Es
Divide subset B0 into two subsets, C0 and C1, and divide subset B1 into two subsets, C2 and C3, as shown
below

C0

√
Es

C1

√
Es

C2

√
Es

C3

√
Es

The minimum distance between two points in subset Ci is

d2 = 2
√
Es

for all i ∈ {0, 1, 2, 3}.
At each level of subdivision, the minimum distance is greater than the minimum distance at the previous level.

This same procedure can also be used with higher-order modulation schemes. See, for example, Figure 8.12-2 in
Proakis.
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For trellis-coded modulation to be effective, the following rule must be obeyed:
The code symbols for transitions originating from and merging into any state must be assigned to points in the
same subset.

Example: Rate 2/3 convolutional code with 8-PSK
For the rate 2/3 convolutional code described by the block diagram given above, one section of the trellis is

000

001

010

011

100

101

110

111

si
000

001

010

011

100

101

110

111

si+100/000

01/00110/010

11/011

11/111
11/11011/101

11/100

{000, 001, 010, 011}

{010, 011, 000, 001}

{001, 000, 011, 010}

{011, 010, 001, 000}

{100, 101, 110, 111}

{110, 111, 100, 101}

{101, 100, 111, 110}

{111, 110, 101, 100}

{000, 010, 001, 011}

{100, 110, 101, 111}

{001, 011, 000, 010}

{101, 111, 100, 110}

{010, 000, 011, 001}

{110, 100, 111, 101}

{011, 001, 010, 000}

{111, 101, 110, 100}

As can be seen, in this example the code symbols fall into two groups, {000, 001, 010, 011} and {100, 101, 110, 111}.
Code symbols in the first group should be mapped into signals in subset B0, and code symbols in the second group
should be mapped into signals in subset B1.

Note: It does not matter which group of code symbols is mapped to which subset. You could also map the first
group to subset B1 and the second group to subset B0.

One possible mapping of code symbols within each subset is

B0

√
Es

000001

011 010

B1

√
Es

100

101

110

111

Note: It does not matter how the code symbols within each subset are mapped to signals.
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The combined signal consellation is

A

√
Es

100

000
101

001

110

011
111

010

When this mapping of code symbols to signal points is used, the performance of the coding/modulation scheme is
much better.
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Parallel Transitions:
For some codes, particularly systematic codes, it is possible for parallel transitions to occur. Parallel transistions
occur when one (or more) message bits are not encoded by the convolutional code

Example: rate 2/3 convolutional code with parallel transitions

a
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i
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i s

(2)
i

c
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c
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c
(3)
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8-PSK
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If parallel transitions occur in the trellis diagram, the following rule must also be obeyed when mapping code
symbols to signal points

The code symbols for parallel transitions must be assigned to signal points with maximum Euclidean separa-
tion.

The code symbols for the parallel transitions are {000, 100}, {010, 110}, {001, 101}, and {011, 111}.
Also, the code symbols orginating from or merging into any state fall in two groups, {000, 100, 010, 110}, which
originate from states 00 and 10 and merge in states 00 and 01, and {001, 101, 011, 111}, which originate from states
01 and 11 and merge in states 10 and 11.

We should assign the code symbols in {000, 100, 010, 110} to signals in subset B0, and the code symbols in
{001, 101, 011, 111} should be assigned to signals in subset B1.

Also, to make sure code symbols in parallel transitions are assigned to signals as far apart as possible, we should
assign the code symbols in {000, 100} to subset C0, the code symbols in {010, 110} to subset C1, the code symbols
in {001, 101} to subset C2, and the code symbols in {011, 111} to subset C3.

Since is does not matter how we assign the symbols within each subset, we can assign the symbols as follows:

C0

√
Es

000

100

C1

√
Es

010

110

C2

√
Es

001

101

C3

√
Es

011111

The signal constellation showing all the mappings is

A

√
Es

011

010
001

000

111

110
101

100
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Selected Mathematical Tables
Trigonometric Identities

sin(A±B) = sinA cosB ± cosA sinB
cos(A±B) = cosA cosB ∓ sinA sinB
sinA sinB = 1

2 [cos(A−B)− cos(A+B)]
cosA cosB = 1

2 [cos(A−B) + cos(A+B)]
sinA cosB = 1

2 [sin(A+B) + sin(A−B)]
cosA sinB = 1

2 [sin(A+B)− sin(A−B)]
sin 2A = 2 sinA cosA
cos 2A = 2 cos2A−1 = 1− 2 sin2A = cos2A−sin2A
sin2A = 1

2 (1− cos 2A)

cos2A = 1
2 (1 + cos 2A)

sinA =
1

j2

(
ejA − e−jA

)
cosA =

1

2

(
ejA + e−jA

)
e±jA = cosA± j sinA

Miscellaneous Identities
∞∑

m=−∞
e−j2πfmT =

1

T

∞∑
n=−∞

δ(f − n

T
)

Definite Integrals

∫ ∞
0

sin ax

x
dx =

 π/2 a > 0
0 a = 0
−π/2 a < 0∫ x

0

sin au

u
du = Si(x)∫ ∞

0

sin2 ax

x2
dx = |a|π/2∫ ∞

0

e−ax
2

dx = 1
2

√
π/a∫ ∞

0

xe−ax
2

dx =
1

2a∫ ∞
0

x2e−ax
2

dx =
1

4a

√
π/a∫ x

0

2√
π
e−u

2

du = erf (x)∫ ∞
−∞

ej2πft dt = δ(f)

Indefinite Integrals∫
sin(ax+ b) dx = −1

a
cos(ax+ b)∫

cos(ax+ b) dx =
1

a
sin(ax+ b)∫

sin2 ax dx =
x

2
− sin 2ax

4a∫
cos2 ax dx =

x

2
+

sin 2ax

4a∫
sin ax cos ax dx =

1

2a
sin2 ax∫

sin ax sin bx dx =
sin(a− b)x

2(a− b)
− sin(a+ b)x

2(a+ b)∫
cos ax cos bx dx =

sin(a− b)x
2(a− b)

+
sin(a+ b)x

2(a+ b)∫
sin ax cos bx dx = −cos(a− b)x

2(a− b)
− cos(a+ b)x

2(a+ b)∫
cos ax sin bx dx =

cos(a− b)x
2(a− b)

− cos(a+ b)x

2(a+ b)∫
x sin ax dx =

1

a2
(sin ax− ax cos ax)∫

x cos ax dx =
1

a2
(cos ax+ ax sin ax)∫

x2 sin ax dx =
1

a3
(2ax sin ax+ 2 cos ax− a2x2 cos ax)∫

x2 cos ax dx =
1

a3
(2ax cos ax− 2 sin ax+ a2x2 sin ax)∫

eax dx =
1

a
eax∫

xeax dx =
1

a2
eax(ax− 1)∫

x2eax dx =
1

a3
eax(a2x2 − 2ax+ 2)∫

eax sin bx dx =
1

a2 + b2
eax(a sin bx− b cos bx)∫

eax cos bx dx =
1

a2 + b2
eax(a cos bx+ b sin bx)∫ [

sin ax

x

]2

dx = a

∫
sin 2ax

x
dx− sin2 ax

x∫
lnx dx = x lnx− x
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Properties of the Fourier Transform

Operation h(t) H(f)

Linearity a1h1(t) + a2h2(t) a1H1(f) + a2H2(f)
Complex conjugate h∗(t) H∗(−f)

Scaling h(αt) 1
|α|H( f

|α| )

Delay h(t− t0) H(f)e−j2πft0

Frequency translation h(t)ej2πf0t H(f − f0)
Amplitude modulation h(t) cos(2πf0t)

1
2H(f − f0) + 1

2H(f + f0)
Time convolution

∫∞
−∞ h1(τ)h2(t− τ) dτ H1(f)H2(f)

Frequency convolution h1(t)h2(t)
∫∞
−∞H1(u)H2(f − u) du

Duality H(t) h(−f)
Time differentiation d

dth(t) j2πfH(f)

Time integration
∫ t
−∞ h(τ) dτ 1

j2πfH(f) + H(0)
2 δ(f)

Some Fourier Transform Pairs

h(t) → H(f)

e−atu(t) → 1

a+ j2πf

te−atu(t) → 1

(a+ j2πf)2

e−a|t| → 2a

a2 + (2πf)2

e−t
2/(2σ2) →

√
2πσ2e−2π2f2σ2

u(t) → 1
2δ(f) +

1

j2πf

δ(t− t0) → e−j2πft0

sin 2πWt

2πWt
→ 1

2W
rect(

f

2W
)

rect(
t

T
) → T

sinπfT

πfT
∞∑

m=−∞
δ(t−mT ) → 1

T

∞∑
n=−∞

δ(f − n

T
)
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