Extending CD++ Specification Language for Cell-DEVS Model Definition

Alejandro López

Gabriel Wainer

Abstract

This work describes two new improvements made to CD++, a tool used to study, model and simulate cellular models. The tool is an incomplete implementation of the Timed Cell-DEVS formalism. The modifications described in this work remove some limitation introduced in the previous implementation. These modifications allow the cells to use multiple state variables and to use multiple ports for inter-cell communications. The cellular model specification language has been extended to cover these cases. Thus, CD++ becomes a more powerful tool while getting closer to the implementation of the whole Timed Cell-DEVS formalism.

1 Introduction

Simulation is a powerful tool for studying complex systems, with quite a range of uses, from new system testing to physical phenomena understanding. The simulation process starts with a problem to solve or understand. It might be the case of a train company trying to develop a new strategy for cargo storage and railway tracks usage or a chemist trying to understand a complex process of physical diffusion taking place inside a narrow tube [Tro01]. The simulation process starts from the observation of a real system. Entities are identified, and an abstract representation, a model, is constructed. Once the model is constructed, it needs to be executed. This is done by a simulator, which consists of a computer system that executes the model’s instructions to generate its behavior. To complete the cycle, the results obtained are compared to those of the real system for model validation. It is often the case that a modeler is only interested in a few aspects of the real system. In such a case, an experimental frame captures the modeler’s objectives and defines the scope of the model.

[image: image1.png]
Figure 1: The basic entities and their relationships [Zei00]
The basic entities are linked by two relations [Zei00]:

modeling relation. Links the real system and model, defining how well the model represents the system or entity being modeled. In general terms a model can be considered valid if the data generated by the model agrees with the data produced by the real system in an experimental frame of interest.

simulation relation. Links the model and simulator. It represents how faithfully the simulator is able to carry out the instructions of the model.

There exist at present quite a number of simulation techniques and paradigms. Among these, the DEVS formalism provides a framework for the construction of hierarchical models in a modular manner, allowing for model reuse and reducing development time and testing. In DEVS a model is specified as a black box with a state and a duration for that state. When the duration time for the state expires, an output event is sent, an internal transition takes place and the model changes its current state. A change of state can also occur when an external event is received. Then, a complete model is defined by describing the set of states a model goes through, the internal and external transition functions, the output function and the state duration function. DEVS models can be put together by linking the outputs of a model to inputs of other models to form coupled models. Models made out of only one component are called atomic.

DEVS not only proposes a framework for model construction, but also defines an abstract simulation mechanism that is independent of the model itself. This mechanism is high level description of how the simulation of DEVS models should be executed by a simulator. Two kinds of simulators are defined, one for atomic and another one for coupled models, this latter known as a coordinator. These simulators progress through the simulation by exchanging messages as described by the abstract simulation mechanism.

Timed Cell-DEVS [Wai01] is a formalism based on DEVS for the simulation of cellular models. A cellular automaton is a lattice of cells, each of which has a value and a local rule that defines how to obtain a new value based on the current state of the cell and the values of neighboring cells. Cells are updated synchronously all at the same time. Timed Cell-DEVS defines a cell as a DEVS model and a cellular automaton as a coupled model, and introduces a new way of defining the timing of each cell which is more flexible than the existing synchronous approach. In Timed Cell-DEVS each cell defines its own update delay.

CD++ is a tool for the simulation of DEVS and Cell-DEVS models which has been used to simulate a variety of models including: traffic, forest fires, ants and watershed simulation. Simple models were easily handled by the tool, but lack of state variables and the inability to create a number of neighbor ports showed up to be a problem when writing complex models. As the workarounds used by the modelers required extra work from their side and were time-consuming during the simulation, it was proposed to add these two capabilities to CD++.

The aim of this work is to extend CD++ to allow the modeler to declare and use state variables to store values inside the cell, and to declare and use multiple neighbor (inter-cell) ports to communicate extra values to the neighbor cells. This modification will permit the modelers to remove the workarounds, reducing the simulation times, and to reduce the writing time for new complex models.

2 Background

Systems whose variables are discrete and the time advance is continuous are known as DEDS – Discrete Events Dynamic Systems, as opposed to CVDS – Continuous Variable Dynamic Systems [Wai96]. A simulation mechanism for DEDS systems assumes that the system will only change its state at discrete time points upon the occurrence of an event. An event is formally defined as a change of state that takes place at a specific point ti in time, ti (R.

DEVS is a formalism for modeling and simulation of DEDS systems. It defines a way of specifying systems whose states change upon the reception of an input event or the expiration of a time delay. It also allows for hierarchical decomposition of the model by defining a way to couple existing DEVS models.

The original DEVS model is a structure:

DEVS = < X , Y , S, (ext , (int, (, ta>

where

X

is the set of external events

Y

is the set of output events

S

is the set of sequential states;

(ext: Q x X (S

is the external state transition function;

where Q := { (s, e) | s (S , 0 (e (ta(s) } and e is the elapsed time since the last state transition.
(int: S (S

is the internal state transition function;

(: S (Y

is the output function;

ta : S (R0 + ((

is the time advance function;

The semantics for this definition are as follows. At any given time, a DEVS model is in a state s (S and in the absence of external events, it will remain in that state for a period of time as defined by ta(s). The ta(s) function can take any real value between 0 and (. A state for which ta(s) = 0 is called a transient state. On the other hand, if ta(s) = (, the system will stay in that state forever unless an external event is received. In such a case, s is called a passive state. Transitions that occur due to the expiration of ta(s) are called internal transitions. When an internal transition takes place, the system outputs the value ((s), and changes to state (int(s). A state transition can also happen when an external event occurs. In this case, the new state is given by (ext based on the input value, the current state and the elapsed time. Figure 2 illustrates this definition by specifying a model of a computer processor using DEVS.

[image: image2.png]
(b)

Figure 2: (a) Specification of a computer processor using DEVS
(b) DEVS semantics
A coupled model is a structure:

DN = < Xself , Yself , D, {Mi}, {Ii}, {Zi,j}, select)

where

D is a set of components.

for each i (D,

Mi is a component with the constraint that

Mi = < Xi , Yi , Si, (i ext , (i int, (i, tai)
is a DEVS model

for each i (D ({ self },

Ii is the set of influences of i.

for each j (Ii

Zi , j is a function, the i - to -j output-input translation

select is a tie-breaker function.

Ii is a subset of D ({ self }, i is not in Ii ,

Zself,j : Xself (Xj

Zi, self : Yi (Yself
Zi,j : Yi (Xj

select : subset of D (D

such that for any non-empty subset E,

select (E) (E

A coupled model groups several DEVS models together into a compound model that can be regarded, due to the closure property, as another DEVS model. This allows for hierarchical model construction. A DEVS model that is not constructed as a coupled model is known as an atomic model.

A coupled model can have its own input and output events, as defined by the Xself and Yself sets. Upon receiving an external event, the coupled model has to redirect the input to one or more of its components. In addition, when a component produces an output, it has to be mapped as another component’s input or as an output of the coupled model itself. All these input-output mappings are defined by the Z function.

When models are coupled together, ambiguity arises when there are more than one component scheduled for an internal transition at the same time. The first model to make its internal transition will produce an output that may be translated to an external event being received by another component model that is already scheduled for an internal transition at that time. But then, should this second model process the external transition first with e = ta(s)? or is it the internal transition that should be executed first and then the external transition with e = 0? The way the DEVS formalism solves this problem is by the use of the select function. Only one model of the group of imminent models will be allowed to have e = 0. The other imminent models will be divided into two groups: those that do receive the external output from this model, and those that do not. The first group will execute their external transitions functions with e = ta(s) and the second group will be among the group of imminent models for the next simulation cycle, which may require again the use of the select function to decide which model will execute first.

This tie-breaking approach is a potential source of errors since the serialization may not reflect the correct system’s behavior upon the occurrence of simultaneous events. In addition, the serialization reduces the possibility of a speed up in a parallel environment. For these reasons, the parallel DEVS formalism was revised giving place to the Parallel DEVS formalism [Wai00] [Tro01].

2.1 Cellular Automata

Cellular Automata are used to describe real systems that can be represented as a cell space. A cellular automaton is an infinite regular n-dimensional lattice whose cells can take one finite value. The states in the lattice are updated according to a local rule in a simultaneous and synchronous way. The cell states change in discrete time steps as dictated by a local transition function using the present cell state and a finite set of nearby cells (called the neighborhood of the cell).

[image: image3.png]
Figure 3: Sketch of a Cellular Automaton [Wai96]

When cellular automata are used to simulate complex systems, large amounts of computation time are required, and the use of a fixed interval discrete time base poses restrictions in the precision of the model. The Timed Cell-DEVS formalism [Wai01] tries to solve these problems by using the DEVS paradigm to define a cell space where each cell is defined as a DEVS atomic model. The goal is to build discrete event cell spaces, improving their definition by making the timing specification more expressive.

2.2 The Timed Cell-DEVS formalism

Cell-DEVS defines a cells as DEVS atomic models. A Cell-DEVS atomic model is defined by [Wai01]:

TDC = < X, Y, I, S, , E, delay, d, int, ext, , , D >

where

X

is a set of external input events;

Y

is a set of external output events;

I

represents the model's modular interface;

S

is the set of sequential states for the cell;

is the set of the cell’s state variables;

E

is the set of states for the input events;

delay

is the type of delay: transport or inertial;

d

is the transport delay for the cell;

int

is the internal transition function;

ext

is the external transition function;

is the local computation function;

is the output function; and

D

is the state's duration function.

A cell uses a set of input values E to compute its future state, which is obtained by applying the local computation function . A delay function is associated with each cell, deferring the output of the new state to the neighbor cells. There are two types of delays: inertial and transport delays. When a transport delay is used, the future value will be added to a queue sorted by output time. Therefore, all previous values that were scheduled for output but that have not yet been sent, will be kept. On the contrary, inertial delays use a preemptive policy: any previous scheduled output value, unless the same as the new computed one, will be deleted and the new one will be scheduled. This activation of the local computation is carried by the ext function.

 is defined [Wai02] as s, phase, queue
where:

[image: image4.wmf]S

s

Î

,

phase({active, passive},

queue =
[image: image5.wmf]}

]),

,

1

[

,

(

,

/

)

,

(

),...,

,

{(

0

1

1

¥

È

Î

Ù

Î

Î

Î

"

Ù

¥

<

Î

+

R

S

v

m

i

N

i

m

N

m

v

v

i

i

m

m

s

s

s

,

[image: image6.wmf]¥

È

Î

+

0

R

s

After the basic behavior for a cell is defined, the complete cell space will be constructed by building a coupled Cell-DEVS model:

GCC = < Xlist, Ylist, I, X, Y, n, {t1,...,tn}, N, C, B, Z, select >

where

Xlist

is the input coupling list;

Ylist

is the output coupling list;

I=< η, μx, μy, px, py >
represents the definition of the interface for the modular model whose size is
[image: image7.wmf]¥

<

Î

h

h

,

N

; px is the set of all input ports (η neighbor ports + μx external ports) and py is the set of all output ports (η neighbor ports + μy external ports);

X

is the set of external input events;

Y

is the set of external output events;

n

is the dimension of the cell space;

{t1,...,tn}

is the number of cells in each of the dimensions;

N

is the neighborhood set;

C

is the cell space;

B

is the set of border cells;

Z

is the translation function; and

select

is the tie-breaking function for simultaneous events.

This specification defines a coupled model composed of an array of atomic cells. Each cell is connected to the cells defined in the neighborhood, but as the cell space is finite, either the borders are provided with a different neighborhood than the rest of the space, or they are "wrapped", meaning that cells in one border are connected with those in the opposite one. Finally, the Z function defines the internal and external coupling of cells in the model. This function translates the outputs of m-th output port in cell Cij into values for the m-th input port of cell Ckl. Each output port will correspond to one neighbor and each input port will be associated with one cell in the inverse neighborhood.

[image: image8.png]
Figure 4: Informal definition of a Cell-DEVS model [Wai98]
The select function serves the same purpose as in the original DEVS models: to tie-break between imminent components.

The use of the select function introduces similar problems to those described for coupled DEVS models: lack of parallelism exploitation and a probable inconsistency with the real system. In addition, the timed Cell-DEVS was restricted to one input from each input port. Such restriction do not allow [Wai00]:

· zero-delay transitions

· external DEVS models sending two simultaneous events to the same cell.

Forbidding zero-delay transitions is too restrictive, and so is allowing only one event per external model, specially after the Parallel DEVS formalism allowed a basic model to send more than one event at a time. These were enough reasons to revise Cell-DEVS and the Parallel Cell-DEVS formalism was proposed. This latter formalism will not be described here because it does not directly affect this work. Please refer to [Wai00] and [Tro01] for further information.

3 CD++

The CD++ architecture is based on the proposition made on [Wai97]. Even if the first versions were somehow limited [Bar98], it continued evolving [Rod99c] [Tro01].

The architecture is briefly described in this section. However, not all the components are described. The description will be provided only for the most important components or those affected by this work. For more detailed information refer to [Rod99c].

3.1 Model hierarchy

Models describe the wanted behavior in a simulation. Atomic models are the basis for coupled models which interconnect atomic models creating a larger model. All these models have common characteristics.

A few classes are used to create all these objects during a simulation [Rod99c]. The abstract class Model is the root of this tree. Being an abstract class, it cannot be used to instantiate objects.

[image: image9.wmf]

Model

Atomic

Coupled

CoupledCell

AtomicCell

Transport

DelayCell

Inertial

DelayCell

Figure 5: Model hierarchy [Rod99c]

Note:
This version of CD++ does not support flat coupled cell models. This fact made this type of models become uninteresting for this work, and thus all reference to them has been skipped.

3.1.1 Model

This is the basic abstract class, from which all the models are subclasses. It is responsible for:

· managing all the input and output ports,

· knowing when the next event is scheduled,

· knowing its identifier and its parent model.

3.1.2 Atomic

This abstract specialization of the model class represents the interface of an atomic model. In addition to all the responsibilities inherited from model, it also provides the interfaces for:

· the initialization function,

· the internal and external transition functions,

· the output function,

· changing the model’s state.

3.1.3 AtomicCell

A new abstract class is a specialization of the Atomic class. It provides the interfaces for the cells of a cellular model. Its responsibilities are:

· knowing the local computation function,

· the cell’s neighborhood,

· the available ports,

· the cell’s value.

When an instance of a non-abstract subclass is created, this class will take care of notifying the neighbor cells the cell’s initial value. The neighborChange input port and out output port are created. The rest of the input and output ports are created dynamically as needed. These dynamic ports are stored in two lists named in and output. A local computation function is associated to each input port, in order to allow the cell to have a different behavior when a value arrives through a port.

3.2 Message Passing

Message passing between processors is the basis for the simulation mechanism. There must be as many different massage types as event types in the formalism. Also, each message could carry information specific to the type of event it represents.

As the message passing mechanism is encapsulated, the message distribution policy can be changed without impacting the rest of the modules. The currently chosen policy is FIFO, as the sending of a message will happen only when the model finished processing the previous one. This policy produces a sequential simulation.

Figure 6: Message hierarchy [Rod99c]

3.2.1 Message

This is the root abstract class for all messages. It is responsible for knowing the time of the message and its sender.

3.2.2 InitMessage

This subclass of Message represents the message that the processors receive when the simulation begins. It has no extra information.

3.2.3 InternalMessage

As a specialization of Message, this class indicates to the destination processor that the time for an internal event has arrived. It corresponds to the * message in the DEVS formalism.

3.2.4 ExternalMessage

A subclass of Message that represents the arrival of an external event. It corresponds to the X message in the DEVS formalism. In addition to the information provided by Message, this class includes:

· the port of arrival, and

· the value.

3.2.5 DoneMessage

This specialization of Message represents the message that a processor receives from one of its child processors indicating the time for the child’s next state change. It corresponds to the Done message in the DEVS formalism.

3.2.6 OutputMessage

Another subclass of Message. This one represents the output messages. It corresponds to the Y messages in the DEVS formalism. In addition to the information provided by its superclass, it includes:

· the output port, and

· the value.

3.2.7 MessageAdm

This class does not represent a message, but the encapsulation of the message passing mechanism. It manages the requests for sending messages between processors. Only one instance exists, which is publicly known, and is named SingleMessageAdm. It works by queuing the messages that processors want to send to other processors, until it is said to send the messages.

3.3 Starting the simulation

3.3.1 ParallelMainSimulator

This class is the one that manages the simulator initialization. It is responsible for:

· creating the model tree (includes loading the cells),

· creating the processor tree,

· linking the models,

· providing the external events to the RootCoordinator,

· determination the finish simulation time, and

· starting the simulation using RootCorrdinator’s run method.

There is only one instance of this class. In this case the single instance is managed differently from the other cases. This class has a static method names Instance that returns a reference to the only object of the class.

4 New CD++ Architecture

4.1 Overview

The previous implementation of CD++ had two main limitations: it had no support for state variable, and the set of neighbor ports was fixed.

CD++ had no support for multiple state variables. To work around this problem, modelers needed to use extra planes in their cell space, and create as many new layers as state variables they needed. For instance, when one state variable was needed in a planar cell space, the solution was to create a three-dimensional cell space with two planar layers. The layer 0 (x, y, 0) was used for the cell value, and the other layer (x, y, 1) to store in the upper cell’s value, the lower cell’s state variable’s value [Ame00]. An example of this technique can be seen in 5.2.1. One of the extensions presented in this work removes this restriction. The user can still define multidimensional models representing different phenomena, but each of the planes can include cells with multiple state variables, permitting to define more complex phenomena.

The second limitation mentioned is the fixed set of neighbor ports. The neighbor ports are the ports (for input and output) used to send values from one cell to another, in a coupled cell model. The previous implementation of CD++ had only one port for input and one for output. Both were automatically created together with the cell. These ports were referenced as neighborChange and out, for input and output respectively. It is important to differentiate these ports from those used to receive from, or send to the exterior of the cell coupled model. These latter ports are created automatically in only those cells affected by the arrival of external messages or by those supposed to send output messages.

Back to section 2.2, it can be said that the previous implementation had the following limitations:

[image: image10.wmf]out

p

ange

neighborCh

p

y

x

=

=

=

1

1

1

h

After this modification, the user can define which neighbor ports will be used in the model and is no longer limited to only one.

4.2 Language Extensions

The first step in the way to add state variables and ports to CD++ is to be able to declare them and later reference them in the rules. The specification language has been extended to support this.

4.2.1 State Variables

In this section are described the extensions to the language required to declare and use the state variables.

4.2.1.1 Declaring State Variables

To be able to declare and initialize the state variables, three new keywords have been added to the language: StateVariables, StateValues and InitialVariablesValue. The first one declares the list of state variable existing in every cell. The second one is the set of default initial values for the states variables. And the last one, provides the name of a file where the initial values for some particular cells are stored.

StateVariables: pend temp vol

StateValues: 3.4 22 -5.2

InitialVariablesValue: initial.var

In this example three state variables are declared: pend, temp and vol. Except that in the file initial.var other values are specified for a subset of cells, the state variables of every cell will be initialized with the values 3.4, 22 y -5.2 respectively.

The format for the initial values file is quite simple. Each line references a unique cell, followed by an “equal” sign (=) and the list of initial values for every state variable in the cell. The initial values must be separated by, at least, one space character. The values will be assigned to the state variables following the order in which they are listed in the sentence StateVariables.

(0,0,1) = 2.8 21.5 -6.7

(2,3,7) = 6 20.1 8

The first line will assign to the variable pend of the cell (0,0,1) the value 2.8; to the variable temp of the same cell, the value 21.5; and the value -6.7 to the variable vol of the same cell. The second line will assign respectively the values 6, 20.1 and 8, to the variables pend, temp and vol in the cell (2,3,7).

4.2.1.2 Referencing state variables

The state variables can only be referenced from within the rules that define the cells’ behavior (local computation function). A variable is referenced by its name, as it was declared in the StateVariables sentence, preceded by a dollar sign ($), from any part of a rule.

rule: { (0,0,0) + $pend } 10 { (0,0,0) > 4.5 and $vol < 22.3 }

4.2.1.3 Assigning values to the state variables

The identifier ‘:=’ is used to assign values to a state variable. Any expression returning a numeric value can be placed on the right side of the assignation, but on the left side, there can only be a reference to a state variable.

Contrarily to what happens with the references, the assignations can only be placed in a new part of the rules specifically created for this purpose.

<value> [{ <assignations> }] <delay> <condition>

The new part is optional, and if present, it must be enclosed between curly brackets. The contents is a list of assignations, each one followed by a semi-colon.

rule: { (0,0,0) + 1 } { $temp := $vol / 2; $pend := (0,1,0); }

 10 { (0,1,0) > 5.5 }

In the example, if the condition happens to be true, the variable temp will be assigned half of vol´s value, pend will be assigned the value of the neighbor cell (0,1,0), and vol’s value will remain unmodified. This assignations are executed immediately, which means that they are not delayed, as happens to the output value.

It is important to notice that the assignations are done from left to right. Because of this, the two following rules are not equivalent.

rule: 5 { $vol := 1; $temp := $vol; } 10 { t }

rule: 5 { $temp := $vol; $vol := 1; } 10 { t }

After executing the first rule, both vol and temp will have the value 1. On the contrary, when the second rule is executed, vol will have the value 1, but temp will have vol´s previous value.

4.2.2 Neighbor Ports

This section describes the extensions done to the language in order to support the use of multiple neighbor ports. In addition to how to declare and reference them, this section include some extra modification needed to keep the language coherency.

4.2.2.1 Port Declaration

Only one keyword was added to the language: NeighborPorts. This keyword takes as its argument a list of neighbor port names. Notice that only one keyword was added, but there are two lists of ports (px and py). The input and output neighbor ports share the names, making possible to calculate automatically the influences: an output port from a cell will influence exclusively the input port with the same name in every cell in its neighborhood.

NeighborPorts: alarm weight number

In this example three ports are declared and their names are alarm, weight and number. All the cells will have three input neighbor ports with these names and three more neighbor ports with the same names but dedicated to output values. When a cell outputs a value through one of these ports, it will be received by all its neighbor cells through their input ports with the same name.

If this keyword is not present in the model description, then the simulator will work in compatibility mode, behaving as the previous implementation.

4.2.2.2 Reading Values Arrived Through The Input Ports

A cell can read the value sent by one of its neighbors. To do so, it will be necessary to specify which port the value must have arrived through.

Before this modification was done, because the only available input neighbor port was neighborChange, there was no need to name it, it was enough to name the cell in which the modeler was interested. Currently the modeler must name both the cell and port through which the value must have arrived. The way to do it is to reference the cell in the same way as before, but now the input port reference must follow, separated by a tilde (~):

rule : 1 100 { (0,1)~alarm != 0 }

4.2.2.3 Sending Values Through The Output Ports

An important modification has been done here. So far, a rule looked like this:

<value> [<assignations>] <delay> <condition>

(Notice the assignations part introduced in 4.2.1.3).

The <value> part used to be an expression that evaluated to a single value which was sent through the only output port. As there are currently many possible ports through which the value can go out, the desired port will have to be specified. The way to express this output functions is by “assigning” the values to the output neighbor ports. The new format for the rules is now:

<port_assignations> [<assignations>] <delay> <condition>

Similarly to the assignations part, the <port_assignations> part of the rule must be enclosed between curly brackets. In this case, the port is referenced preceded by the tilde (~), but the cell reference should no be included. As it can be necessary to output values through many ports at the same time, the “assignation” can be used as many times as needed. Each one must be followed by a semi-colon.

rule: { ~alarm := 1; ~weight := (0,-1)~weight; } 100 { (0,1)~number > 50 }

Keep in mind that from now on, the <port_assignations> part no longer evaluates to a single value, but is a sequence of output operations.

The preexisting function send() is still available. This function sends values out of the coupled model and not just out of the cell to its neighbors. Something similar happens with the function portref() which reads values from outside the coupled model. Both these functions can still be used and even mixed with the new ones.

rule: { ~alarm := 0; send(alert, 1); } 100 { portref(alert) = 0 and ~alarm != 0 }

4.2.2.4 Collateral effects

As a result of this modification, some extra changes to the language were needed to keep it coherent.

The most important change happened to the StateCount function. This function used to take a value as its argument and returned the number of neighbor cells that had exported that value through their out port. In other words, it counted the number of times the argument arrived through the input neighbogChange from different neighbor cells. Because of the many possible ports that a cell can now have, the function will now take a second argument which is the name of the port. If the second argument is not present, the function will execute in compatibility mode and will consider that the port is out.

rule: { ~alarm := 1; } 100 { statecount(1, ~alarm) >= 4 }

However, some functions kept their semantics intact. This is the case of the functions TrueCount, FalseCount and UndefCount. The rational for these functions not accepting a port name is that the changes needed implied a reorganization on the parser and the dictionary internally used to recognize them, and because their behavior can be simply emulated using the StateCount function. The following example show how to replace the function UndefCount.

rule: { ~alarm := 1; } 100 { statecount(?, ~alarm) >= 7 }

Another important change is that a cell’s initial value, however it is introduced in the model, will affect all the cell’s neighbor ports.

4.3 Modifications to the Simulation Mechanism

Even if both modification have a small common part, they are mainly separate. That is why they are analyzed separately in this work, except for the common part which is described first.

4.3.1.1 Modifications to the grammar

After having modified the lexical analyzer, it was the turn for the grammar. The changes are described using top-down approach. The whole grammar can be found in the Appendix A.

4.3.1.1.1 Rule

Rule :

 AssignResult Resultado '{' BoolExp '}'

 | AssignResult '{' AssignSet '}' Resultado '{' BoolExp '}' ;

The new language rule format is recognized, but in a way that also accepts rules in the old format, assuring the compatibility of the models.

Two changes can be seen:

· The <value> part is now an AssignResult and no longer a Resultado, and

· the optional AssignSet is introduced.

Two grammar rules were needed instead of just one to solve an ambiguity problem.

4.3.1.1.2 AssignResult

AssignResult :

 Resultado

 | '{' PortSendSet '}' ;

This rule recognizes two sub-trees. The sub-tree PortSendSet is a list of output operations through output ports. The sub-tree Resultado is only recognized for compatibility reasons.

4.3.1.1.3 PortSendSet

PortSendSet :

 /* Empty */

 | PortSend PortSendSet;

The list of outputs to neighbor ports can be empty or an output operation followed by a list of outputs.

4.3.1.1.4 PortSend

PortSend :

 SEND '(' PORTNAME ',' RealExp ')' ';'

 | PORTNAME OP_ASSIGN RealExp
';' ;

An output operation can be either a send function with a port name and a value as arguments, or a neighbor port assignation. Both cases must be finished by a semi-colon (;).

Except for RealExp, all the components of the rule are basic token provided by the lexical analyzer.

4.3.1.1.5 RealExp

RealExp :

 IdRef

 …

This rule was not affected itself, but it did one of its components: IdRef.

4.3.1.1.6 IdRef

IdRef :

 CellRef OptPortName

 …

This rule recognizes the references to identifiers. In particular references to cells (CellRef). Now the cells can be followed by a reference to the port (OptPortName) whose value we are interested in. Because the compatibility must be assured, this second part of the rule is optional.

4.3.1.1.7 OptPortName

OptPortName :

 /* Empty */

 | PORTNAME ;

A reference to the port is just a token representing its name. However, as this rule is optional, also an empty value is accepted.

4.3.1.1.8 AssignSet

AssignSet :

 /* Empty */

 | Assign AssignSet ;

This rule is a component of the rule Rule (4.3.1.1.1). It represents a list of assignations to state variables.

It can be empty or an assignation operation followed by a list of assignations to state variables.

4.3.1.1.9 Assign

Assign :

 STVAR_NAME OP_ASSIGN RealExp
';' ;

This rule recognizes the operation that assigns a value (RealExp, 4.3.1.1.5) to a state variable reference. Both STVAR_NAME and OP_ASSIGN are basic token recognized by the lexical analyzer.

4.3.2 Multiple neighbor Ports

4.3.2.1 Overview

Adding multiple neighbor ports was more complex than adding state variables. This part of the modification can be divided into three subtasks.

4.3.2.1.1 Addition of New Ports to the Cells

Before this modification was implemented, each cell had only two neighbor ports. These ports were named neighborChange (for input) and out (for output). The latter port influencing the former port in all the neighbor cells. This modification replaced these two ports by two lists of ports and the list of influences were extended so that a port in a cell would influence the port with the same name in all the neighbor cells.

Since the AtomicCell class in the previous implementation included two ports as members, one for input and one for output, there was no chance to use other ports for neighbor communications. Nowadays, the two ports in the AtomicCell class have been replaced by two list of ports. These list are instances of the class PortList (this class already existed and was used for the coupled model ports).

Each cell receives from the coupled model (its creator) a list with the names of the ports to be created. From each name, two ports are created, one for input and one for output. As both input and output ports share the same name, the port names are internally prefixed in_ or out_ to differentiate them. In addition to these ports, the two default neighborChange and out ports are also created (which don’t need to be prefixed). These two ports are created for compatibility reasons, to support the old models, but nothing prevents the modeler from using them as any other neighbor port.

[image: image11.wmf]

Atomic

Cell

Neighbor

Change

Out

In 1

In 2

In

k

Out1

Out2

Out

m

in_port 1

in_port

n

out_port 1

out_port

n

Figure 7: Structure of an atomic cell
Similarly to the historic ports, the new ports will generate Y messages and receive X messages, and because the messages already included the port name, there is no need to modify the message format.

The creation of the ports is done in AtomicCells’s method createNCPorts(). The coupled model receives the list of port names from the ParallelMainSimulator when the later calls CoupledCell::createCells() from its method loadCells().
4.3.2.1.2 Extended Neighborhood Values

In the previous implementation, each cell had an object belonging to the class NeighborhoodValue, which was used to store the values arriving from the neighbor cells through the input port neighborChange (the only port available at that moment). This class used internally an object of type NeighborList, which was a map using a cell position as the key to the value. This defined a table of <cell position, value>.

Now that the number of ports is no longer limited to one, only one value for each neighbor cell is not enough. The cell must be capable of storing, for each neighbor cell, as many values as neighbor ports the cells have. To achieve this, it is necessary to extend the table used in the previous implementation to keep, not just one value, but a value for each port. The extended table can now be seen as <cell position, <port name, value>>.

[image: image12.wmf]

port n

...

port 1

neighborChange

NeighborValues

neighborChange

NeighborValues

(

-

1,

-

1) (

-

1, 0) (

-

1,1)

(0,

-

1) (0, 0) (0, 1)

(1,

-

1)

 (1, 0) (1, 1)

(

-

1,

-

1) (

-

1, 0) (

-

1,1)

(0,

-

1) (0, 0) (0, 1)

(1,

-

1) (1, 0) (1, 1)

(a)
(b)

Figure 8: NeighborValues Structure: (a) In the previous implementation

(b) after the modification
Because of this, the class NeighborList was extended to store a map of port names and values, instead of a single value. It was also necessary to update all the methods of this class that accessed the values (either for reading or writing) so that they accept the port name as parameter.

4.3.2.1.3 Extra Messages

The message format and type was not modified. However, it is worth noticing that when the new ports are used, the number of messages circulating between cells increases.

The default ports (neighborChange and out) kept their historic function: they are still used for administrative communications with the coupled model, such as receiving and sending the I, @, * and D messages, exactly in the same way it was done before.

When a cell’s init function is executed, it used to send the cell’s current value to the coupled model in a Y message, followed by a D message indicating the end of the operation. Now that many ports can be found in a cell, the init function will send a Y message for each port in the cell, carrying the corresponding value; and concluding with the D message to close the operation.

In a similar way, when the local transition function is executed, a cell will send one Y message for each value being exported. The coupled model will convert those messages into X messages and will deliver them to the cell’s neighbors.

4.4 Modifications to drawlog

drawlog is an external application used to generate a visual representation of the simulation. It takes as its input the log files generated by CD++. Because having multiple neighbor ports generates new output messages in the log files, it was necessary to update drawlog, to be able to deal with them. A new optional parameter was added to this tool: -n<port>.

$ drawlog -h

drawlog -[?hmtclwp0n]

where:

?
Show this message

h
Show this message

m
Specify file containing the model (.ma)

t
Initial time

i
Time interval (After the initial time, draw after every time interval)

c
Specify the coupled model to draw

l
Log file containing the output generated by SIMU

w
Width (in characters) used to represent numeric values

p
Precision used to represent numeric values (in characters)

0
Don't print the zero value

f
Only cell values on a specified slice in 3D models

n
Specify the neighbor port to show (default: out)

If it is not present, drawlog will behave in compatibility mode, drawing the changes exported by the port out of the cells. When it is present, it takes as argument the name of the port to draw.

5 Application Examples

This section shows some examples of models that where adapted to use the new capabilities of CD++. The full code of those examples can be found in the appendixes, while in this section there are only the code extracts necessary to understand how those conversion were achieved.

5.1 Generic Comparison – Life Game

For a generic comparison it was decided to use the Life Game, a model that needed very few modifications to use CD++ new capabilities.

Five examples were tested:

1. Original: the unmodified model using the unmodified simulator,

2. Compatible: the unmodified model using the new simulator,

3. State Variables: the model modified to use state variables using the new simulator,

4. Default ports: the model modified to use explicitly the default neighbor ports, and

5. Non-default ports: the model modified to use non-default neighbor ports.

All the test cases had cell spaces of 21 x 21 cells and started with the same initial state. All these simulations were executed three times on the same computer with no external load. The model descriptions can be found in Appendix C – Life Game.

What was observed in these tests was the results of the simulation, which were requested to be equivalents; the duration of the simulations; and the percentage of CPU usage. To normalize the results and verify their equivalence, the log files were processed by drawlog: equivalent result should produce the same “visualization.” As expected, all the test produced the same “visualization.”

The following table show the results from the test runs. Each cell shows the simulation duration expressed in seconds, and the CPU load expressed as a percentage.

	
	1st Run
	2nd Run
	3rd Run
	Average

	
	Duration
	Load
	Duration
	Load
	Duration
	Load
	Duration
	Load

	Original
	6.70
	87
	6.73
	87
	6.68
	88
	6.70
	87.33

	Compatible
	9.95
	86
	9.62
	89
	9.78
	87
	9.78
	87.33

	State Vars
	9.22
	91
	9.77
	86
	9.24
	90
	9.41
	89.00

	Def. Ports
	9.61
	89
	9.60
	89
	9.65
	89
	9.62
	89.00

	Non-def Ports
	10.00
	90
	10.08
	89
	10.35
	87
	10.14
	88.66

A comparison of these values can be seen in the following graphs. The first one shows the simulation durations and the second one shows the percentage of CPU load.

[image: image13.wmf]0

2

4

6

8

10

12

1st run

2nd run

3rd run

Average

Original

Compatible

State Variables

Default ports

Non-default ports

Figure 9: Comparison of the duration times for life game

[image: image14.wmf]83

84

85

86

87

88

89

90

91

1st run

2nd run

3rd run

Average

Original

Compatible

State Variables

Default ports

Non-default ports

Figure 10: Comparison of the CPU loads for the life game

From these results, it can be concluded that the original simulator performs better than the new one. As strange as it can seem, it is natural: with the new capabilities came an increased overhead. Between the Original test and the Compatible test, the overhead increased about 45%, but also it must be noticed that the Life Game simulation did not need the new capabilities and their usage was force in an unnatural way.

5.2 State variables – Fire Spread

The current version of the Fire Spread model [Aie01] does not use state variables because they were not available at the moment of its writing. Instead it uses a three-dimensional cell space. Two dimensions are used to represent the field where the fire spreads, whilst the third one is used for technical reasons: the need to keep two values in each cell. As it was impossible to have more than one value in a cell, the modelers stacked cells to store one value in each one, and adapted the model to treat them as if they were just one cell. As of today, the cell space used is of n x m x 2, where n x m is the dimension of the simulated field. The lower layer of cells is used to store the temperature and the higher layer to store the ignition time. The models can be seen in Appendix B – Fire Spread.

5.2.1 Model Conversion

Using the new simulator, which supports multiple state variables, this trick is not longer needed. The temperature is stored as the cell’s value and the ignition time in a state variable. In the new model this variable is named ti because it is the name that the original modelers used to reference this value in the higher layer of cells. The temperature is stored in the cell’s value because it must be passed to the neighbor cells, while the ti value is only used internally to the cell. In this way, now the model has only two dimensions.

The first step was to add the state variable ti, to remove the higher layer of cells and to replace all the references to this layer by references to the state variable. In a simpler model this could have been enough, but it was not the case here. A problem appeared when converting the rules “Burning” and “ti”. These are the original rules:

%Burning

rule : { #macro(burning) } 1 { cellpos(2) = 0 AND (((0,0,0) > #macro(burning) AND (0,0,0) > 333) OR (#macro(burning)>(0,0,0) AND (0,0,0) >= 573)) AND (0,0,0) != 209 }

%ti

rule : { time / 100 } 1 { cellpos(2) = 1 AND (0,0,-1) >= 573 AND (0,0,0) = 1.0 }

The “ti” rule is applied only to the higher layer, while the “burning” rule is applied to the lower layer. To make this happen the conditions include a clause specifying to which layer they apply. This clause is cellpos(2)=x, which disappeared when the references to the higher layer were removed:

%Burning

rule : { #macro(burning) } 1 { (((0,0) > #macro(burning) AND (0,0) > 333) OR (#macro(burning) > (0,0) AND (0,0) >= 573)) AND (0,0) != 209 }

%ti

rule : { (0,0) } { $ti := time / 100; } 1 { (0,0) >= 573 AND $ti = 1.0 }

The problem now is that in some cases, both conditions can be true at the same time. For instance, when $ti = 1.0, (0,0) >=573 and #macro(burning) > (0,0).

To solve this problem, the rule “burning” was factorized into two simpler rules, eliminating the OR operation:

%Burning

rule : { #macro(burning) } 1 { (0,0) > #macro(burning) AND (0,0)> 333 AND (0,0) != 209 }

rule : { #macro(burning) } 1 { #macro(burning) > (0,0) AND (0,0)>= 573 AND (0,0)!= 209 }

Now, it is possible to see that in both rules it is requested that (0,0) != 209. But it is also requested that (0,0) is higher than a value which is higher than 209. Then:

[image: image15.wmf]209

)

0

,

0

(

573

)

0

,

0

(

209

)

0

,

0

(

333

)

0

,

0

(

¹

Þ

³

¹

Þ

>

From this can be concluded that (0,0) != 209 is a redundant request, and so it was removed.

%Burning

rule : { #macro(burning) } 1 { (0,0) > #macro(burning) AND (0,0) > 333 }

rule : { #macro(burning) } 1 { #macro(burning) > (0,0) AND (0,0) >= 573 }

This removal is not mandatory. The model will behave the same if keep this condition is kept, but removing it will simplify the following operations.

Now, the rule “ti” only overlaps with the second part of the rule “burning”, so they were merged. This generated three rules that replace the previous two:

%Burning and ti

rule : { #macro(burning) } 1 { (0,0) > #macro(burning) AND (0,0) > 333 }

rule : { #macro(burning) } 1 { #macro(burning) > (0,0) AND (0,0) >= 573 AND $ti != 1.0 }

rule : { #macro(burning) } { $ti := time / 100; } 1

 { #macro(burning) > (0,0) AND (0,0) >= 573 AND $ti = 1.0 }

rule : { #macro(burning) } { $ti := time / 100; } 1

 { #macro(burning) < (0,0) AND (0,0) >= 573 AND $ti = 1.0 }

The third and fourth part of the rule modify ti’s value when(0,0) >= 573 and $ti = 1.0, as requested by the original rule ti, regardless of the value of #macro(burning).

The second and third part set #macro(burning) as the cell’s new value when (0,0) >= 573 and #macro(burning) > (0,0), as requested by the original rule “burning”.

However, after these modifications, the first and fourth part overlap when $ti = 1.0 because
[image: image16.wmf]333

)

0

,

0

(

573

)

0

,

0

(

>

Þ

³

. This means that the first part’s condition must be restricted to prevent this collision to happen:

%Burning

rule : { #macro(burning) } 1 { (0,0) > #macro(burning) AND (0,0) > 333 AND

 ((0,0) < 573 OR $ti != 1.0) }

rule : { #macro(burning) } 1

 { #macro(burning) > (0,0) AND (0,0) >= 573 AND $ti != 1.0 }

rule : { #macro(burning) } { $ti := time / 100; } 1

 { #macro(burning) > (0,0) AND (0,0) >= 573 AND $ti = 1.0 }

rule : { #macro(burning) } { $ti := time / 100; } 1

 { #macro(burning) < (0,0) AND (0,0) >= 573 AND $ti = 1.0 }

Now the first rule’s condition is true only when (0,0) < 573 or $ti != 1.0, which makes the fourth rule’s condition false.

However, this new model is far from being “optimal” in its execution. To shorten the execution time, the number of rules can be reduced and the clauses in the rules’ condition can be reordered.

To reduce the number of rules, some of them can be merged. For instance the following rules are very similar:

rule : { #macro(burning) } 1

 { #macro(burning) > (0,0) AND (0,0) >= 573 AND $ti != 1.0 }

rule : { #macro(burning) } { $ti := time / 100; } 1

 { #macro(burning) > (0,0) AND (0,0) >= 573 AND $ti = 1.0 }

It can be seen that they only differ in the required value for $ti, and in the assignation (or not) of a new value to $ti. These two rules can be merged in just one rule that will assign the new value to $ti depending on $ti’s original value:

rule : { #macro(burning) }

 { $ti := if($ti = 1.0, time / 100, $ti); } 1

 { (0,0) >= 573 AND #macro(burning) >= (0,0) }

For the second step it will be used the fact that CD++ is capable of using short-cut evaluation (in the same style as the C programming language). When the left expression of an and operation evaluates to false, the whole operation will evaluate to false, so it is useless to evaluate the right expression. Similarly, when the left expression of an or operation evaluates to true, the whole operation will evaluate to true, and so there is no need to evaluate the right expression of the operation.

By simply reordering the operations and their parameter in the rules’ condition, a lot of execution time can be saved. The trick is to make execute first the simplest conditions, while leaving to the end the more complex ones. Moving to the left the simplest operation will make the deal.

%Unburned

rule : { #macro(unburned) } 1 { (0,0) != 209 AND (0,0) < 573 AND

 (time <= 20 OR #macro(unburned) > (0,0)) }

%Burning and ti

rule : { #macro(burning) } 1 { (0,0) > 333 AND

 ((0,0) < 573 OR $ti != 1.0) AND (0,0)>#macro(burning) }

rule : { #macro(burning) }

 { $ti := if($ti = 1.0, time / 100, $ti); } 1

 { (0,0) >= 573 AND #macro(burning) >= (0,0) }

rule : { #macro(burning) } { $ti := time / 100; } 1

 { $ti = 1.0 AND (0,0) >= 573 AND #macro(burning) < (0,0) }

%Burned

rule : { 209 } 100 { (0,0) != 209 AND (0,0) <= 333 AND (0,0) > #macro(burning) }

5.2.2 Comparison

This section compares the three models’ performance. All of them were executed with the same initial values and until the simulation finished by itself.

The first great difference is the visualization of the results using the tool drawlog. The original model shows the information for both layers:

Line : 1 - Time: 00:00:00.000

 0 1 2 3 4 5 0 1 2 3 4 5

 +------------------------+ +------------------------+

 0| 300 300 300 300 300 300| 0| 0 0 0 0 0 0|

 1| 300 600 600 300 300 300| 1| 0 1 1 0 0 0|

 2| 300 600 600 300 300 300| 2| 0 1 1 0 0 0|

 3| 300 300 300 300 300 300| 3| 0 0 0 0 0 0|

 4| 300 300 300 300 300 300| 4| 0 0 0 0 0 0|

 5| 300 300 300 300 300 300| 5| 0 0 0 0 0 0|

 +------------------------+ +------------------------+

While the new models using state variables only show one layer, the only one existing:

Line : 1 - Time: 00:00:00.000

 0 1 2 3 4 5

 +------------------------+

 0| 300 300 300 300 300 300|

 1| 300 600 600 300 300 300|

 2| 300 600 600 300 300 300|

 3| 300 300 300 300 300 300|

 4| 300 300 300 300 300 300|

 5| 300 300 300 300 300 300|

 +------------------------+

For this comparison, four examples were tested:

1. Original: the unmodified model using the unmodified simulator,

2. Compatible: the unmodified model using the new simulator,

3. State Variables: the model modified to use state variables, and

4. Optimized: the optimized model modified to use state variables.

All the test cases had cell spaces of 6 x 6 cells and started with the same initial state. All these simulations were executed three times on the same computer with no external load. What was observed in these tests was the duration of the simulations and the percentage of CPU usage.

The following table shows the results from the test runs. Each cell shows the simulation duration expressed in seconds, and the CPU load expressed as a percentage.

	
	1st Run
	2nd Run
	3rd Run
	Average

	
	Duration
	Load
	Duration
	Load
	Duration
	Load
	Duration
	Load

	Original
	66.42
	74
	67.94
	72
	66.13
	75
	66.83
	73.67

	Compatible
	86.53
	80
	86.69
	80
	87.19
	80
	86.80
	80.00

	State Vars
	84.03
	81
	84.78
	80
	84.88
	80
	84.56
	80.33

	Optimized
	63.80
	75
	64.60
	74
	64.07
	75
	64.16
	74.67

A comparison of these values can be seen in the following graphs. The first one shows the simulation durations and the second one shows the percentage of CPU load.

[image: image17.wmf]0

20

40

60

80

100

1st run

2nd run

3rd run

Average

Original

Compatible

State Variables

Optimized

Figure 11: Comparison of the durations for Fire Spread using State Variables

[image: image18.wmf]66

68

70

72

74

76

78

80

82

1st run

2nd run

3rd run

Average

Original

Compatible

State Variables

Optimized

Figure 12: Comparison of the CPU loads for Fire Spread using State Variables

It can be concluded from these results that the original simulator performed better that the new simulator for the compatible model and the un-optimized model using state variables, but in comparison with the Life Games results (see 5.1), this time the increase was just 9%.

On the contrary, the optimized model performed slightly better than the original simulator. The reason for this is that, this model has half of the cells than the original model (one layer was removed by using state variables), and because of the optimizations.

In conclusion, models using multiple state variables take as much time to simulate as the previous simulator; but now models are more natural because there is no need for an inexplicable second layer of cells, which increases the ease of writing, reading and maintaining; and use less resources (such as memory and file descriptors), because there are half of the cells to manage.

5.3 Multiple neighbor Ports – Fire Spread

As explained in 5.2, the Fire Spread model stacked cell layers to simulate the storage of multiple values in one cell. This problem can also be solved by using multiple neighbor ports.

5.3.1 Model Conversion

The conversion from the original Fire Spread model to the one using neighbor ports is very similar to the conversion to use state variables exposed in 5.2.1. Because of this, the conversion will not be explained step by step, but only the specific differences.

In this case, two ports are declared: temp and ti.

neighborports: temp ti

The port temp exports the cell’s temperature (the old lower layer), while the port ti exports the ignition time (the higher layer).

The rules generated are equivalent to those used in the state variables model, but instead they use ports:

%Unburned

rule : { ~temp := #macro(unburned); } 1

 { ((#macro(unburned)) > (0,0)~temp OR time <= 20) AND

 (0,0)~temp < 573 AND (0,0)~temp != 209 AND (0,0)~temp > 0 }

%Burning and ti

rule : { ~temp := #macro(burning); } 1

 { (0,0)~temp > #macro(burning) AND (0,0)~temp > 333 AND ((0,0)~temp < 573 OR

 (0,0)~ti != 1.0) }

rule : { ~temp := #macro(burning); } 1

 { #macro(burning) >= (0,0)~temp AND (0,0)~temp >= 573 AND (0,0)~ti != 1.0 }

rule : { ~temp := #macro(burning); ~ti := time / 100; } 1

 { #macro(burning) >= (0,0)~temp AND (0,0)~temp >= 573 AND (0,0)~ti = 1.0 }

rule : { ~temp := #macro(burning); ~ti := time / 100; } 1

 { #macro(burning) < (0,0)~temp AND (0,0)~temp >= 573 AND (0,0)~ti = 1.0 }

%Burned

rule : { ~temp := 209; } 100 { (0,0)~temp > #macro(burning) AND (0,0)~temp <= 333 AND

 (0,0)~temp != 209 AND (0,0)~temp > 0 }

%Stay Burned or constant

rule : { } 1 { t }

As the initial value for both ports is the same and this model needs different values, it was solved by assigning initial value that will never appear during the simulation and adding two rules that generate the real initial state when the cell has this special values.

The special values are –1 and –2. Thus the initial value for the ports is -1and the cells that start with a different initial value will have -2.

initialValue : -1

initialCellsValue : init.val

The contents of the file init.val are:

(1,1) = -2

(2,1) = -2

(1,2) = -2

(2,2) = -2

And the rules to generate the real initial state from this values are:

%initialization

rule : { ~temp := 300; ~ti := 0; } 1 { (0,0)~temp = -1 and (0,0)~ti = -1 }

rule : { ~temp := 600; ~ti := 1; } 1 { (0,0)~temp = -2 and (0,0)~ti = -2 }

These rules are placed in the last places to minimize their interference counting on the fact that CD++ evaluates the rules in order.

This model can be optimized in a way similar to that used for the state variables model. These are the rules after the optimization.

%Unburned

rule : { ~temp := #macro(unburned); } 1

 { (0,0)~temp > 0 AND (0,0)~temp != 209 AND (0,0)~temp < 573 AND (time <= 20 OR

 (#macro(unburned)) > (0,0)~temp) }

%Burning and ti

rule : { ~temp := #macro(burning); } 1

 { (0,0)~temp > 333 AND ((0,0)~temp < 573 OR (0,0)~ti != 1.0) AND

 (0,0)~temp > #macro(burning) }

rule : { ~temp := #macro(burning);
 ~ti := if((0,0)~ti = 1.0, time / 100, (0,0)~ti); } 1

 { (0,0)~temp >= 573 AND #macro(burning) >= (0,0)~temp }

rule : { ~temp := #macro(burning); ~ti := time / 100; } 1

 { (0,0)~ti = 1.0 AND (0,0)~temp >= 573 AND #macro(burning) < (0,0)~temp }

%Burned

rule : { ~temp := 209; } 100 { (0,0)~temp != 209 AND (0,0)~temp > 0 AND

 (0,0)~temp <= 333 AND (0,0)~temp > #macro(burning) }

5.3.2 Comparison

This section compares the three models’ performance. All of them were executed with the same initial values and until the simulation finished by itself.

For this comparison, four examples were tested:

5. Original: the unmodified model using the unmodified simulator,

6. Compatible: the unmodified model using the new simulator,

7. Ports: the model modified to use neighbor ports, and

8. Optimized: the optimized model modified to use neighbor ports.

All the test cases had cell spaces of 6 x 6 cells and started with the same initial state. All these simulations were executed three times on the same computer with no external load. What was observed in these tests was the duration of the simulations and the percentage of CPU usage. The Compatible model is the same as for the state variables example. It was re-used here to easy the comparison.

The following table shows the results from the test runs. Each cell shows the simulation duration expressed in seconds, and the CPU load expressed as a percentage.

	
	1st Run
	2nd Run
	3rd Run
	Average

	
	Duration
	Load
	Duration
	Load
	Duration
	Load
	Duration
	Load

	Original
	66.42
	74
	67.94
	72
	66.13
	75
	66.83
	73.67

	Compatible
	86.53
	80
	86.69
	80
	87.19
	80
	86.80
	80.00

	Ports
	81.30
	79
	81.11
	80
	80.90
	80
	80.10
	79.67

	Optimized
	65.41
	73
	63.04
	76
	64.92
	73
	64.46
	74.00

A comparison of these values can be seen in the following graphs. The first one shows the simulation durations and the second one shows the percentage of CPU load.

[image: image19.wmf]0

10

20

30

40

50

60

70

80

90

1st run

2nd run

3rd run

Average

Original

Compatible

Ports

Optimized

Figure 13: Comparison of the durations for Fire Spread using Neighbor Ports

[image: image20.wmf]68

70

72

74

76

78

80

1st run

2nd run

3rd run

Average

Original

Compatible

State Variables

Optimized

Figure 14: Comparison of the CPU loads for Fire Spread using Neighbor Ports

It can be concluded from these results that, in a similar way to what happened with the state variables, the original simulator performed better that the new simulator for the compatible model and the un-optimized model using neighbor ports. In this case the increase in duration was about 9%.

Again, the optimized model performed slightly better than the original simulator. The reason for this is that, this model has half of the cells than the original model (one layer was removed by using state variables), and because of the optimizations.

As with the state variables, models using multiple neighbor ports take as much time to simulate as the previous simulator; but now models are more natural because there is no need for an inexplicable second layer of cells, which increases the ease of writing, reading and maintaining; and use less resources (such as memory and file descriptors), because there are half of the cells to manage.

6 Conclusions

The new implementation of CD++ was presented. This implementation includes two new features that were missing so far. These features are state variables and multiple neighbor ports. To achieve this, the state of the cells was extended to include a set of state variables and their values, and the only value arriving from neighbor cells was replaced by a set of values arriving through different ports.

These new features add great power to the specification language, and thus to the simulator; simplifying the modeling task. But with every improvement there is always a price to be paid. The price is an increased overhead required for the management of these features, making the simulations longer. It was also shown that when the model is optimized, this overhead can be nullified and even inversed, but this means that modelers will have to pay more attention to model optimization.

Nevertheless, the models can now be written more clearly, without the need of tricks like extra layers of cells; and their simulation consume less memory and file descriptors (than those models with extra cell layers), which allow for larger cell spaces to be simulated.

There are a few topics were CD++ can be improved:

7 References

[Ame00]
Ameghino, J.; Wainer, G. “Application of the Cell-DEVS Paradigm Using N-CD++”. In Proceedings of the 32nd SCS Summer Computer Simulation Conference. Vancouver, Canada. 2000.

[Aie01]
Aiello, A.; Innocenti, E.; Muzy, A.; Santucci, J.; Wainer, G. “Comparing Simulation Methods for Fire Spreading Across a Fuel Bed”. Computer Modeling, University of Corsica. 2001.

[Bar98]
Barylko, A.; Beyoglonián, J.; Wainer, G. “CD++: una herramienta de implementación de modelos Cell-DEVS binarios”. Informe Técnico 98-006, Departamento de Computación, FCEN, Universidad de Buenos Aires. 1998.

[Rod99a]
Rodríguez D.; Wainer G, “New Extensions to the CD++ tool”. In Proceedings of SCS Summer Multiconference on Computer Simulation. 1999.

[Rod99b]Rodríguez D. “Implementación de modelos Cell-DEVS n-dimensionales – Informe Científico”. Departamento de Computación, FCEN, Universidad de Buenos Aires. 2000.

[Rod99c]
Rodríguez D. “Implementación de modelos Cell-DEVS n-dimensionales – Informe Técnico”. Departamento de Computación, FCEN, Universidad de Buenos Aires. 2000.

[Tro01]
Troccoli, A. “Parallel DEVS and Cell-DEVS models”. M. Sc. Thesis, Departamento de Computación, FCEN, Universidad de Buenos Aires. 2001.

[Wai96]
Wainer, G. “Introducción a la Simulación de Eventos Discretos”. Informe Técnico 96-005, Departamento de Computación, FCEN, Universidad de Buenos Aires. 1996.

[Wai97]
Wainer, G.; Giambiasi, N.; Frydman, C. “An Environment for Cellular DEVS Model Simulation”. In Proceedings of the SCS European Multiconference on Simulation. Istanbul, Turkey. 1997.

[Wai00]
Wainer, G. “Improved Cellular Models with Parallel Cell-DEVS”. In transactions of the Society for Computer Simulation. 2000.

[Wai01]
Wainer, G.; Giambiasi, N. “Timed Cell-DEVS: Modeling and Simulation of Cell Spaces”. In Discrete Event Modeling & Simulation: Enabling Future Technologies. Springer-Verlag. 2001.

[Wai02]
Wainer, G.; Giambiasi, N. “N-dimensional Cell-DEVS”. In Discrete Events Systems: Theory and Applications, Kluwer, Vol. 12 N° 1, January 2002. pp 135-157.

[Zei00]
Zeigler, B.; Kim, T.; Praehofer, H. "Theory of Modeling and Simulation: Integrating Discrete Event and Continuous Complex Dynamic Systems". Academic Press. 2000.

8 Appendix A - Grammar

RuleList = Rule | Rule RuleList

Rule = AssignResult Result { BoolExp }
 | AssignResult { AssignSet } Result { BoolExp }
AssignResult = Result | { PortSendSet }
Result = Constant | UNDEF | { RealExp }
BoolExp = BOOL | (BoolExp) | RealRelExp | NOT BoolExp

 | BoolExp BOOL_OP

RealRelExp = RealExp REL_OP RealExp

 | COND_REAL_FUNC (RealExp)
RealExp = IdRef | (RealExp) | RealExp OPER RealExp

IdRef = CellRef OptPortName | Constant | Function

 | UNDEF | PORTREF (PORTNAME)
 | SEND (PORTNAME , RealExp)
 | CELLPOS (RealExp) | STVAR_NAME

OptPortName = /* Empty */ | ~ PORTNAME

AssignSet = /* Empty */ | Assign AssignSet

Assign = STVAR_NAME ASSIGN_OP RealExp
 ;
PortSendSet = /* Empty */ | PortSend PortSendSet

PortSend = SEND (PORTNAME , RealExp) ;
 | ~ PORTNAME ASSIGN_OP RealExp ;
Constant = INT | REAL | CONSTFUNC

Function = COUNT

 | STATECOUNT (RealExp OptParamPort)
 | UNARY_FUNC (RealExp)
 | BINARY_FUNC (RealExp , RealExp)
 | WITHOUT_PARAM_FUNC_TIME

 | WITHOUT_PARAM_FUNC_RANDOM

 | UNARY_FUNC_RANDOM (RealExp)
 | BINARY_FUNC_RANDOM (RealExp , RealExp)
 | COND3_FUNC (BoolExp , RealExp , RealExp)
 | COND4_FUNC (BoolExp , RealExp , RealExp , RealExp)
OptParamPort = /* Empty */ | , ~ PORTNAME

CellRef = (Tuple

Tuple = INT , INT Rest_nTuple

Rest_nTuple = , INT Rest_nTuple |)
BOOL = t | f | ?
REL_OP = != | = | > | < | >= | <=
BOOL_OP = and | or | xor | imp | eqv
ASSIGN_OP = :=
OPER = + | - | * | /
INT = [SIGN] DIGIT {DIGIT}

REAL = INT | [SIGN] {DIGIT} . DIGIT {DIGIT}

SIGN = + | -
DIGIT = 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9
PORTNAME = thisPort | STRING

STVAR_NAME = $ STRING

STRING = LETTER {LETTER}

LETTER = a | b | c |...| z | A | B | C |...| Z
CONSTFUNC = pi | e | inf | grav | accel | light | planck
 | avogadro | faraday | rydberg | euler_gamma
 | bohr_radius | boltzmann | bohr_magneton | golden
 | catalan | amu | electron_charge | ideal_gas
 | stefan_boltzmann | proton_mass | electron_mass
 | neutron_mass | pem
WITHOUT_PARAM_FUNC = truecount | falsecount | undefcount
 | time | random | randomSign
UNARY_FUNC
= abs | acos | acosh | asin | asinh | atan | atanh
 | cos | sec | sech | exp | cosh | fact | fractional
 | ln | log | round | cotan | cosec | cosech | sign
 | sin | sinh | statecount | sqrt | tan | tanh
 | trunc | truncUpper | poisson | exponential
 | randInt | chi | asec | acotan | asech | acosech
 | nextPrime | radToDeg | degToRad | nth_prime
 | acotanh | CtoF | CtoK | KtoC | KtoF | FtoC | FtoK
BINARY_FUNC = comb | logn | max | min | power | remainder
 | root | beta | gamma | lcm | gcd | normal | f
 | uniform | binomial | rectToPolar_r | hip |

 | rectToPolar_angle | polarToRect_x | polarToRect_y
COND_REAL_FUNC = even | odd | isInt | isPrime | isUndefined
9 Appendix B – Fire Spread

9.1 Original

#include(rules.inc)

[top]

components : ForestFire

[ForestFire]

type : cell

dim : (6,6,2)

delay : transport

defaultDelayTime : 1000

border : nowrapped

neighbors : ForestFire(-1,0,0) ForestFire(0,-1,0)

neighbors : ForestFire(1,0,0) ForestFire(0,1,0)

neighbors : ForestFire(0,0,0)

neighbors : ForestFire(0,0,-1) ForestFire(0,0,1)

initialValue : 300.0

initialCellsValue : init.val

localTransition : FireBehavior

[FireBehavior]

%Unburned

rule : { #macro(unburned) } 1

 { cellpos(2) = 0 and

 (#macro(unburned) > (0,0,0) OR time <= 20) AND

 (0,0,0) < 573 AND (0,0,0) != 209 }

%ti

rule : { time / 100 } 1 { cellpos(2) = 1 AND

 (0,0,-1) >= 573 AND (0,0,0) = 1.0 }

%Burning

rule : { #macro(burning) } 1

 { cellpos(2) = 0 AND

 (((0,0,0) > #macro(burning) AND(0,0,0) > 333) OR

 (#macro(burning) > (0,0,0) AND (0,0,0) >= 573)) AND

 (0,0,0) != 209 }

%Burned

rule : { 209 } 100 { cellpos(2) = 0 AND

 (0,0,0) > #macro(burning) AND

 (0,0,0) <= 333 AND (0,0,0) != 209 }

%Stay Burned or constant

rule : { (0,0,0) } 1 { t }

And these are the macros used in this model, which are declared in the file rules.inc.

#BeginMacro(unburned)

(0.98689 * (0,0,0)

+ 0.0031 * (0,-1,0)

+ 0.0031 * (0,1,0)

+ 0.0031 * (1,0,0)

+ 0.0031 * (-1,0,0)

+ 0.213)

#EndMacro

#BeginMacro(burning)

(0.98689 * (0,0,0)

+ 0.0031 * (0,-1,0)

+ 0.0031 * (0,1,0)

+ 0.0031 * (1,0,0)

+ 0.0031 * (-1,0,0)

+ 2.74 * exp (-0.19 * ((time + 1) / 100 - (0,0,1)))

+ 0.213)

#EndMacro

9.2 State Variables

#include(rules.inc)

[top]

components : ForestFire

[ForestFire]

type : cell

dim : (6,6)

delay : transport

defaultDelayTime : 1000

border : nowrapped

neighbors : ForestFire(-1,0) ForestFire(0,-1) ForestFire(1,0)

neighbors : ForestFire(0,1) ForestFire(0,0)

initialValue : 300

initialCellsValue : init.val

stateVariables: ti

stateValues: 0

initialVariablesValue: var.val

localTransition : FireBehavior

 [FireBehavior]

%Unburned

rule : { #macro(unburned) } 1 { (#macro(unburned) > (0,0) OR

 time <= 20) AND

 (0,0) < 573 AND

 (0,0) != 209 }

%Burning and ti

rule : { #macro(burning) } 1 { (0,0) > #macro(burning) AND

 (0,0) > 333 AND

 ((0,0) < 573 OR $ti != 1.0) }

rule : { #macro(burning) } 1 { #macro(burning) >= (0,0) AND

 (0,0) >= 573 AND $ti != 1.0 }

rule : { #macro(burning) } { $ti := time / 100; } 1

 { #macro(burning) >= (0,0) AND (0,0) >= 573 AND

 $ti = 1.0 }

rule : { #macro(burning) } { $ti := time / 100; } 1

 { #macro(burning) < (0,0) AND (0,0) >= 573 AND

 $ti = 1.0 }

%Burned

rule : { 209 } 100 { (0,0) > #macro(burning) AND

 (0,0) <= 333 AND (0,0) != 209 }

%Stay Burned or constant

rule : { (0,0) } 1 { t }

The macros have also been modified.

#BeginMacro(unburned)

(0.98689 * (0,0)

+ 0.0031 * (0,-1)

+ 0.0031 * (0,1)

+ 0.0031 * (1,0)

+ 0.0031 * (-1,0)

+ 0.213)

#EndMacro

#BeginMacro(burning)

(0.98689 * (0,0)

+ 0.0031 * (0,-1)

+ 0.0031 * (0,1)

+ 0.0031 * (1,0)

+ 0.0031 * (-1,0)

+ 2.74 * exp (-0.19 * ((time + 1) / 100 - $ti))

+ 0.213)

#EndMacro

9.3 State Variables Optimized

#include(rules.inc)

[top]

components : ForestFire

[ForestFire]

type : cell

dim : (6,6)

delay : transport

defaultDelayTime : 1000

border : nowrapped

neighbors : ForestFire(-1,0) ForestFire(0,-1) ForestFire(1,0)

neighbors : ForestFire(0,1) ForestFire(0,0)

initialValue : 300

initialCellsValue : init.val

localTransition : FireBehavior

stateVariables: ti

stateValues: 0

initialVariablesValue: var.val

[FireBehavior]

%Unburned

rule : { #macro(unburned) } 1 { (0,0) != 209 AND (0,0) < 573 AND

 (time <= 20 OR

 #macro(unburned) > (0,0)) }

%Burning and ti

rule : { #macro(burning) } 1 { (0,0) > 333 AND

 ((0,0) < 573 OR $ti != 1.0) AND

 (0,0) > #macro(burning) }

rule : { #macro(burning) }

 { $ti := if($ti = 1.0, time / 100, $ti); } 1

 { (0,0) >= 573 AND #macro(burning) >= (0,0) }

rule : { #macro(burning) } { $ti := time / 100; } 1

 { $ti = 1.0 AND (0,0) >= 573 AND

 #macro(burning) < (0,0) }

%Burned

rule : { 209 } 100 { (0,0) != 209 AND (0,0) <= 333 AND

 (0,0) > #macro(burning) }

%Stay Burned or constant

rule : { (0,0) } 1 { t }

The macros have not been affected by this optimization. This means that they are the same macros exposed in 9.2.

9.4 Neighbor Ports

#include(rules.inc)

[top]

components : ForestFire

[ForestFire]

type : cell

dim : (6,6)

delay : transport

defaultDelayTime : 1000

border : nowrapped

neighbors : ForestFire(-1,0) ForestFire(0,-1) ForestFire(1,0)

neighbors : ForestFire(0,1) ForestFire(0,0)

initialValue : -1

initialCellsValue : init.val

neighborports: temp ti

localTransition : FireBehavior

[FireBehavior]

%Unburned

rule : { ~temp := #macro(unburned); } 1

 { ((#macro(unburned)) > (0,0)~temp OR time <= 20) AND

 (0,0)~temp < 573 AND (0,0)~temp != 209 AND

 (0,0)~temp > 0 }

%Burning and ti

rule : { ~temp := #macro(burning); } 1

 { (0,0)~temp > #macro(burning) AND

 (0,0)~temp > 333 AND

 ((0,0)~temp < 573 OR (0,0)~ti != 1.0) }

rule : { ~temp := #macro(burning); } 1

 { #macro(burning) >= (0,0)~temp AND

 (0,0)~temp >= 573 AND (0,0)~ti != 1.0 }

rule : { ~temp := #macro(burning); ~ti := time / 100; } 1

 { #macro(burning) >= (0,0)~temp AND

 (0,0)~temp >= 573 AND (0,0)~ti = 1.0 }

rule : { ~temp := #macro(burning); ~ti := time / 100; } 1

 { #macro(burning) < (0,0)~temp AND

 (0,0)~temp >= 573 AND (0,0)~ti = 1.0 }

%Burned

rule : { ~temp := 209; } 100 { (0,0)~temp > #macro(burning) AND

 (0,0)~temp <= 333 AND

 (0,0)~temp != 209 AND

 (0,0)~temp > 0 }

%initialization

rule : { ~temp := 300; ~ti := 0; } 1

 { (0,0)~temp = -1 and (0,0)~ti = -1 }

rule : { ~temp := 600; ~ti := 1; } 1

 { (0,0)~temp = -2 and (0,0)~ti = -2 }

%Stay Burned or constant

rule : { } 1 { t }

The macros have also been modified

#BeginMacro(unburned)

(0.98689 * (0,0)~temp

+ 0.0031 * (0,-1)~temp

+ 0.0031 * (0,1)~temp

+ 0.0031 * (1,0)~temp

+ 0.0031 * (-1,0)~temp

+ 0.213)

#EndMacro

#BeginMacro(burning)

(0.98689 * (0,0)~temp

+ 0.0031 * (0,-1)~temp

+ 0.0031 * (0,1)~temp

+ 0.0031 * (1,0)~temp

+ 0.0031 * (-1,0)~temp

+ 2.74 * exp (-0.19 * ((time + 1) / 100 - (0,0)~ti))

+ 0.213)

#EndMacro

9.5 Neighbor Ports Optimized

#include(rules.inc)

[top]

components : ForestFire

[ForestFire]

type : cell

dim : (6,6)

delay : transport

defaultDelayTime : 1000

border : nowrapped

neighbors : ForestFire(-1,0) ForestFire(0,-1) ForestFire(1,0)

neighbors : ForestFire(0,1) ForestFire(0,0)

initialValue : -1

initialCellsValue : init.val

neighborports: temp ti

localTransition : FireBehavior

[FireBehavior]

%Unburned

rule : { ~temp := #macro(unburned); } 1

 { (0,0)~temp > 0 AND (0,0)~temp != 209 AND

 (0,0)~temp < 573 AND

 (time <= 20 OR (#macro(unburned)) > (0,0)~temp) }

%Burning and ti

rule : { ~temp := #macro(burning); } 1

 { (0,0)~temp > 333 AND

 ((0,0)~temp < 573 OR (0,0)~ti != 1.0) AND

 (0,0)~temp > #macro(burning) }

rule : { ~temp := #macro(burning);
 ~ti := if((0,0)~ti = 1.0, time / 100, (0,0)~ti); } 1

 { (0,0)~temp >= 573 AND #macro(burning) >= (0,0)~temp }

rule : { ~temp := #macro(burning); ~ti := time / 100; } 1

 { (0,0)~ti = 1.0 AND (0,0)~temp >= 573 AND

 #macro(burning) < (0,0)~temp }

%Burned

rule : { ~temp := 209; } 100 { (0,0)~temp != 209 AND

 (0,0)~temp > 0 AND

 (0,0)~temp <= 333 AND

 (0,0)~temp > #macro(burning) }

%initialization

rule : { ~temp := 300; ~ti := 0; } 1

 { (0,0)~temp = -1 and (0,0)~ti = -1 }

rule : { ~temp := 600; ~ti := 1; } 1

 { (0,0)~temp = -2 and (0,0)~ti = -2 }

%Stay Burned or constant

rule : { } 1 { t }

The same macros exposed in 9.4 are used in the model.

10 Appendix C – Life Game

10.1 Original And Compatibility

[top]

components : life

[life]

type : cell

width : 21

height : 21

delay : transport

defaultDelayTime : 100

border : wrapped

neighbors : life(-1,-1) life(-1,0) life(-1,1)

neighbors : life(0,-1) life(0,0) life(0,1)

neighbors : life(1,-1) life(1,0) life(1,1)

initialvalue : 0

initialrowvalue : 4 000011100000000000000

initialrowvalue : 5 000011100010000000000

initialrowvalue : 6 000011100110000000000

initialrowvalue : 10 000000000111000000000

initialrowvalue : 11 000000000111000100000

initialrowvalue : 12 000000000111001100000

initialrowvalue : 14 000000000000001110000

initialrowvalue : 15 000000000000001110001

initialrowvalue : 16 000000000000001110011

localtransition : conrad-rule

[conrad-rule]

rule : 1 100 { (0,0) = 1 and (truecount = 3 or truecount = 4) }

rule : 0 100 { (0,0) = 1 and (truecount < 3 or truecount > 4) }

rule : 1 100 { (0,0) = 0 and truecount = 3 }

rule : 0 100 { (0,0) = 0 and truecount != 3 }

10.2 State Variables

[top]

components : life

[life]

type : cell

width : 21

height : 21

delay : transport

defaultDelayTime : 100

border : wrapped

neighbors : life(-1,-1) life(-1,0) life(-1,1)

neighbors : life(0,-1) life(0,0) life(0,1)

neighbors : life(1,-1) life(1,0) life(1,1)

initialvalue : 0

initialrowvalue : 4 000011100000000000000

initialrowvalue : 5 000011100010000000000

initialrowvalue : 6 000011100110000000000

initialrowvalue : 10 000000000111000000000

initialrowvalue : 11 000000000111000100000

initialrowvalue : 12 000000000111001100000

initialrowvalue : 14 000000000000001110000

initialrowvalue : 15 000000000000001110001

initialrowvalue : 16 000000000000001110011

localtransition : conrad-rule

statevariables: value

statevalues: 0

initialvariablesvalue: life.stvalues

[conrad-rule]

rule : { $value } { $value := 1; } 100

 { $value = 1 and (truecount = 3 or truecount = 4) }

rule : { $value } { $value := 0; } 100

 { $value = 1 and (truecount < 3 or truecount > 4) }

rule : { $value } { $value := 1; } 100

 { $value = 0 and truecount = 3 }

rule : { $value } { $value := 0; } 100

 { $value = 0 and truecount != 3 }

This model uses the following initial values (life.stvars file):

(4,4)=1

(4,5)=1

(4,6)=1

(5,4)=1

(5,5)=1

(5,6)=1

(6,4)=1

(6,5)=1

(6,6)=1

(5,10)=1

(6,9)=1

(6,10)=1

(10,9)=1

(10,10)=1

(10,11)=1

(11,9)=1

(11,10)=1

(11,11)=1

(12,9)=1

(12,10)=1

(12,11)=1

(10,15)=1

(11,14)=1

(11,15)=1

(14,14)=1

(14,15)=1

(14,16)=1

(15,14)=1

(15,15)=1

(15,16)=1

(16,14)=1

(16,15)=1

(16,16)=1

(15,20)=1

(16,19)=1

(16,20)=1

10.3 Default Ports

[top]

components : life

[life]

type : cell

width : 21

height : 21

delay : transport

defaultDelayTime : 100

border : wrapped

neighbors : life(-1,-1) life(-1,0) life(-1,1)

neighbors : life(0,-1) life(0,0) life(0,1)

neighbors : life(1,-1) life(1,0) life(1,1)

initialvalue : 0

initialrowvalue : 4 000011100000000000000

initialrowvalue : 5 000011100010000000000

initialrowvalue : 6 000011100110000000000

initialrowvalue : 10 000000000111000000000

initialrowvalue : 11 000000000111000100000

initialrowvalue : 12 000000000111001100000

initialrowvalue : 14 000000000000001110000

initialrowvalue : 15 000000000000001110001

initialrowvalue : 16 000000000000001110011

localtransition : conrad-rule

[conrad-rule]

rule : { ~out := 1; } 100 { (0,0)~neighborChange = 1 and

 (truecount = 3 or truecount = 4) }

rule : { ~out := 0; } 100 { (0,0)~neighborChange = 1 and

 (truecount < 3 or truecount > 4) }

rule : { ~out := 1; } 100 { (0,0)~neighborChange = 0 and

 truecount = 3 }

rule : { ~out := 0; } 100 { (0,0)~neighborChange = 0 and

 truecount != 3 }

10.4 Non-default Ports

[top]

components : life

[life]

type : cell

width : 21

height : 21

delay : transport

defaultDelayTime : 100

border : wrapped

neighbors : life(-1,-1) life(-1,0) life(-1,1)

neighbors : life(0,-1) life(0,0) life(0,1)

neighbors : life(1,-1) life(1,0) life(1,1)

initialvalue : 0

initialrowvalue : 4 000011100000000000000

initialrowvalue : 5 000011100010000000000

initialrowvalue : 6 000011100110000000000

initialrowvalue : 10 000000000111000000000

initialrowvalue : 11 000000000111000100000

initialrowvalue : 12 000000000111001100000

initialrowvalue : 14 000000000000001110000

initialrowvalue : 15 000000000000001110001

initialrowvalue : 16 000000000000001110011

localtransition : conrad-rule

neighborports : value

[conrad-rule]

rule : { ~value := 1; } 100

 { (0,0)~value = 1 and (statecount(1, ~value) = 3 or

 statecount(1, ~value) = 4) }

rule : { ~value := 0; } 100

 { (0,0)~value = 1 and (statecount(1, ~value) < 3 or

 statecount(1, ~value) > 4) }

rule : { ~value := 1; } 100

 { (0,0)~value = 0 and statecount(1, ~value) = 3 }

rule : { ~value := 0; } 100

 { (0,0)~value = 0 and statecount(1, ~value) != 3 }

InitMessage

Port	dest

Value	value

OutputMessage

Time	nextChange

DoneMessage

Port	dest

Value	value

ExternalMessage

InternalMessage

Model	sender

Time	msgTime	

Message

_1112129598.unknown

_1112359115

_1112360450

_1112446232

_1130247873

_1112446223

_1112359922

_1112130107.unknown

_1112342993

_1112129609.unknown

_1111507176.doc

Model

Atomic

Coupled

CoupledCell

AtomicCell

Transport

DelayCell

Inertial

DelayCell

_1111858719.doc

Out m

Out2

Out1

In k

In 2

In 1

Out

NeighborChange

Atomic Cell

in_port 1

in_port n

out_port 1

out_port n

_1111859281.doc

(-1, -1) (-1, 0) (-1,1)

(0, -1) (0, 0) (0, 1)

(1, -1) (1, 0) (1, 1)

(-1, -1) (-1, 0) (-1,1)

(0, -1) (0, 0) (0, 1)

(1, -1) (1, 0) (1, 1)

 neighborChange

NeighborValues

 port n

 ...

 port 1

 neighborChange

NeighborValues

_1111675786.unknown

_1111675935.unknown

_1110816447.unknown

_1110818682.unknown

_1010496792

