-'11 Carleton

UNIVERSITY

Cadmium

A tool for DEVS Modeling and Simulation. User’s Guide
Canada’s Capital University

Cadmium

A tool for DEVS Modeling and

Simulation

User’s Guide

DRAFT - 19/02/2020

Cristina Ruiz Martin
Gabriel A. Wainer

Department of Systems and Computer Engineering
Carleton University
1125 Colonel By Dr. Ottawa, ON. Canada

http://cell-devs.sce.carleton.ca
http://www.sce.carleton.ca/faculty/wainer

gwainer@sce.carleton.ca

Page 1 of 85

http://cell-devs.sce.carleton.ca/
http://www.sce.carleton.ca/faculty/wainer
mailto:gwainer@sce.carleton.ca

Carleton

Cadmium
YW UNIVERSITY

A tool for DEVS Modeling and Simulation. User’s Guide
Canada’s Capital University

Table of Contents

(67 To [0 1100 o KOS T T PR P ST UUTOTORTOPRPI 4
Windows - Installation and eXamPIEcooiiiii i e et e e e e e aa e e e e naraeas 4
Installing Cygwin, GCC aNnNd BOOSTciiiiiiiiiieiiieie ettt erte e e e re e e e et e e e e s tta e e e e abeeeseataeeeensaeeeennseeeesnnsenas 4
Downloading and installing the Cadmium SIMUIALOrcoooiiiiii i e 12
Compiling and Running a Cadmium DEVS MOMEI ...ccoccuviiiiiiiiiiiciiieccttee ettt svee e s e s naee e 14
Ubuntu - Installation and @XamPle.......oo it e e st e e st e e e e b e e e e nrreeeeas 15
SN L= I Lo (U1 =T 0 =T) KN 15
TaT = 1T Y= = 1o Lo 1) A SRR 15
Ta T = T Y= = SRR 17
Ta TS = 1T = 1 PSSP PR 21
Installing the ‘Make’ COMMANGiiiiiiie e e e e e e e e sb e e e e sebeee e e s baeeeesareeas 23
Downloading and installing the Cadmium SImMUIQLOr.........c.oooiiiiiiiiee e e e 24
Compiling and Running a Cadmium DEVS MOAEIc.uviiiiiiiiieiciee ettt e e s e e e aaee e 25
MacOS - INstallation aNd @XAMPIE.......cii i e et e e s b e e e ssabeeaesaataeeeesnsaeeeensreeeenn 26
SYSTEIM FROQUITEIMENTS ittt ettt et e e e s st et e e e e e e s bbb teeeesesssaabebaaeeeessasasssebaaaeesssssssssanaaaeesssnnas 26
INStalling ComMmMaNd LINE TOOIS...ccciiiiiiiiciiiee ettt et e e e ree e e s et e e e et e e e e sabeeeeesabeeeeesnseeeesnnrenas 26
INstalling HOMEDIEW @nd BOOSTvviiiiiiii ettt e et e e e etee e e e e bee e e e atee e e e eabaee e eenbeeeeeenbaeeeennrenas 27
Downloading and installing the Cadmium SiImMUIQLOr.........c.oocviiiiiciee e 27
Compiling and Running a Cadmium DEVS MOAEIccuviiiiiiiiiiiciiiecceee ettt e s e e e saee e 28
DEVS Model definition: AN EXAMPIE ...ccoeiiieiiiiie ettt s e e e e e e e s e e e e ssaba e e e sasaeeessnsseeeesnsreeaens 30
Subnet: an atomic model example implemented in CadmMiUm.........cocoiiiiiiiiiie e 30
Unit testing the Subnet atomMiC MOAENcco.euiiiiiee e et e e e e e bae e e e eareeas 37
A SUMMArY ON POt DEfINITION. ..cciiieeecee e e et e e e e e e e e e ate e e e e nbe e e e e nbaeeeenreeas 48
Defining the make file to ComMPile the tESt.......eiii i e 50
Simulating the complete ABP MOEL........couiiiiiiiie e e e e e e s aaa e e e snaaeeeeas 52
Defining the make file to compile all the test and the ABPcoouiiiieciee e 54
Cadmium’s Services for AtOMIC MOTEISoovi ittt st sttt esbe e saeesane e 55
D LTol o g1 Y= o o] £ SRS 56
Implementing atomic MOdels: @ CH4 CIasS ...ccuviiiiiiiie e e et e e et e s e rae e e e areeas 57
Using Atomic Models: Creating Instances from the Class.......c.cceeieiieiiiciie i 60
Cadmium’s Services for CoUupled IMOTEISooooeeiiiieee ettt e e et e e e e ere e e e e bae e e e eareeas 61
(D T=Tol Y g =48 oo o 3 UEURRN 61
DLl o T Y= ole 0T o] [=To e s Yo e 1] -3 SRR PR 61
Cadmium’s SErVICES tO CrEAtE LOES ..iiuiiiiiiiiieeieitee e ecttee ettt e e et e et e e e et e e e s et ae e e e abaee s e abaeeeenbaeeeesnseeeesnnsenas 65

Page 2 of 85

F‘-'ﬁl Carleton

UNIVERSITY

Cadmium

A tool for DEVS Modeling and Simulation. User’s Guide
Canada’s Capital University

Cadmium’s Services to RUN the SIMUITION ..ot e 66
Y oY o T<] o Lo [N PPNt 68
Y oY1= oL [Pt = T PSPPI 70
Y oY T=] o Lo [PSPPI 72
Y oY oT<T o Yo L' PPN 75
Y oY o T<T o Lo [USSP 79
Yo7 T=] o Lo LDt PSPPI 81

Page 3 of 85

=2 Carleton

Cadmium
YW UNIVERSITY

A tool for DEVS Modeling and Simulation. User’s Guide
Canada’s Capital University

Cadmium

Cadmium is a tool for Discrete-Event modeling and simulation, based on the DEVS formalism. DEVS is a
discrete event paradigm that allows a hierarchical and modular description of the models. Each DEVS model
can be behavioral (atomic) or structural (coupled), consisting of inputs, outputs, state variables, and
functions to compute the next states and outputs.

Cadmium is a cross-platform header-only library implemented in C++. This document is a user's guide to
Cadmium, and we will only focus on tool-related aspects. Readers interested in the underlying theory should
consult:

- G. Wainer. Discrete-Event Modeling and Simulation: a practitioner's approach. Taylor and Francis.
2008.

- B. Zeigler, H. Praehofer, T. G. Kim. “Theory of Modeling and Simulation”. 2nd Edition. Academic
Press. 2000.

More references about related topics are available at http://cell-devs.sce.carleton.ca:

From now on, a complete understanding of DEVS models is assumed. Details about the DEVS formalism can
be found in the literature above.

To report errors in this user manual please contact gwainer@sce.carleton.ca.

Windows - Installation and example

NOTE: If we follow these instructions step by step, we will be able to download Cadmium and to
compile and execute models in Cadmium DEVS simulator. If we are an expert C++ programmer,
we can install the tools in your own different way. Cadmium is a C++ header library only that
depends on Boost library. In that case, we can get Cadmium here:

https://github.com/SimulationEverywhere/cadmium

Installing Cygwin, GCC and Boost
1. Create the folder C:\cygwin64

2. Visit http://www.cygwin.com/. Look for the section "Installing Cygwin" and select the appropriate
version (32 bit or 64 bit) for your PC. In this example, we will show how to install the 64-bit version.

Installing Cygwin
Install Cygwin by running setup-x86 64.exe (64-bit mstallation) or setup-x86.exe (32-bit installation)

Use the setup program to perform a fresh install or to update an existing installation.

Keep in mind that individual packages in the distribution are updated separately from the DLL so the Cygwin DLL version is not useful as a general
Cygwin distribution release number.

Page 4 of 85

http://cell-devs.sce.carleton.ca/
mailto:gwainer@sce.carleton.ca
https://github.com/SimulationEverywhere/cadmium
http://www.cygwin.com/

=2 Carleton

YW UNIVERSITY

Canada’s Capital University

Cadmium
A tool for DEVS Modeling and Simulation. User’s Guide

Download the setup file chosen in C:\cygwin64. Based on the OS version we will get a file named
setup-x86_64.exe (64-bit installation) or setup-x86.exe (32-bit installation)

3. Execute setup-x86_64.exe (64-bit installation) or setup-x86.exe (32-bit installation) and click on
“Next >”. We will see the following welcome screen.

E Cygwin Setup — O *
Cygwin Net Release Setup Program

This setup program is used for the initial installation of the
Cygwin environment as well as all subsequent updates. Make
sure to remember where you saved it.

The pages that follow will guide you through the installation.
Please note that Cygwin consists of a lange number of
packages spanning a wide variety of purposes. We only
install a base set of packages by default. You can always un
this program at any time in the future to add, remove, or
upgrade packages as necessary.

Setup version 2.897 (64 bit)
Copyright 2000-2019
https://cygwin.com/

< Back MNext > Cancel

4. Select the option "Install from Internet" and click on “Next >”

E Cygwin Setup - Choose Installation Type - [m} x
Choose A Download Source =
Choose whether ta install or download from the intemet, or install from files in =

a local directory.

(® Install from Intemet
(downloaded files will be kept for future reuse)

(O Download Without Installing

(O Ingtall from Local Directory

< Back Next = Cancel

5. We need to select the Root Install directory for storage of Cygwin files. Choose the default
(c:\cygwinb4, as seen in the screenshot, and “All Users (RECOMMENDED)”. Click on “Next >”

Page 5 of 85

=
Cadmium @ Carleton

A tool for DEVS Modeling and Simulation. User’s Guide UNIVERSITY
Canada’s Capital University

E Cygwin Setup - Choose Installation Directory - O X

Select Root Install Directory =
Select the directory where you want to install Cygwin. Also choose a few ==
installation parameters.

Root Directory

|C Aoygwingd

Install For

(®) All Users {(RECOMMENDED)
Cyawin will be available to all users of the system.

(D) Just Me

Cygwin will still be available to all users, but Desktop lcons, Cygwin Menu Entries, and important
Installer information are only available to the cument user. Only select this if you lack
Administrator privileges or if you have specific needs.

< Back Next > Cancel

6. Choose your preferred directory for storage of Cygwin local package directory as in the screenshot (i.e.
the folder we just created) and click on “Next >”

£ Cygwin Setup - Select Local Package Directory — O X
Select Local Package Directory =
Select a directory where you want Setup to store the installation files it Lo’

downloads. The directory will be created if it does not already exist.

Local Package Directory

- \cyawin64 | Browse...

< Back MNext > Cancel

7. Select the option “Use System Proxy Setting” and click on “Next >”

Page 6 of 85

=
Cadmium @ Carleton

A tool for DEVS Modeling and Simulation. User’s Guide UNIVERSITY
Canada’s Capital University

E Cygwin Setup - Select Connection Type — O *
Select Your Intemet Connection
Setup needs to know how you want it to connect to the intemet. Choose 3=

the appropriate settings below.

(®) Use System Proxy Settings
() Direct Connection
() Use HTTP/FTP Promy:

Prooy Host

Port |80

< Back Mext = Cancel

8. After a few seconds, the following window will appear. Choose a Download Site as in the screenshot.
Click on “Next >” (in this case, http://cygwin.mirror.constant.com)

E cygwin Setup - Choose Download Site(s) - O >
Choose A Download Site
Choose a site from this list, or add your own sites to the list =

Available Download Sites:

rgwin.mimor.constant.com
http://cyawin.mimors hoobly.com
http:#/mimors koehn .com
http://mimors metapeer com
http:/fwww pirbot . com
http://mirmor team-cymm.com
ftp://mirors xmission.com
http:#/mimors xmission.com
http://mimor clarkson.edu
http://mimor.cs vt .edu
http:.//mimor koddos net
http://mimor-hk koddos net
ftp://mirors netic net v

[T R T TR

User URL: | Add

< Back Mext = Cancel

9. Cygwin will start the installation process. The following window will appear

Page 7 of 85

Ft"-’} Carleton

UNIVERSITY

Cadmium

A tool for DEVS Modeling and Simulation. User’s Guide
Canada’s Capital University

E cygwin Setup — O X
This page displays the progress of the download or installation. E
Downloading...

setup xz from http://cygwin mimor constant .com/x86_64
1810432 636.8kB/s

Progress:

< Back Next =

10. When we get the following window, if we click on “All”, we will see all the existing packages. Do not
choose anything; simply click “Next >” leaving everything as default (as in the screenshot). This will
install the default tools and libraries.

E Cygwin Setup - Select Packages - O X

Select Packages
Select packages to install 3=

View | Category ~| Search I:l Clear| (@) Best (O &Smne [Test

Package Cument New |
Al Diefault

< >
Hide obsolete packages

< Back Nest > Cancel

11. The following window will appear. Click on “Next >”

E Cygwin Setup - Review and confirm changes — O >
=
Install _autorebase 001007-1 ~

Install alternatives 1.3.30c-10
Install base-cygwin 3.8-1

Install base-files 4.3-2

Install bash 4.4.12-3

Install bzip2 1.0.8-1

Install ca-certificates 2.32-1
Install coreutils §.26-2

Install crypto-policies 20190218-1
Install cygutils 1.4.16-2

Install cygwin 3.0.7-1

< Back Next > Cancel

Page 8 of 85

Cadrmium F"? Carleton

A tool for DEVS Modeling and Simulation. User’s Guide UNIVERSITY
Canada’s Capital University

12. The progress window below will appear.

E 2% - Cygwin Setup - O x
This page displays the progress of the download or installation. E
Downloading...

terminfo-6.1-1. 20190727 tarxz from http://cygwin mimor.consta...

Connecting....

Progress:

Total: B

Disk:]

cBak | Mew>

13. Once the installation finishes, select the option “Create icon on Desktop” to easily access the Cygwin
terminal. Click on “Finish”

E Cygwin Setup - Installation Status and Create Icons — O *
Create lcons
Tell setup if you want it to create a few icons for convenient access to the 3=

Cygwin environment .

Create icon on Desktop
[Add icon to Start Menu

Installation Status
Installation Complete

< Back Cancel

14. Once the installation finishes, if we open the cygwin64 folder, it should have the following content.

This PC » Local Disk (C) » cygwingd

MName - Date modified Type Size

bin 8/8/201910:57 AM File folder

dev 8/8/2019 10:57 AM File folder

etc 8/8/2019 10:58 AM File folder

home 2019 10:56 AM File folder

lib 8/8/201910:57 AM File folder

shin 8/8/201910:57 AM File folder

tmp 8/8/201910:57 AM File folder

usr 8/8/2019 10:57 AM File folder

war 8/8/2019 10:56 AM File folder
Cygwin.bat f2019 10:57 AM Windows Batch File 1KB
E Cygwin.ico 8/8/2019 11:02 AM lcon 134 KB
E Cygwin-Terminal.ico 8/8/201911:02 AM lcon 33KB
E setup-xB6_64.exe 8/8/2019 10:29 AM Application 1,197 KB

Page 9 of 85

S Carleton

A tool for DEVS Modeling and Simulation. User’s Guide UNIVERSITY
Canada’s Capital University

15. Open the windows terminal (Command Prompt; type “cmd” on your Windows search).
Type
cd c:\cygwiné4

For the 64-bit installation, type:

setup-x86 64.exe -q -P chere -P wget -P gcc-g++ -P make -P
diffutils -P libmpfr-devel -P libgmp-devel -P libmpc-devel -P git

(For 32-bit installation, replace by setup-x86.exe)

It will install all the necessary libraries and the last version of gcc/g++ compiler.

E¥ Command Prompt - O X

e -Pw
libm

ned>note: Hand installation over to elev

16. A Progress window will pop up while all the required packages along with their dependencies are
downloaded and installed, as in the following screen capture.

E 0% - Cygwin Setup - O had
Progress -
This page displays the progress of the download or installation =

Downloading..

libigl 15-0.16.1-1 tar:xz from http://cygwin mimor.constant.com./x...
87 % (393k/451k) 6134kB/s

Packege:
Total:

Dk —

Back Next

The installation process will take several minutes. Once the installation process finishes, the window
will disappear automatically, and we can close the Command Prompt.

17. Run Cygwin on your desktop, in administrator mode (right-click on the desktop icon and select the
option “Run as administrator”; we can also use c:\cygwin64, and run the script “cygwin.bat” in
Administrator mode). The skeleton files will be created:

Copying skeleton files.

These files are for the users to personalise their cygwin experience.
They will never be overwritten nor automatically updated.

'./.bashrc' -> '/YOURDIRECTORY//.bashrc'

'./.bash profile' -> '/YOURDIRECTORY//.bash profile'

'./.inputrc' -> '/YOURDIRECTORY//.inputrc'
'./.profile' -> '/YOURDIRECTORY//.profile'
YOURDIRECTORY~

$

Page 10 of 85

Carleton

Cadmium
YW UNIVERSITY

A tool for DEVS Modeling and Simulation. User’s Guide
Canada’s Capital University

18. Type the following command on the terminal and press “Enter” (in this case, we show an example for
user “User” running Cygwin on the Desktop):

wget rawgit.com/transcode-open/apt-cyg/master/apt-cyg

0:30::681b:8e
Moved Permanently

19. Type the following command and press “Enter”
install apt-cyg /bin

"apt-cyg" is a command in Cygwin similar to the "sudo apt-get" command in Linux. It is used to install
packages, update them, list them, etc.

20. Type the following command and press “Enter”
chere -i -t mintty -s bash

This will allow us to open a Cygwin bash terminal from any folder in your Windows File Explorer or other
applications.

chere -1 -t mintty -s bash

Page 11 of 85

Cadmium

Carleton

A tool for DEVS Modeling and Simulation. User’s Guide . UNIVERSITY

Canada’s Capital University
21. Type the following command on Cygwin terminal and press “Enter”.

apt-cyg install libboost-devel

This installs the Boost Library. A progress message will show the installation.

-devel/1ibb

_'i Co i g
equest sent

Downloading and installing the Cadmium Simulator

1. Type the following commands:
git clone

https://github.com/SimulationEverywhere/Cadmium-Simulation-
Environment.git

cd Cadmium-Simulation-Environment/
git submodule update --init --recursive

Page 12 of 85

https://github.com/SimulationEverywhere/Cadmium-Simulation-Environment.git
https://github.com/SimulationEverywhere/Cadmium-Simulation-Environment.git

Carleton

Cadmium
YW UNIVERSITY

A tool for DEVS Modeling and Simulation. User’s Guide
Canada’s Capital University

.

dmium-5imulation-Environme

oning into "Cadmium-* jon-Em - b
: Enumerat

inting ob3

pack-reused 0

bmodu

ered Tor pa

mulationEverywhere/
~ed for
ning in ve/c) User/ f mium-5imulation-Environment
mium-5imulation-Environment/
mium-5imulation-Environment
s': checked out "af7? b e G4
mulationEverywher mium-ABP.git) regist
mium-5imulation-Environment
out "h5ffi

out "d9bldotad4af

b ule path | f -modules’
9bdeeaadtds’

Now we have Cadmium set up. If we open the folder Cadmium-Simulation-Environment, it has to look as

follows:
Mame Date modified Type Size
.git &/9/2019 7:57 PM File folder
cadmium 8/9/2019 7:58 PM File folder
Cadmium-DEVE-Moadels &/9/2019 7:58 PM File folder
DESTimes 8/9/2019 7:58 PM File folder
| .gitmodules 8/9/2019 7:57 PM Text Docurnent | KB

T:57 PM MD File | KB

[T=1
T=]

README.rmd 8

Page 13 of 85

Cadmium Carleton

A tool for DEVS Modeling and Simulation. User’s Guide . UNIVERSITY
Canada’s Capital University

Compiling and Running a Cadmium DEVS Model

When we download Cadmium, we obtain a Model Library (Folder: DEVS-Models). We will use the ABP model

found in that directory as an example to show how to compile a Cadmium model and how to run the tests
for that model.

1. Compile the project and the tests

a. Open a Bash Prompt inside the folder ABP:
Inside the Cadmium-ABP folder, right-click + “Bash Prompt Here”

b. To compile the project and the tests, type in the Bash Prompt:
make clean; make all

mulation-Envi ment,/ mium-DEVS-|

build/main_t
e.cpp -0 bui

g
t

+
M mm

+

In_rece

2. Runtests

a. A subfolder, called bin, has been created. The simulation examples we will execute are
that directory (cd bin) .

b. To run the subnet test, type in the Bash Prompt:
./SUBNET_ TEST.exe

c. Torun the receiver test, type in the Bash Prompt:
. /RECEIVER_TEST .exe

d. To runthe sender test, type in the Bash Prompt:
./SENDER_TEST.exe

in

imium-DEVS

imium-DEVS

imium-DEVS

e. To check the output of the tests, go to the folder “../simulation_results” and open the
respective files

3. Run the top model

Page 14 of 85

> Carleton

YW UNIVERSITY

Cadmium

A tool for DEVS Modeling and Simulation. User’s Guide
Canada’s Capital University

a. Inside the subfolder “bin”, type
./ABP.exe ../input data/input abp 1.txt

p/Cadmium-Simulation-Environment /Cadmium-DEVS

b. To check the output of the model, go to the folder simulation_results and open
"abp_output.txt"

4. To runthe model with different inputs
a. Create new .txt files with the same structure as input_abp_0.txt or input_abp_1.txt in the
folder input_data
b. Runthe model using the instructions in step 3
If we want to keep the output, rename abp_output.txt. Otherwise, it will be overwritten
when we run the next simulation.

Ubuntu - Installation and example

System requirements

1. Ubuntu 16.04 or higher
2. RAM 16GB (we will be able to run small models with 4GB ram)

Installing Boost

1. Open the Ubuntu terminal. To open Ubuntu terminal press: "Ctrl + Alt + t".

2. Type the following command in the Ubuntu terminal screen that appears, and press ENTER
sudo apt-get install libboost-all-dev

3. Type the administrative password, i.e. the password we use for signing in into your Ubuntu account
and press ENTER.

user@ars-lab: ~

File Edit View Search Terminal Help

user@ars-lab:~$ sudo apt-get install libboost-all-dev
[sudo] password for user:

4. The installation begins. After a while, the installation is temporarily paused, and the following
question appears: "Do we want to continue?", type: y and then press ENTER to resume the
installation process.

Page 15 of 85

Carleton

Cadmium _
YW UNIVERSITY

A tool for DEVS Modeling and Simulation. User’s Guide
Canada’s Capital University

user@ars-lab: ~

File Edit View Search Terminal Help
libboost-type-erasurel.65.1 libboost-wave-dev libboost-wavel.65-dev
libboost-wavel.65.1 libboost1.65-dev 1ibboost1.65-tools-dev libc-dev-bin
libc6-dev libcilkrts5 libexpati-dev libfabric1l libfakeroot 1libgcc-4.8-dev
libgcc-7-dev libglib2.0-dev libglib2.08-dev-bin libgraphite2-dev
libharfbuzz-dev libharfbuzz-gobject® libhwloc-dev libhwloc-plugins libhwloc5s
libibverbs-dev libibverbs1 libicu-dev libicu-le-hb-dev libicu-le-hbo
libiculx6® libitml liblsan® libltdl-dev libmpx2 1libnl-route-3-280
libnuma-dev libopenmpi-dev libopenmpi2 libpcreil6-3 libpcre3-dev libpcre32-3
libpcrecpp@v5 libpsm-infinipathl libpython-dev libpython-stdlib
libpython2.7-dev libpython3-dev libpython3.6-dev libquadmath® librdmacmi
libstdc++-4.8-dev libstdc++-7-dev libtool libtsan® libubsan® linux-libc-dewv
make manpages-dev mpi-default-bin mpi-default-dev ocl-icd-libopencli
openmpi-bin openmpi-common pkg-config python python-dev python-minimal
python2.7 python2.7-dev python2.7-minimal python3-dev python3-distutils
python3-1ib2to3 python3.6-dev zlibig-dev

The following packages will be upgraded:
Ccpp cpp-7 gcc-7-base gcc-8-base libccl-8 libexpatl libgccl libglib2.6-8
1libglib2.0-bin libgomp1l libnumal libpython2.7 libpython2.7-minimal
libpython2.7-stdlib libpython3.6 libpytheon3.é6-minimal libpython3.6-stdlib
1ibss11.1 libstdc++6 python3.6 python3.6-minimal

21 upgraded, 177 newly installed, ® to remove and 395 not upgraded.

Need to get 154 MB/156 MB of archives.

aAfter this operation, 523 MB of additional disk space will be used.

Do you want to continue? [Y/n]

5. Wait until the installation is finished.

user@ars-lab: ~

File Edit View Search Terminal Help
libgcc-7-dev libglib2.0-dev libglib2.0-dev-bin libgraphite2-dev
libharfbuzz-dev libharfbuzz-gobject® libhwloc-dev libhwloc-plugins libhwloc5
libibverbs-dev libibwverbs1l libicu-dev libicu-le-hb-dev libicu-le-hb@
libiculx66 libitml liblsan® libltdl-dev libmpx2 libnl-route-3-200
libnuma-dev libopenmpi-dev libopenmpi2 libpcrel6-3 libpcre3-dev libpcre3z-3
libpcrecppov5 libpsm-infinipath1l libpython-dev libpython-stdlib
libpython2.7-dev libpython3-dev libpython3.6-dev libquadmath® librdmacmil
libstdc++-4.8-dev libstdc++-7-dev libtool libtsan® libubsan® linux-libc-dev
make manpages-dev mpi-default-bin mpi-default-dev ocl-icd-1libopencli
openmpi-bin openmpi-common pkg-config python python-dev python-minimal
python2.7 python2.7-dev python2.7-minimal python3-dev python3-distutils
python3-1lib2to3 python3.6-dev zliblg-dev

The following packages will be upgraded:
Cpp cpp-7 gcc-7-base gcc-8-base libcc1-0 libexpatl libgccl libglibz.e-o©
libglib2.6-bin libgompl libnumal libpython2.7 libpython2.7-minimal
libpython2.7-stdlib libpython3.6 libpython3.6-minimal libpython3.6-stdlib
1ibss11.1 libstdc++6 python3.6 python3.6-minimal

21 upgraded, 177 newly installed, @ to remove and 395 not upgraded.

Need to get 154 MB/156 MB of archives.

After this operation, 523 MB of additional disk space will be used.

Do you want to continue? [Y/n] y

Get:1 http://in.archive.ubuntu.com/ubuntu bionic-updates/main amd64 libpython3.6
amd64 3.6.8-1~18.04.1 [1,418 kB]

2% [1 libpython3.6 332 kB/1,418 kB 23%] 13.2 kB/s 3h 14min 23sfj

Page 16 of 85

Carleton

Cadmium _
YW UNIVERSITY

A tool for DEVS Modeling and Simulation. User’s Guide
Canada’s Capital University

File Edit View Search Terminal Help

Setting up libboost-graph-parallell.65-dev (1.65.1+dfsg-0@ubuntus) ...
Setting up python3-dev (3.6.7-1-18.04) ...

Setting up libboost-wavel.65-dev:amd64 (1.65.1+dfsg-0Oubuntus)
Setting up libboost-filesystem-dev:amd64 (1.65.1.6ubuntul) ...
Setting up libboost-logl.65-dev (1.65.1+dfsg-@ubuntu5)

Setting up libboost-pythonl.65-dev (1.65.1+dfsg-8ubuntus) ...
Setting up libboost-wave-dev:amd64 (1.65.1.0ubuntul) ...
Setting up libboost-graph-parallel-dev (1.65.1.8ubuntul) ...
Setting up libboost-mpi-dev (1.65.1.0ubuntul) ...

Setting up libboost-mpi-pythonl.65.1 (1.65.1+dfsg-8ubuntus) ...
Setting up libboost-python-dev (1.65.1.0ubuntul)

Setting up libboost-mpi-pythonl.65-dev (1.65.1+dfsg-0Oubuntu5)
Setting up libboost-log-dev (1.65.1.8ubuntul) ...

Setting up libboost-mpi-python-dev (1.65.1.0ubuntul) ...
Setting up libharfbuzz-dev:amd64 (1.7.2-1ubuntu1l)

Setting up libicu-le-hb-dev:amd64 (1.0.3+git161113-4) ...
Setting up libicu-dev (66.2-3ubuntu3) ...

Setting up libboost-regex1.65-dev:amd64 (1.65.1+dfsg-0ubuntus)
Setting up libboost-iostreamsi1.65-dev:amd64 (1.65.1+dfsg-0Oubuntus) ...
Setting up libboost-iostreams-dev:amd64 (1.65.1.60ubuntul) ...
Setting up libboost-regex-dev:amd64 (1.65.1.8ubuntul) ...
Setting up libboost-all-dev (1.65.1.0ubuntul) ...

Processing triggers for libc-bin (2.27-3ubuntul)
user@ars-lab:~§

Installing g++

Cadmium is tested using g++7.2 compiler. Previous versions of g++ do not work because they cannot compile
C++17 code.

Instructions to install gcc 7.2 and g++ 7.2 and make them as default compilers:

1. Open Ubuntu terminal. To open Ubuntu terminal press: “Ctrl + Alt + t”. Do not close the terminal
until the installation process is complete.

2. Type the following command on the Ubuntu terminal and press ENTER:
sudo add-apt-repository ppa:jonathonf/gcc-7.1

3. Enter the administrative password, i.e. the password we use for signing in into your Ubuntu account
and press ENTER. The installation process begins.

user@ars-lab: ~
File Edit View Search Terminal Help
user@ars-lab:~5$ sudo add-apt-repository ppa:jonathonf/gcc-7.1
[sudo] password for user: i

4. After a while, we will be asked to "Press [ENTER] to continue or Ctrl-c to cancel adding it". Press
ENTER to continue with the installation.

user(@ars-lab: ~
File Edit View Search Terminal Help
user@ars-lab:~% sudo add-apt-repository ppa:jeonathonf/gcc-7.1
[sudo] password for user:

Backport of GCC 7.1 from Artful
More info: https://launchpad.net/~jonathonf/+archive/ubuntufgcc-7.1
Press [ENTER] to continue or Ctrl-c to cancel adding it.

5. The following text will appear on the terminal. Wait until the installation is finished.

Page 17 of 85

Carleton

Cadmium
YW UNIVERSITY

A tool for DEVS Modeling and Simulation. User’s Guide
Canada’s Capital University

user(@ars-lab: ~

File Edit View Search Terminal Help

kB]

Get:10 http://security.ubuntu.comfubuntu bionic-security/main Translation-en [16

5 kB]

Get:11 http://security.ubuntu.comfubuntu bionic-security/main amd&64 DEP-11 Metad

ata [22.8 kB]

Get:12 http://security.ubuntu.comfubuntu bionic-security/main DEP-11 48x48 Icons
[16.4 kB]

Get:13 http://security.ubuntu.comfubuntu bionic-security/main DEP-11 64x64 Icons
[31.7 kB]

Get:14 http://security.ubuntu.comf/ubuntu bionic-security/universe amd64 Packages
[596 kB]

Get:15 http://in.archive.ubuntu.com/ubuntu bionic-updates/main amd64 Packages [7

12 kB]

Get:16 http://security.ubuntu.com/ubuntu bionic-security/universe i386 Packages
[585 kB]

Get:17 http://security.ubuntu.comfubuntu bionic-security/universe Translation-en
[197 kB]

Get:18 http://security.ubuntu.comfubuntu bionic-security/universe amd64 DEP-11 M

etadata [42.1 kB]

Get:19 http://security.ubuntu.comfubuntu bionic-security/universe DEP-11 64x64 I

cons [113 kB]

Get:20 http://security.ubuntu.comfubuntu bionic-security/multiverse amd64 DEP-11
Metadata [2,464 B]

57% [15 Packages 478 kB/712 kB 67%] 243 kB/s 17s]]

user{@ars-lab: ~

File Edit View Search Terminal Help
Get:25 http://in.archive.ubuntu.com/ubuntu bionic-updates/universe 1386 Packages
[975 kB]
Get:26 http://in.archive.ubuntu.com/ubuntu bionic-updates/universe amd64 Package
s [998 kB]
et:27 http://in.archive.ubuntu.comfubuntu bienic-updates/universe Translation-e
kB]
B http://in.archive.ubuntu.comfubuntu bionic-updates/universe amd64 DEP-11
Metadata [253 kB]
Get:29 http://in.archive.ubuntu.comfubuntu biconic-updates/universe DEP-11 48x48
Icons [2685 kB]
Get:30 http://in.archive.ubuntu.comfubuntu biconic-updates/universe DEP-11 64x64
Icons [461 kB]
Get:31 http://in.archive.ubuntu.com/ubuntu bionic-updates/multiverse amd64 DEP-1
1 Metadata [2,468 B]
Get:32 http://in.archive.ubuntu.com/ubuntu bionic-backports/universe amd64 DEP-1
1 Metadata [7,920 B]
Reading package lists... Done
E: The repository 'http://ppa.launchpad.net/jonathonf/gcc-7.1/ubuntu bionic Rele
ase' does not have a Release file.
N: Updating from such a repository can't be done securely, and is therefore disa
bled by default.
N: See apt-secure(8) manpage for repository creation and user configuration deta
ils.
user@ars-lab:~$ I

6. Type the following command on the terminal and press ENTER
sudo apt-get update

7. Enter the administrative password if we are asked. Wait until the installation is finished

Page 18 of 85

2 Carleton

Cadmium
YW UNIVERSITY

A tool for DEVS Modeling and Simulation. User’s Guide
Canada’s Capital University

user@ars-lab: ~

File Edit View Search Terminal Help
1 Metadata [7,920 B]
Reading package lists... Done
E: The repository 'http://ppa.launchpad.net/jonathonf/gcc-7.1/ubuntu bionic Rele
ase' does not have a Release file.
N: Updating from such a repository can't be done securely, and is therefore disa
bled by default.
N: See apt-secure(8) manpage for repository creation and user configuration deta
ils.
user@ars-lab:~$ sudo apt-get update
Hit:1 http://in.archive.ubuntu.com/ubuntu bionic InRelease
Ign:2 http://ppa.launchpad.net/jonathonf/gcc-7.1fubuntu bionic InRelease
Hit:3 http://in.archive.ubuntu.com/ubuntu bionic-updates InRelease
Hit:4 http://security.ubuntu.com/ubuntu bionic-security InRelease
Hit:5 http://in.archive.ubuntu.com/ubuntu bionic-backports InRelease
Err:6 http://ppa.launchpad.net/jonathonf/gcc-7.1fubuntu bionic Release
404 Not Found [IP: 91.189.95.83 80]
Reading package lists... Done
E: The repository 'http://ppa.launchpad.net/jonathonf/gcc-7.1/ubuntu bionic Rele
ase' does not have a Release file.
N: Updating from such a repository can't be done securely, and is therefore disa
bled by default.
\: See apt-secure(8) manpage for repository creation and user configuration deta
ils.
user@ars-lab:~$ I

8. Type the following command in the Ubuntu terminal and press ENTER:
sudo apt-get install gcc-7 g++-7

user{@ars-lab: ~

File Edit View Search Terminal Help

ncau LIIH PDLI\DHC LLILI e & » vunic
E: The repositery 'http://ppa.launchpad.net/jonathonf/gcc-7.1/ubuntu bionic Rele
ase' does not have a Release file.
MN: Updating from such a repository can't be done securely, and is therefore disa
bled by default.
MN: See apt-secure(8) manpage for repository creation and user configuration deta
ils.
user@ars-lab:~$ sudo apt-get install gcc-7 g++-7
Reading package lists... Done
Building dependency tree
Reading state information... Done
Suggested packages:
g++-7-multilib gcc-7-doc libstdc++6-7-dbg gcc-7-multilib gcc-7-locales
libgccl-dbg libgompl-dbg libitmil-dbg libatomic1l-dbg libasan4-dbg
1iblsan@-dbg libtsan®-dbg libubsan®-dbg libcilkrts5-dbg libmpx2-dbg
libquadmath@&-dbg
The following NEW packages will be installed:
g++-7 gcc-7
0 upgraded, 2 newly installed, ©® to remove and 400 not upgraded.
Meed to get @ B/15.0 MB of archives.
After this operation, 51.6 MB of additional disk space will be used.
Selecting previously unselected package gcc-7.
(Reading database ... 183967 files and directories currently installed.)
Preparing to unpack .../fgcc-7_7.4.0-1ubuntul~18.04.1_amd64.deb ...

9. When we are asked "Do we want to continue?" type: y and press ENTER to resume with the
installation. Wait until the installation process is finished.

10. Type the following command in the Ubuntu terminal and press ENTER:

Page 19 of 85

Cadmium
A tool for DEVS Modeling and Simulation. User’s Guide

11.

12.

13.

Carleton

YW UNIVERSITY

Canada’s Capital University

sudo update-alternatives --install /usr/bin/gcc gcc /usr/bin/gcc-7
60 --slave /usr/bin/gcc-ar gcc-ar /usr/bin/gcc-ar-7 --slave
/usr/bin/gcc-nm gcc-nm /usr/bin/gcc-nm-7 --slave /usr/bin/gcc-

ranlib gcc-ranlib /usr/bin/gcc-ranlib-7

Enter the administrative password if we are asked. Wait until the installation is finished

user{@ars-lab: ~

File Edit View Search Terminal Help

user@ars-lab:~$ sudo update-alternatives --install Jusr/binjfgcc gcc fusrfbinfgcc
-7 60 --slave fusr/binfgcc-ar gcc-ar fusr/bin/gcc-ar-7 --slave fusr/bin/gcc-nm g
cc-nm fusr/bin/gcc-nm-7 --slave fusr/bin/gcc-ranlib gcc-ranlib fusr/bin/gcc-ranl
ib-7

[sudo] password for user:

user@ars-lab:~% I

Type the following command in the Ubuntu terminal and press ENTER:

sudo update-alternatives --install /usr/bin/g++ g++ /usr/bin/g++-7

60 --slave /usr/bin/g++-ar g++-ar /usr/bin/g++-ar-7 --slave
/usr/bin/g++-nm g++-nm /usr/bin/g++-nm-7 --slave /usr/bin/g++-

ranlib g++-ranlib /usr/bin/g++-ranlib-7
Enter the administrative password if we are asked. Wait until the installation is finished

user@ars-lab: ~
File Edit View Search Terminal Help
user@ars-lab:~$% sudo update-alternatives --install /fusr/binfgcc gcc fusrfbinfgcc
-7 60 --slave fusr/fbin/gcc-ar gcc-ar fusr/binfgcc-ar-7 --slave fusr/bin/gcc-nm g
cc-nm fusr/bin/gcc-nm-7 --slave fusr/binfgcc-ranlib gcc-ranlib fusr/bin/gcc-ranl
ib-7
[sudo] password for user:
user@ars-lab:~$ sudo update-alternatives --install /fusr/binfg++ g++ fusr/bin/g++
-7 60 --slave fusr/binfg++-ar g++-ar fusr/binfg++-ar-7 --slave [fusr/bin/g++-nm g
++-nm fusr/bin/g++-nm-7 --slave fusr/binfg++-ranlib g++-ranlib fusr/bin/g++-ranl
ib-7
update-alternatives: using fusr/bin/g++-7 to prowvide fusr/binf/g++ (g++) in auto

e-alternatives: warning: skip creation of Jusr/bin/g++-ar because associate

e fusr/binfg++-ar-7 (of link group g++) doesn't exist

e-alternatives: warning: skip creation of Jusr/bin/g++-nm because associate

e fusr/bin/g++-nm-7 (of link group g++) doesn't exist

e-alternatives: warning: skip creation of /fusr/bin/g++-ranlib because assoc
iated file Jfusr/bin/g++-ranlib-7 (of link group g++) doesn't exist
user@ars-lab:~%

14. To verify that g++-7 is installed on your computer, type the following command in the terminal and

press

g++ —--version

Page 20 of 85

ENTER:

Cadmium &7 Carleton

A tool for DEVS Modeling and Simulation. User’s Guide . UNIVERSITY
Canada’s Capital University

user@ars-lab: ~

File Edit View Search Terminal Help

user@ars-lab:~$ gcc --version

gcc (Ubuntu 7.4.0-1ubuntul-~18.04.1) 7.4.0
Copyright (C) 2017 Free Software Foundation, Inc.

This is free software; see the source for copying conditions. There is NO
warranty; not even for MERCHANTABILITY or FITMESS FOR A PARTICULAR PURPOSE.

user@ars-lab:~$ I

Installing Git

1. To check if your computer has Git installed in, open Ubuntu terminal by pressing: “Ctrl + Alt + t”. Do
not close the terminal until the installation process is complete.
2. Type the following command and press ENTER:
git
If git is not installed, the terminal looks like this.
user@ars-lab: ~
File Edit View Search Terminal Help
user@ars-lab:~$ git

Command 'git' not found, but can be installed with:

sude apt install git

If git is already installed, the terminal looks as follows and we can skip the rest of this section.

user@ars-lab: ~

File Edit View Search Terminal Help

user@ars-lab:~$ git

usage: git [--version] [--help] [-C <path=] [-c <name=>=<value:x]
[--exec-path[=<path>]] [--html-path] [--man-path] [--info-path]
[-p | --paginate | --no-pager] [--no-replace-objects] [--bare]
[--git-dir=<path>] [--work-tree=<path>] [--namespace=<name=]
<command> [<args=]

These are common Git commands used in various situations:

start a working area (see also: git help tutorial)
clone Clone a repository into a new directory

init Create an empty Git repository or reinitialize an existing one

work on the current change (see also: git help everyday)
add Add file contents to the index
mv Move or rename a file, a directory, or a symlink
reset Reset current HEAD to the specified state
rm Remove files from the working tree and from the index

examine the history and state (see also: git help revisions)
bisect Use binary search to find the commit that introduced a bug
grep Print lines matching a pattern
log Show commit logs
show Show various types of objects

3. To install git on your computer, type the following command
sudo apt-get install git

Page 21 of 85

2 Carleton

Cadmium
YW UNIVERSITY

A tool for DEVS Modeling and Simulation. User’s Guide
Canada’s Capital University

4. Enter the administrative password, i.e. the password we use for signing in into your Ubuntu account
and press ENTER. The installation process begins.

user(@®ars-lab: ~
File Edit View Search Terminal Help
user@ars-lab:~S sudo apt-get install git
[sudo] password for user:
Reading package lists... Done
Building dependency tree
Reading state information... Done
The following additional packages will be installed:
git-man liberror-perl
Suggested packages:
git-daemon-run | git-daemon-sysvinit git-doc git-el git-email git-gui gitk
gitweb git-cvs git-mediawiki git-svn
The following NEW packages will be installed:
git git-man liberror-perl
@ upgraded, 3 newly installed, @ to remove and 400 not upgraded.
Need to get 3,907 kB/4,733 kB of archives.
anfter this operation, 33.9 MB of additional disk space will be used.
Do you want to continue? [Y/n]

5. After a while, the installation is temporarily paused, and the following question appears on the
Ubuntu terminal "Do we want to continue?", type: y and then press ENTER to resume the
installation process. Wait until the installation process is finished.

Page 22 of 85

Carleton

Cadmium _
YW UNIVERSITY

A tool for DEVS Modeling and Simulation. User’s Guide
Canada’s Capital University

user@ars-lab: ~

File Edit View Search Terminal Help
user@ars-lab:~$ sudo apt-get install git
[sudo] password for user:
Reading package lists... Done
Building dependency tree
Reading state information... Done
The following additional packages will be installed:
git-man liberror-perl
Suggested packages:
git-daemon-run | git-daemon-sysvinit git-doc git-el git-email git-gui gitk
gitweb git-cvs git-mediawiki git-swn
The following NEW packages will be installed:
git git-man liberror-perl
0 upgraded, 3 newly installed, ©@ to remove and 488 not upgraded.
Need to get 3,907 kB/4,733 kB of archives.
After this operation, 33.9 MB of additional disk space will be used.
Do you want to continue? [Y/n] y
Get:1 http://in.archive.ubuntu.comfubuntu bionic-updates/main amd64 git amdé4 1:
2.17.1-1ubuntue.4 [3,907 kB]
88% [1 git 3,614 kB/3,907 kB 92%]]
The following NEW packages will be installed:
git git-man liberror-perl
® upgraded, 3 newly installed, ©® to remove and 460 not upgraded.
Need to get 3,907 kB/4,733 kB of archives.
After this operation, 33.9 MB of additional disk space will be used.
Do you want to continue? [Y/n] ¥y
Get:1 http://in.archive.ubuntu.comfubuntu bionic-updates/main amd64 git amdé4 1:
2.17.1-1ubuntu®.4 [3,907 kB]
Fetched 582 kB in 75 (79.0 kB/s)
Selecting previously unselected package liberror-perl.
(Reading database ... 184045 files and directories currently installed.)
Preparing to unpack .../liberror-perl ©.17825-1 all.deb ...
Unpacking liberror-perl (0.17825-1)
Selecting previously unselected package git-man.
Preparing to unpack .../git-man_1%3a2.17.1-1ubuntu®.4 all.deb ...
Unpacking git-man (1:2.17.1-1ubuntu@.4)
Selecting previously unselected package git.
Preparing to unpack .../git 1%3a2.17.1-1ubuntu®.4 amd64.deb ...
Unpacking git (1:2.17.1-1ubuntu®.4)
Setting up git-man (1:2.17.1-1ubuntu®.4)
Setting up liberror-perl (©.17025-1)
Processing triggers for man-db (2.8.3-2ubuntu®.1)
Setting up git (1:2.17.1-1ubuntud.4)
user@ars-Llab:~$

Installing the ‘make’ command
1. Open the terminal (Press CTRL + Alt + t) and the type following command:
sudo apt-get install make
2. Enter the administrative password if we are asked. Wait until the installation is finished

user@ars-lab: ~

File Edit View Search Terminal Help
ser@ars-lab:~$ sudo apt-get install make
eading package lists... Done

Building dependency tree

Reading state information... Done

ake is already the newest version (4.1-9.1ubuntul).

O upgraded, 8 newly installed, ® to remove and 398 not upgraded.
ser@ars-lab:~§ I

Page 23 of 85

Carleton

Cadmium
YW UNIVERSITY

A tool for DEVS Modeling and Simulation. User’s Guide
Canada’s Capital University

Downloading and installing the Cadmium Simulator

1. Create a new folder in the Home directory and name it as “CADMIUM”.

¢ 1 Home Pictures

o I IR R R

‘ Desktop Documents Downloads Music Pictures Public

Desktop

Documents i 7 1 ﬂ d

Dannia Templates Videos Examples

Music

Pictures

2. Open Ubuntu terminal by pressing: “Ctrl + Alt + t”. Type the following commands:
cd CADMIUM/
git clone https://github.com/SimulationEverywhere/Cadmium-Simulation-

Environment.git
cd Cadmium-Simulation-Environment
git submodule update --init --recursive

user@ars-lab: ~/CADMIUM/Cadmium-Simulation-Environment

File Edit View Search Terminal Help
user@ars-lab cd CADMIUM[
user@ars-lab: 1IUMS git clone htt :‘//glthub com/SimulationEverywhere/Cadmium-Simulation-Environment.git
Cloning into 'Cadmium 1mulat10n Environment'.
e: Enumerating object
e: Counting objects: 100
: Compressing objects: 3% (
Tutal 10 (delta 2), reused 10 (delta 2), pack-reused @
; (18/10)
] 1tS git submodule update --init --recursive
;ubmodulc (admlum DEVS e /glthub com/»1mulatlonEverywhcrc/(admium-DEVS-Models.git) registered for path 'Cadmium-DEVS-Models'
Submodule 'DESTimes' (https Jgithub. com/vlmulatlonEverywhere/DESTimes.git) registered for path 'DESTimes'
Submodule 'cadmium' (https://github.com/SimulationEverywhere/cadmium.git) registered for path 'cadmium'
Cloning into '/home/user/CADMIUM/Cadmium mulation-Environment/Cadmium-DEVS-Models'.
Cloning into '/home/user/CADMIUM/Cadmium mulation-Environment/DESTimes'...
Cloning into '/home/user/CADMIUM/Cadmium mulation-Environment/cadmium’'...
Ssubmodule path 'Cadmium-DEVS-Models': checked out 'af7564a528f616894bff9933896d4eba263c9bco’
Submodule 'ABP' (https://github.com/SimulationEverywhere/Cadmium-ABP.git) registered for path 'Cadmium-DEVS-Models/ABP'
Cloning into '/home/fuser/CADMIUM/Cadmium-Simulation-Environment/Cadmium-DE Models /ABP'..
Submodule path 'Cadmium-DEVS-Models/ABP': checked out 'b5ff8993ebea296 405b1053c76133¢c91fd’
Submodule path 'DESTimes': checked out 'dobidofa44fb2847f95bc16b84815238b0cf6826'
submodule path 'cadmium': checked out '2e37841b10d659b434caf6ff bea3a313357"'
Submodule 'cmake-modules' (https://github.com/bilke/cmake-modules.git) registered for path 'cadmium/cmake-modules’
Cloning into '[home[qur[CnDMIUM/(admium Simulation- Env1ronment[(admlum/(make modules’
Submodule path e - s ecke ut fcfc0494c45fc24fac3999ndbn5«b9bdeeaa4fdk
user@ars-lab: ulatio nt$

Now we have Cadmium set up. If we open the folder Cadmium-Simulation-Environment, it has to look as
follows:

4r Home CADMIUM Cadmium-Simul...n-Environment

Recent

]]

cadmium Cadmium- DESTimes README.
Desktop DEVS- md
Models

Home

Documents

Downloads

Music

Page 24 of 85

https://github.com/SimulationEverywhere/Cadmium-Simulation-Environment.git
https://github.com/SimulationEverywhere/Cadmium-Simulation-Environment.git

Carleton

Cadmium
YW UNIVERSITY

A tool for DEVS Modeling and Simulation. User’s Guide
Canada’s Capital University

Compiling and Running a Cadmium DEVS Model

As we could see, when we download the Cadmium Simulation Environment it comes with a Model Library
(Folder: DEVS-Models). We will use the ABP model as an example to show how to compile a Cadmium model
and how to run the tests and the model.

1. Compile the project and the tests

1. Open terminal inside the folder ABP:

Inside the Cadmium-ABP folder, (Press CTRL + Alt + t).
2. To compile the project and the tests, type:

make clean; make all

user@ars-lab: ~/CADMIUM/Cadmium-Simulation-E

File Edit View Search Terminal Help
ser@ars-lab:~ DMIUM mium-Simulation-Environment, mium-DEVS-Mo /ABPS make clean; make all
rm -f bin/* build/*
-g -c -std=c++17 -I ../../cadmium/include top_model/main.cpp -o build/main_top.o
-c -std=c++17 -I ../../cadmium/include data_structures/message.cpp -o build/message.o
-o bin/ABP build/main_top.o build/message.o

-c -std=c++17 -I ..[../cadmium/include test/main_subnet_test.cpp -o build/main_subnet_test.o
-c -std=c++17 -I ../../cadmium/include test/main_sender_test.cpp -o build/main_sender_test.o
-c -std=c++17 -I ../../cadmium/include test/main_receiver_test.cpp -o build/main_receiver_test.o
-0 bin/SUBNET_TEST build/main_subnet_test.o build/message.o
-0 bin/SENDER_TEST build/main_sender_test.o build}message 0
-0 bin/RECEIVER_TEST build/main_recei
ser@ars-lab:~ IMIU mium-Simulation-E

2. Runtests
1. Open aterminal inside the subfolder bin:
Inside the bin folder, (Press CTRL + Alt + t) to open the terminal.

2. Torun the subnet test, type:
./SUBNET TEST

3. Torun the receiver test, type:
./RECEIVER TEST

4. To run the sender test, type:
/SENDER TEST

user@ars-lab:~, IMIL ium-Simulation-Environme mium-DEVS-Models [/ [binS . /SUBNET_TEST
Model Created. Elapsed ti 0.000262044sec
Runner Created. Elapsed time: 0.000531693sec
Simulation starts
Simulation took:@. 004052?95ec
user@ars-lab: MIL ium-Simula n-Environme mium-DEVS-Mode 'bin$./RECEIVER_TEST
Model Created. Elapsed time: 0.000332986sec
Runner Created. Elapsed time: 0.00060023sec

Simulation starts

Simulation took:0.00219833sec

user@ars-lab:~/CADMIUM dmium-Simulation-Environme mium-DEVS-Models/ABP/bin$./SENDER_TEST
Model Created. Elapsed ti 0.000494002s5ec

Runner Created. Elapsed time: 0.000865851s5ec

Simulation starts

user@ars-Llab: JMIUM ium-Simulation-Env e mium-DEVS-}

5. To check the output of the tests, go to the folder simulation_results and open the respective
files

3. Run the top model

Page 25 of 85

=2 Carleton

Cadmium
YW UNIVERSITY

A tool for DEVS Modeling and Simulation. User’s Guide
Canada’s Capital University

1. Open aterminal inside the subfolder bin:
Inside the bin folder, (Press CTRL + Alt + t) to open the terminal.

2. To run the model, type:
./ABP ../input data/input abp 1.txt

File Edit View Search Terminal Hel
user@ars-Llab] r
Model Created. Elap

Runner Created. Elapsed time:
Simulation st
user@ars-lab:

3. To check the output of the model, go to the folder simulation _results and open
"abp_output.txt"

4. To run the model with different inputs

1. Create new .txt files with the same structure as input_abp_0.txt or input_abp_1.txt in the
folder input_data

2. Run the model using the instructions in step 3

3. If we want to keep the output, rename abp_output.txt. Otherwise, it will be overwritten
when we run the next simulation.

MacQOS - Installation and example

System requirements
1. MacO0S 10.11 or higher
2. RAM 16GB (we will be able to run small models with 4GB RAM)

Installing Command Line Tools

In order to run Cadmium, we need to install different tools, such as make, git, or g++. To do so, follow the
next steps:

1. Open aterminal:
a. Use the keyboard shortcut “Command + Space” to open Spotlight Search.
b. Typein “terminal”.
c. You should see the Terminal application under Top Hit at the top of your results. Double-
click it and Terminal will open.

2. Type the following command in the terminal screen, and press ENTER
xcode-select —-install

3. A software update popup window will appear asking for permission to install the command line
developer tools. Click “Install” to download them and agree to the Terms of Service (after reading
them, of course).

Page 26 of 85

Cadmium =2 Carleton

A tool for DEVS Modeling and Simulation. User’s Guide . UNIVERSITY
Canada’s Capital University

Installing Homebrew and Boost

Cadmium uses different C++ source libraries provided by Boost. We have to install first Homebrew, a
package manager for MacOS.

1. Open aterminal:
a. Use the keyboard shortcut “Command + Space” to open Spotlight Search.
b. Typein “terminal”.
c. You should see the Terminal application under Top Hit at the top of your results. Double-
click it and Terminal will open.

2. Type the following command and press ENTER: /usr/bin/ruby -e “$(curl -fsSL
https://raw.githubusercontent.com/Homebrew/install /master/install)”
3. Install Boost typing the following command: brew install boost

Downloading and installing the Cadmium Simulator
1. Create a new folder in the Home directory and name it as “CADMIUM”.

#i rcardenas
v # v
Favorites
[£) Recents
2\ Applications f | -

12} rcardenas

Applications Desktop Documents
B GreenLSI

k" Documents

Master ﬁ -

[*.] Desktop
iCloud Drive Movies

O Downloads (Archive)
(@) AirDran

2. Open aterminal:
a. Use the keyboard shortcut “Command + Space” to open Spotlight Search.
b. Typein “terminal”.
¢. You should see the Terminal application under Top Hit at the top of your results. Double-
click it and Terminal will open.

3. Type the following commands:
cd CADMIUM/

git clone https://github.com/SimulationEverywhere/Cadmium-Simulation-
Environment.git

cd Cadmium-Simulation-Environment/

git submodule update --init --recursive

Page 27 of 85

https://github.com/SimulationEverywhere/Cadmium-Simulation-Environment.git
https://github.com/SimulationEverywhere/Cadmium-Simulation-Environment.git

Carleton

Cadmium
YW UNIVERSITY

A tool for DEVS Modeling and Simulation. User’s Guide
Canada’s Capital University

[] BB Cadmium-Simulation-Environment — -bash — 124x27

e i~ > cd CADMIUM/
@ :CADMIIM > git clone https://github.com/SimulationEverywhere/Cadmium-Simulation-Environment.git
Cloning into 'Cadmium-Simulation-Environment”...
remote: Enumerating objects: 31, done.
remote: Counting objects: 100% (31/31), done.
remote: Compressing objects: 100% (26/26), done.
remote: Total 31 (delta 13), reused 18 (delta 5), pack-reused @
Unpacking objects: 100% (31/31), done.
@ :CADMIIM > cd Cadmium-Simulation-Environment/
@ : Cadmium-Simulation-Environment > git submodule update --init --recursive
Submodule 'DESTimes' (https://github.com/SimulationEverywhere/DESTimes.git) registered for path 'DESTimes'
Submodule 'DEVS-Models' (https://github.com/SimulationEverywhere/Cadmium-DEVS-Models.git) registered for path 'DEVS-Models'
Submodule 'cadmium' (https://github.com/SimulationEverywhere/cadmium.git) registered for path 'cadmium'
Cloning into '/Users/rcardenas/CADMIUM/Cadmium-Simulation-Environment/DESTimes'. ..
Cloning into '/Users/rcardenas/CADMIUM/Cadmium-Simulation-Environment/DEVS-Models”'. ..
Cloning into '/Users/rcardenas/CADMIUM/Cadmium-Simulation-Environment/cadmium’. ..
Submodule path 'DESTimes': checked out 'd9b1d9fad4fb2847f95bc10b84815238bOcf6826"
Submodule path 'DEVS-Models': checked out 'f3a29dladabfed666769f26ba2c227ae3a76ef39"
Submodule 'ABP' (https://github.com/SimulationEverywhere/Cadmium-ABP.git) registered for path 'DEVS-Models/ABP'
Cloning into '/Users/rcardenas/CADMIUM/Cadmium-Simulation-Environment/DEVS-Models/ABP" . . .
Submodule path 'DEVS-Models/ABP': checked out '42b59474135de9b20e866@8dacade8bd2f@@1bsb’
Submodule path 'cadmium': checked out 'b6636f791d3fbff41b6b72e1d9e34cel8152065d"
Submodule 'cmake-modules' Chttps://github.com/bilke/cmake-modules.git) registered for path "cadmium/cmake-modules'
Cloning into '/Users/rcardenas/CADMIUM/Cadmium-Simulation-Environment/cadmium/cmake-modules’. ..
Submodule path 'cadmium/cmake-modules': checked out 'fcfc@494c45fc24fae39996db658b9bdeeaadfd8’
@ : Cadmium-Simulation-Environment >

Now we have Cadmium set up. If we open the folder Cadmium-Simulation-Environment, it has to look as
follows:

@ (BB Cadmium-Simulation-Environment

<

Favorites

[£) Recents
.,Z\, Applications ’ 4 » MD

fj‘ rcardenas cadmium DESTimes DEVS-Models README.md

B GreenLSl
Documents
P Master

] Desktop

Compiling and Running a Cadmium DEVS Model

As we could see, when we download the Cadmium Simulation Environment it comes with a Model Library
(Folder: DEVS-Models). We will use the ABP model as an example to show how to compile a Cadmium model
and how to run the tests and the model.

1. Compile the project and the tests
1. Open aterminal:
i. Use the keyboard shortcut “Command + Space” to open Spotlight Search.
ii. Typein “terminal”
iii. You should see the Terminal application under Top Hit at the top of your results.
Double-click it and Terminal will open

2. Type the following to change the working directory to Cadmium-DEVS-Models/ABP folder:
cd CADMIUM/Cadmium-Simulation-Environment/DEVS-Models/ABP

Page 28 of 85

Carleton

Cadmium
YW UNIVERSITY

A tool for DEVS Modeling and Simulation. User’s Guide
Canada’s Capital University

3. To compile the project and the tests, type:
make clean; make all

° B ABP — -bash — 130x13
@ :~ > cd CADMIUM/Cadmium-Simulation-Environment/DEVS-Models/ABP/
@ :ABP > make clean; make all
rm -f bin/* build/*
g++ -g -c -std=c++17 -I ../../cadmium/include -I ../../DESTimes/include top_model/main.cpp -o build/main_top.o
g++ -g -c -std=c++17 -I ../../cadmium/include -I ../../DESTimes/include data_structures/message.cpp -o build/message.o
g++ -g -0 bin/ABP build/main_top.o build/message.o
g++ -g -c -std=c++17 -I ../../cadmium/include -I ../../DESTimes/include test/main_subnet_test.cpp -o build/main_subnet_test.o

g++ -g -C -std=c++17 -I ../../cadmium/include -I ../../DESTimes/include test/main_sender_test.cpp -o build/main_sender_test.o
g++ -g -c -std=c++17 -I ../../cadmium/include -I ../../DESTimes/include test/main_receiver_test.cpp -o build/main_receiver_test.o
g++ -g -0 bin/SUBNET_TEST build/main_subnet_test.o build/message.o
g++ -g -0 bin/SENDER_TEST build/main_sender_test.o build/message.o
g++ -g -0 bin/RECEIVER_TEST build/main_receiver_test.o build/message.o
@ :ABP >

2. Runtests
1. Open aterminal:
i. Use the keyboard shortcut “Command + Space” to open Spotlight Search.
ii. Typein “terminal”
iii. You should see the Terminal application under Top Hit at the top of your results.
Double-click it and Terminal will open

2. Type the following to change the working directory to Cadmium-DEVS-Models/ABP/bin

folder:
cd CADMIUM/Cadmium-Simulation-Environment/DEVS-Models/ABP/bin

3. To runthe subnet test, type:
. /SUBNET_TEST

4. To run the receiver test, type:
./RECEIVER TEST

5. To run the sender test, type:
./SENDER TEST

[) il bin — -bash — 84x5

rcardenas@ i~ > cd CADMIUM/Cadmium-Simulation-Environment/DEVS-Models/ABP/bin/
rcardenas@ :bin > ./SUBNET_TEST

rcardenas@ :bin > ./RECEIVER_TEST
rcardenas@ :bin > ./SENDER_TEST
rcardenas@ :bin >

6. To check the output of the tests, go to the folder simulation_results and open the respective

files

3. Run the top model
1. Open aterminal:
i. Use the keyboard shortcut “Command + Space” to open Spotlight Search.
ii. Typein “terminal”.
iii. You should see the Terminal application under Top Hit at the top of your results.
Double-click it and Terminal will open

2. Type the following to change the working directory to Cadmium-DEVS-Models/ABP/bin

folder:
cd CADMIUM/Cadmium-Simulation-Environment/DEVS-Models/ABP/bin

Page 29 of 85

=2 Carleton

Cadmium
YW UNIVERSITY

A tool for DEVS Modeling and Simulation. User’s Guide
Canada’s Capital University

3. To run the model, type:
./ABP ../input data/input abp 1.txt

o i@ bin — -bash — 84x5

rcardenas@ :~ > cd CADMIUM/Cadmium-Simulation-Environment/DEVS-Models/ABP/bin/
rcardenas@ :bin > ./ABP ../input_data/input_abp_1.txt

rcardenas@ :bin >

4. To check the output of the model, go to the folder simulation results and open
"abp_output.txt"

4. To run the model with different inputs
1. Create new .txt files with the same structure as input_abp_0.txt or input_abp_1.txt in the
folder input_data

2. Run the model using the instructions in step 3

If we want to keep the output, rename abp_output.txt. Otherwise, it will be overwritten when we run the
next simulation.

DEVS Model definition: An Example

This section describes the mechanism to define and incorporate new atomic models into Cadmium. These
models can be used to interact directly with other models or to be part of a DEVS coupled model.

Atomic models have to be defined in an .hpp file and coded in C++. These .hpp files can be created with our
preferred text editor. We will start defining a simple example of an atomic model. We use this example to
explain how to define an atomic model. In the following sections, we will continue using this example to
explain how to define a coupled model, how to define simulation loggers and how to call the simulator.

Subnet: an atomic model example implemented in Cadmium

When we download Cadmium following the instructions in this Manual, a library of models will be
downloaded. These models are available in the folder called DEVS-Models. One of them is an Alternate Bit
Protocol (ABP) model, and it is stored in the folder ABP. Repository available at:
https://github.com/SimulationEverywhere/Cadmium-Simulation-Environment. We will use this ABP example
to explain how to implement models in Cadmium.

Figure 1 shows the ABP model coupled model. The Alternating Bit communication protocol tries to provide
reliable transmission on an unreliable network. The ABP model consists of 3 components: A sender, which
transmits messages; a network, and a receiver, which receives the messages transmitted by the sender and
returns acknowledgement messages (positive or negative). The network is decomposed further to two
subnets corresponding to the sending and receiving channels respectively. The sender and the receiver
communicate with each other through the network component.

Page 30 of 85

https://github.com/SimulationEverywhere/Cadmium-Simulation-Environment

Carleton

Cadmium .
YW UNIVERSITY

A tool for DEVS Modeling and Simulation. User’s Guide
Canada’s Capital University

ABP Simulator

hl
i i
controlln | Network !
L i i
i |-
dataQut ' inl outl ., m -
| dataOut o subnetl » »
_ ackReceived sender ! i receiver
- i i
|]
packetSent =ack[u i_=out2 subnet? [ind !__out
I |
i i
|

Figure 1 ABP Simulator coupled model

In this section, we will discuss the definition of the subnet atomic model, as an example to introduce the
definition of atomic models in Cadmium. The remaining models are available in the simulator package.

The Subnet atomic model uses one input port and one output port, and the model passes the data it
receives after a time delay. To model the unreliability of the network, only approximately 95% of the data
will be transferred (i.e. 5% of the data will be lost through the subnet).

Figure 2 shows the subnet model implementation in Cadmium.

#ifndef SUBNET HPP
#define SUBNET HPP

#include <cadmium/modeling/ports.hpp>
#include <cadmium/modeling/message bag.hpp>

#include <limits>
#include <assert.h>
#include <string>
#include <random>

#include "../data structures/message.hpp"

using namespace cadmium;
using namespace std;

/***** (1) *****/

//Port definition
struct Subnet defs/{
struct in : public in port<Message t> {};
struct out : public out port<Message t> {};
}i

/***** (2) *****/

template<typename TIME> class Subnet(

public:
using input ports=tuple<typename Subnet defs::in>;
using output ports=tuple<typename Subnet defs::out>;

/***** (3) *****/

// state definition
struct state type{

Page 31 of 85

= Carleton

Cadmium
YW UNIVERSITY

A tool for DEVS Modeling and Simulation. User’s Guide
Canada’s Capital University

bool transmitting;
Message t packet;
int index;

}i

state type state;

/***** (4) *****/

// default constructor
Subnet () {
state.transmitting = false;
state.index 0;

}

/‘k‘k‘k‘k‘k (5) *‘k‘k‘k‘k/

// internal transition
void internal transition() {
state.transmitting = false;

}

/*k*k*k*k‘k (6) *k*k*k*k*k/

// external transition
void external transition(TIME e, typename
make message bags<input ports>::type mbs) {

vector<Message t> bag port in;

bag port in = get messages<typename Subnet defs::in>(mbs);

state.index++;

if ((double)rand() / (double) RAND MAX < 0.95){
state.packet = bag port in[0];

state.transmitting = true;
telse(
state.transmitting = false;

}

/***** (7) *****/

// confluent transition
void confluence transition(TIME e, typename
make message bags<input ports>::type mbs) {
internal transition();
external transition(TIME (), move (mbs));

}

/***** (8) *****/

// output function
typename make message bags<output ports>::type output() const ({

typename make message bags<output ports>::type bags;
vector<Message t> bag port out;

bag port out.push back(state.packet);
get messages<typename Subnet defs::out>(bags) = bag port out;

return bags;

}

/***** (9) *****/

// time advance function
TIME time advance () const {

Page 32 of 85

Carleton

Cadmium _
YW UNIVERSITY

A tool for DEVS Modeling and Simulation. User’s Guide
Canada’s Capital University

TIME next internal;

if (state.transmitting) {

next internal TIME ("00:00:03:000"™) ;
telse {

next internal

numeric limits<TIME>::infinity();

}

return next internal;

}

/***** (lO) *****/
friend ostringstream& operator<<(ostringstreamé& os,
const typename Subnet<TIME>::state type& 1) {
0s << "index: " << i.index << " & transmitting: " << i.transmitting;
return os;
}
}i
#endif // SUBNET HPP

Figure 2. Cadmium implementation of the Subnet atomic model

Creating the hpp where the atomic model is defined
We first create the subnet.hpp file, using the structure provided in Appendix A.

It is important to notice that we cannot have two atomic models with the same name. We use a macro to
avoid multiple “includes” in the atomic model (in this case, we callit SUBNET HPP).

Then, we need to include the simulator libraries that provide services to define new ports
(<cadmium/modeling/ports.hpp>) and to handle bags of messages
(<cadmium/modeling/message_bag.hpp>). We then include any C++ library needed to
implement the model. In this example, we use the 1imits library to set the time advance value to infinity
(when we need to passivate the model). We also use assert .h, which is useful to stop the simulation and
check for errors for non-desired behavior. For example, let us assume that the DEVS atomic model definition
states that the inputs to the model are only integers between 0 and 9. When the model is implemented, we
can use a conditional statement and the methods provided in assert.h to check that the condition is
satisfied. If the condition is not satisfied, the simulation stops, and an error message is displayed. The rest of
the libraries provides some services we use in this specific C++ implementation. In this example, we use
String as we need to manipulate strings, and random to generate random numbers. We use those
functions to generate different delays in message transmission.

In Cadmium, we can transmit messages containing built-in C++ types (integer, float, string, double, bool, etc.)
or we can define our own types. In this case, we define the message as a structure. In this example, we
include the path to the hpp file where the structure is defined (e.g.,, f#include
"../data structures/message.hpp"). If we define more than one type of message (i.e. structure),
we will need to include all the ones used in the model. We will explain the content of message.hpp in the
next section.

Finally, we declare the namespaces we are using, in this case: cadmium and std (otherwise, every time we
use a method/service from the standard C++ library (std), we have to write std::; the same for
cadmiums: :).

Page 33 of 85

Carleton

Cadmium _
YW UNIVERSITY

A tool for DEVS Modeling and Simulation. User’s Guide
Canada’s Capital University

Declaring ports

As seen in Figure 1, the Subnet uses one input port called “in” and one output port called “out”; both ports

carry the same type of message, in this case, a C++ structure called Message t, which is declared in

message. hpp.

As shown in Figure 3, Message t uses two integer variables: packet and bit.

struct Message tf{
Message t(){}

Message t (int i packet, int i bit)
:packet (i _packet), bit(i bit) {}

int packet;
int bit;
}i

istream& operator>> (istreamé& is, Message t& msq);

ostreamé& operator<<(ostreamé& os, const Message té& msqg) ;

Figure 3. Message_t data type declaration

The struct Message t shown here is defined in message.hpp. It is a C++ structure with two
components: packet (which contains the packet number sent through the network), and bit (which
contains an alternating bit used to identify two consecutive packets to provide reliability in the
transmission). Inside the structure, we also have two constructors. The default one (without parameters)
generates a variable of type Message t filled with “garbage”. The second one also generates a variable of
type Message t, butitis filled with the values used to call the constructor.

Inside message . hpp we also declare operators << and >>. We use >> to read data from a file and fill the
structure — optional if you do not have input data coming from a file — and << to save the content of the
structure in a file — needed by the simulator to log the messages.

The two operators are implemented inside a new file called message.cpp (Figure 4) . For the output
operator, we need to specify how we want to output the content of the struct. In this case, we output “the
packet space the bit”. For the input operator, we need to specify in which order the data we read
comes. In this case, we will have two elements, the first one will be assigned to the packet and the second
onetothebit.

It is important to define the >> operator when we are not using built-in data types for messages and we
need to read inputs for the model from a text file. Considering the current definition of the operator, we
need to define the inputs in the input file as “TIME packet_value bit_value”. If we define the inputs in
another order, for example, “TIME bit_value packet_value, packet will not contain “bit_value” and bit
will contain “packet_value”.

//0utput the content of the structure
ostream& operator<<(ostream& os, const Message t& msg) {
os << msg.packet << " " << msg.bit;
return os;
}
//Fill the structure
istream& operator>> (istreamé& is, Message t& msg) {
is >> msg.packet;
is >> msg.bit;
return is;

Figure 4. Implementation of the << and >> operators

Page 34 of 85

Carleton

UNIVERSITY

Cadmium
A tool for DEVS Modeling and Simulation. User’s Guide
Canada’s Capital University

Under “//Port definition” (/***** (1) *x**x/) we define the ports used by the atomic
model. We define them as a structure that contains all the input and output ports of the atomic model (in
this case called Subnet defs). We wuse a structure (named using the convention
“AtomicModelName defs”;in this example, Subnet defs) to avoid compilation problems (multiple
declaration errors). For example, if we have two different atomic models with a port called in and we
declare the ports outside the structure, we will get a compilation error stating ambiguous definition for type
“in”. We avoid this issue declaring the ports inside a structure with a unique name.

Each port is defined as a structure that inherits from the template structures out port and in port
defined in the simulator, specifying the type of message handled by the port. In this case, we defined an
output port called out that handles messages of type Message t and an input port called in that also
handles messages of type Message t.

Declaring the atomic model
Under “/***xx (2) xx***/7 we define the atomic model as a C++ class that implements the model
state and all the DEVS functions following the template in Appendix A.

The models are implemented following a template-based C++ programming style. This style allows us to use
different time classes without changing the model implementation. For experienced users, it also allows
implementing models that can be instantiated with different messages types. For example, we could

implement a subnet model that can transmit any type of message and not just messages of type
Message t.

We give a name to the class used to represent the model; in this case, we call it Subnet and we define the
input and output ports in the class. Everything inside the class is public, asthe simulator has to access the
methods of the class to execute the simulation. As discussed earlier, the ports were declared inside the
structure Subnet defs. To access the input port we would need to use Subnet defs::in and to use
the output port Subnet defs::out.

Once we have declared the types of ports we have (i.e. Subnet defs), we need to assign those ports to the
corresponding atomic model (in this case, defined by the class subnet). We assign them as follows:

using input ports=tuple<typename Subnet defs::in>;
using output ports=tuple<typename Subnet defs::out >;

The C++ keyword using that allows us to rename a data type. Each atomic model must define their input
and output ports as a data type called “input ports” and “output ports” respectively. We need to
use these specific names because the simulator will use them to check that the atomic model has all the
needed components and that the ports are properly defined (e.g. there are not two input ports with the
same name). Both the input and out ports are defined as a tuple (tuple<>), a C++ object that packs
elements of possibly different types together in a single object. We can see it as a vector with elements of
different types. Because of this, we need to specify the type of each of the elements in the tuple. In this
example, both tuples use only one element. Subnet defs::in is the type of the input port tuple and
Subnet defs::out is the type of the output port type. The typename specifies that
Subnet defs::in and Subnet defs::out are data types that will overwrite the template class in
the simulator.

Under “/***x*x*x (3) *xxxxx /7 e declare the state variables of the model inside a structure called
state type. All the state variables of the model must be declared inside a structure called
state type, and a single state variable of type state type name state must be defined. We need
to use these specific names because they are explicitly used by the simulator to check that the model is

Page 35 of 85

Carleton

UNIVERSITY

Cadmium

A tool for DEVS Modeling and Simulation. User’s Guide
Canada’s Capital University

implemented according to the DEVS formalism. The simulator verifies if this structure (which represents the

model’s state) is updated inside the output function or the time advance function (two invalid operations

according to DEVS specifications).

In this example, the state comprises three variables: transmitting, packet, and index.
Transmitting is a Boolean used to define that the model has something to output. Packet stores the
packet to be sent. ITndex counts the packets that went through the network. Once the state structure has
been declared, we create an instance of the structure called state.

Under “/**xx** (4) =***xx/7 e define the constructor for the model, including the initial state. We
must define a default constructor (i.e. without parameters).

We define the default constructor Subnet (). We set index to 0 and transmitting to false. The
content of “packet” is “garbage”, as we do not care about the content of packet until an input message
arrives at the atomic model.

We then define the behavior of all the DEVS functions.

- Internal transition function (/ ***** (5) ****x /). defined by internal transition(), here
the model sets the state variable t ransmitting to false.

- External transition function (/***** (6) ****x/): defined in external transition, it takes
two parameters: the elapsed time (e) and a bag of message (mbs). The declaration of the bag of
messages is as follows: typename make message bags<input ports>::type mbs. As we
already mentioned, typename indicates that the expression that follows is a data type.
make message bags<> is a template data type declared in the simulator in
<cadmium/modeling/message bag.hpp>, used to declare a bag of messages for input or output
ports. We need to instantiate the template with the word input ports to define the input bag, using
: :type. The parameter declaration, in this case, declares mbs as a tuple whose elements are the
message bags on the input ports. Here, mbs is a tuple of one bag: the message bag in port in. The
messages inside the set of messages in the bag are stored in a C++ vector.

We use get messages<typename Subnet defs::in>(mbs) to getthe message bag from the
input port in. The method get_messages uses a template parameter for the port we want to
access, in this case, the in port, defined by typename Subnet defs::in. The function
parameter is the bag of messages we want to access, in this case mbs.

In this example, the bag of the inport port in has a vector of elements of type Message t. We
define the auxiliary variable bag port in (of type vector of Message t) to store the bag in the
port called in.We use the method get messages to retrieve the bag. When a message is received,
it is stored in the state variable packet. Because we are assuming that we receive a single message, we
retrieve the first element of the bag in the in port and we assign it the state variable packet
(state.packet = bag port in[0]). Then, we set transmitting to true with a 95%
probability. With a 5% probability, the message received is lost and therefore the model is not
transmitting anything (transmitting = false).

- Confluent transition function (/***** (7) ****x*/). |n this example, we use the default
implementation for the confluence function, which is executing the model’s internal transition first, and
the external transition after that, with an elapsed time equal to zero.

- Output function (/***** (8) *****/). output uses a bag of messages declared as follows:
typename make message bags<output ports>::type bags, where typename
indicates that the expression that follows is a data type; make message bags<> is a template data
type that the simulator needs (found in <cadmium/modeling/message_bag.hpp>), which is

Page 36 of 85

Carleton

UNIVERSITY

Cadmium
A tool for DEVS Modeling and Simulation. User’s Guide
Canada’s Capital University

instantiated as output ports to define the output bag. Therefore, bags is a tuple whose elements
are the message bags available on the different output ports.
We then declare an auxiliary variable (bag port out) of type vector<Message t> to build the
message bag for the output port out.
We add the packet stored in the state variable state.packet to bag port out.We use the C++
method push_back (), which takes as parameter the element that we want to append to the vector,
in this case, state.packet.
Finally, we copy the content of bag port out to the bag of the port out. To access the content of
the bag of the output port out, we use the method get messages< >. As we already explained
get messages uses a template parameter for the port we want to access, in this case, the port out,
defined as typename Subnet defs::out. The function parameter is the bag of messages we want
to access, in this case bags.

- Time advance function (/***** (9) “****%/): time advance is used to implement the time
advance function of the model. In this case, if we are t ransmitting, the time advance is 3 seconds. If
we do not transmit, the model passivates. The model uses next internal to store the next time
advance. If the state of the model is transmitting, we define the next time advance by updating the
variable next internal. TIME (“00:00:03:000") isthe time in hours, minutes, seconds and
milliseconds. If the model is not transmitting, we passivate the model, by making next internal
infinity using the statement numeric 1limits<TIME>::infinity () (amethodinthe limits
library).

IMPORTANT: According to ST-DEVS, only the transition functions (i.e. external,
internal and confluence) can be stochastic. The time advance function and the
output function MUST be deterministic.

Once all the DEVS functions are defined, we specify how we want to output the state of the model in the
state log (/***** (10) *****/) In this case, we only display two of the state variables: index and
transmitting.

To declare how to log the state of the model, we need to define the << operator for the structure
state type. The operator takes as input parameters the address of the stream where we want to log
(i.e. os)and the state of the model (i.e. i) We use the keyword const before specifying the type of the
state to assure that it will not be modified inside the operator. It is important to notice that we need to use
typename Subnet<TIME>::state type to specify the type of the state. That sentence means that
we are accessing the structure state type inside the template class Subnet<TIME>. We need to
declare the operator using the keyword friend to specify that the function can access the private
members of the structure state type. In this example, the output of our state looks as follows:
“index: index value & transmitting: transmiting value”.

Unit testing the Subnet atomic model

To test the subnet atomic model, we will define a coupled model that contains a generator of test cases
connected to the model, in order to generate simulations scenarios to verify the execution of the model:

Page 37 of 85

2 Carleton

Cadmium
YW UNIVERSITY

A tool for DEVS Modeling and Simulation. User’s Guide
Canada’s Capital University

out in out top_out
input_reader subnetl >

Figure 5. Coupled model for testing the subnet atomic model

The coupled model includes two atomic components: input_reader and subnetl. The input_reader reads a
list of input events stored in a text file that we use to test the Subnet model; the entries in this file have the
format “TIME Message”, and it includes one entrance per line. Cadmium provides a template version of this
model (iestream.hpp) that need to be instantiated with the type of message we want to read.

In Cadmium, all the coupled models are defined in a cpp file (in this case, the file is named
main subnet test.cpp). The logger definition and the call to the simulator runner are also
implemented inside this file.

Figure 6 shows the subnet test coupled model implementation in Cadmium.

//Cadmium Simulator headers

#include <cadmium/modeling/ports.hpp>

#include <cadmium/modeling/dynamic model.hpp>

#include <cadmium/modeling/dynamic coupled.hpp>

#include <cadmium/modeling/dynamic model translator.hpp>
#include <cadmium/engine/pdevs dynamic_ runner.hpp>
#include <cadmium/logger/common loggers.hpp>

//Time class header
#include <NDTime.hpp>

//Messages structures
#include "../data structures/message.hpp"

//Atomic model headers
#include "../atomics/subnet.hpp"
#include <cadmium/basic_model/pdevs/iestream.hpp> //Atomic model for inputs

//C++ libraries
#include <iostream>
#include <string>

using namespace std;
using namespace cadmium;
using namespace cadmium::basic _models::pdevs;

using TIME = NDTime;

/***** (1) *****/

/***x** Define input port for coupled models *****/

/***x** Define output ports for coupled model *****/
struct top_out: public out_port<Message t>{};

/***** (2) *****/

/**xxxx Input Reader atomic model declaration **xxiixiixiixixixixxxx/

template<typename T>

Page 38 of 85

=2 Carleton

Cadmium
YW UNIVERSITY

A tool for DEVS Modeling and Simulation. User’s Guide
Canada’s Capital University

class InputReader Message t : public iestream input<Message t, T> {

public:
InputReader Message t () = default;
InputReader Message t (const char* file path)

iestream input<Message t,T> (file path) {}
i

/***** (3) *****/

int main () {

/**x**x*% Tnput Reader atomic model instantiation *****x*kkkkxkkkkxkxk/
const char * i input data = "../input data/subnet input test.txt";

shared ptr<dynamic::modeling::model> input reader;

input_reader = dynamic::translate::make dynamic_atomic_model
<InputReader Message t, TIME, const char*>("input reader", move (i input data));

/*‘k*‘k* (4) *‘k*‘k*/

/****%x Subnet atomic model instantiation ****xxkkskkxxkkkkkxx/

shared ptr<dynamic::modeling: :model> subnetl;

subnetl = dynamic::translate::make_dynamic_atomic_model<Subnet, TIME> ("subnetl");

/*‘k*‘k* (5) *‘k*‘k*/

/*******TOP MODEL********/

dynamic: :modeling: :Ports iports TOP;
iports TOP = {};

dynamic: :modeling: :Ports oports TOP;
oports TOP = {typeid(top out)};

dynamic: :modeling: :Models submodels TOP;
submodels TOP = {input reader, subnetl};

dynamic: :modeling: :EICs eics_ TOP;
eics TOP = {}; // _EIC WOULD GO HERE ; NOT NEEDED BECAUSE IT IS EMTPY IN THIS EXAMPLE

dynamic: :modeling: :EOCs eocs_TOP;

eocs TOP = {
dynamic::translate: :make_ EOC<Subnet defs::out, top out>("subnetl")

}i

dynamic: :modeling::ICs ics TOP;
ics TOP = {
dynamic::translate: :make_IC<iestream input_ defs<Message_t>::out, Subnet defs::in>(
"input reader", "subnetl")

bi
shared ptr<dynamic::modeling: :coupled<TIME>> TOP;

TOP = make shared<dynamic::modeling::coupled<TIME>> (
"TOP", submodels TOP, iports TOP, oports TOP, eics TOP, eocs TOP, ics TOP
) i

/***** (6) *****/

/*************** Loggers *******************/

static ofstream out messages("../simulation results/subnet test output messages.txt");
struct oss_sink messages/{

static ostreamé& sink () {
return out messages;

Page 39 of 85

Carleton

UNIVERSITY

Cadmi -
admium

A tool for DEVS Modeling and Simulation. User’s Guide
Canada’s Capital University

b
static ofstream out state("../simulation results/subnet test output state.txt");

struct oss sink statef{
static ostreamé& sink () {
return out state;

b7

using state = logger::logger<logger::logger_state, dynamic::logger::formatter<TIME>,
oss_sink state>;

using log messages = logger: :logger<logger: :logger messages,
dynamic: :logger:: formatter<TIME>, oss sink messages>;

using global time mes = logger: :logger<logger: :logger_ global_ time,
dynamic::logger: :formatter<TIME>, oss sink messages>;

using global time sta = logger: :logger<logger: :logger_global time,
dynamic: :logger: : formatter<TIME>, oss_sink state>;

using logger top = logger: :multilogger<state, log messages, global time mes,
global time sta>;

/*‘k*‘k* (7) *‘k*‘k*/

/************** Runner Call ************************/
dynamic: :engine: :runner<NDTime, logger top> r(TOP, {0});
r.run_until (NDTime ("04:00:00:000"));

return O;

Figure 6. Subnet test coupled model implementation

We first include the simulator libraries that provide the different services needed to build and run the
simulation. We need to be able to:

- Define new ports (<cadmium/modeling/ports.hpp>)

- Create every element of a coupled model definition: input ports, output ports, submodels, external
input couplings, external output couplings and internal couplings
(<cadmium/modeling/dynamic _model.hpp>)

- Define the data types for coupled models <cadmium/modeling/dynamic coupled.hpp>

- Create new instances of atomic models and make EIC, EOC and IC
(<cadmium/modeling/dynamic _model translator.hpp>)

- Build coupled models (<cadmium/modeling/dynamic coupled.hpp>)

- Usethe Runner <cadmium/engine/pdevs dynamic runner.hpp>

- Define the loggers we are using (state, message, debug, etc.)
<cadmium/logger/common loggers.hpp>

We then include the header of the Time class we are using, in this case <NDTime.hpp>. NDTime isa C++
class that implements time operations and allows defining the time as in digital clock format
(“hh:mm:ss:mss”) or as a list of integer elements ({ hh, mm, ss, mss}).

As we already mentioned, in Cadmium, we can transmit messages containing built-in C++ types (integer,
float, string, double, bool, etc.) or we can define our own types. In this case, we need to transmit our own
message, which is defined as a structure. Therefore, we include the path to the hpp file where such structure

Page 40 of 85

Carleton

UNIVERSITY

Cadmium

A tool for DEVS Modeling and Simulation. User’s Guide
Canada’s Capital University

is defined ("../data structures/message.hpp"). If we need to define more than one message
type, we need to include all the ones used in the model.

The content of message . hpp is the one explained in the previous section (i.e. it contains the definition of
the message structure Message t).

We then need to include the headers of all the atomic models we are using as components of our coupled

model. In this case, "../atomics/subnet.hpp", where the Subnet atomic model class is defined.
We will use it to create the instance subnetl. We also include
<cadmium/basic model/pdevs/iestream.hpp>, where the template class

iestream input is defined. We will instantiate this general class to create the instance of our atomic
model input reader.

We also need to include the headers of any C++ library needed to implement the model. In this example, we
use the ioestream library to generate simulation logs in files, and St ring to manipulate strings.

We then declare the namespaces we are using, in this case: cadmium ,
cadmium: :basic models::pdevs and std (otherwise, every time we use a method/service from
the standard C++ library (std), we have to write std::; the same for cadmium:: and
cadmium: :basic _models::pdevs). Then, we define that the template parameter TIME is
instantiated with the type NDTime.

Cadmium provides different methods and data types to create instances of atomic models, define, and
create instances of coupled models. It also uses one advanced C++ data type, shared ptr<>, and one
advanced C++ method, make shared<>(), both of them defined in the standard library.
shared ptr<> is a smart pointer that allows shared ownership of an object through a pointer.
make shared<>() is a method that allows creating a shared ptr<>. It uses as a template
parameter the data type that will be stored in the pointer, and as function parameters the constructor
parameters for the data type. We will show a few examples later.

The data types and methods defined in Cadmium are as follows:

- out_port is a structure used to declare the output ports of a model. It is the same structure we
used to declare the output ports of an atomic model. Each port is defined as a structure that inherits
from the template structure out_port specifying the type of message handled by the port. It is
defined in <cadmium/modeling/ports.hpp>.

- in_port is atemplated structure similar to out_port, but for input ports.

- model is an empty class defined in <cadmium/modeling/dynamic model.hpp> under the
namespace dynamic::modeling. It allows pointer-based polymorphism between classes
derived from atomic and coupled models. This means, that it is an abstract class that encapsulates
both atomic and coupled models in such a way that they can be elements in a vector of models.

- make_dynamic_atomic_model<> () is a template method defined in
<cadmium/modeling/dynamic model translator.hpp>.Itisused to create aninstance
of an atomic model. It takes the class type of the atomic model, TIME (because all atomic models
are templated classes that need to be instantiated with a TIME data type), and all the types of the
parameters for the model constructor. The parameters of the method are the name of the atomic
model (a string) and the parameters we need to pass to the constructor. If a parameter in the
constructor is a pointer, we need to use the C++ method move () to pass the pointer to the
constructor.

Page 41 of 85

2 Carleton

Cadmium
YW UNIVERSITY

A tool for DEVS Modeling and Simulation. User’s Guide
Canada’s Capital University

- Ports is a data type used to defined input and output ports. It is defined in
<cadmium/modeling/dynamic model.hpp> under the namespace
dynamic: :modeling. It is a vector that takes as elements the typeid of the port structure
declaration. To provide the type of a port, we use the method typeid () defined in the std C++
library (typeid () takes a data type as input).

- Models is a data type used to define the components of a coupled model. It is defined in
<cadmium/modeling/dynamic model.hpp> under the namespace
dynamic::modeling. It is a vector that takes as elements pointers to models
(shared ptr<dynamic::modeling::model>>)

- EICs is a data type used to define the set of external input couplings. The set is stored as a vector
with elements of type EIC, which is another data type to define each external input. It is
implemented as a structure with two elements: the name of the submodel connected to the
external input (implemented as a string), and a link that represents the external input (implemented
as a shared ptr<>). Both EICs and EIC are defined in
<cadmium/modeling/dynamic model.hpp> under the namespace
dynamic: :modeling.

- make EIC<>() is used to «create an EIC structure. It is defined in
<cadmium/modeling/dynamic model translator.hpp>, and it returns an element of
type EIC. It takes template parameters of the types of the input ports of the coupled model and
the submodel inside the coupled model, in this specific order (i.e. from — to). It uses a parameter
that is a string with the name of the submodel.

- EOCs is a data type similar to EICs above, but for the External Output Couplings.

- make_ EOC<>() is a method similar to make EIC<>() above, but for the External Output
Couplings. It returns an element of type EOC, using the types of the output port of the submodel in
the coupled model, and the output port of the coupled model, in this specific order (i.e. form — to).
The parameter of the method is a string with the name of the submodel.

- ICs is a data type to define internal couplings. It is stored as a vector that takes elements of type
IC, used to define each internal connection. It is implemented as a structure with three elements:
(1) the name of the “from” component (i.e. a string), (2) the name of the “to” component (i.e. a
string), and (3) a link to connect the output port of one component with the input port of the other
component. They are defined in <cadmium/modeling/dynamic model.hpp> under the
namespace dynamic: :modeling.

- make_ IC<>() is used to create the internal couplings, i.e., elements of type IC. It is defined in
<cadmium/modeling/dynamic model translator.hpp>. It uses the type of the output
port of the submodel “from” and the type of the input port of the submodel “to”, in this specific
order (i.e. from output port— to input port). The parameters of the method are two strings, the first
one with the name of the “from” submodel and the second one with the name of the “to” submodel
(i.e. from submodel name — to submodel name).

- coupled<TIME> is a class that defines a coupled model. We use it to create coupled models
instances. It is defined in <cadmium/modeling/dynamic_ coupled.hpp> under the
namespace dynamic: :modeling. The class uses seven variables: (1) a string with the model
name, (2) a variable of type Models representing the subcomponents, (3) a variable of type
Ports for the input ports, (4) a variable of type Ports for the output ports, (5) a variable of
type EICs for external input couplings, (6) a variable of type EOCs for external output couplings
and (7) a variable of type ICs for internal couplings. The constructor of this class takes all these
parameters in this specific order.

Page 42 of 85

Carleton

UNIVERSITY

Cadmium
A tool for DEVS Modeling and Simulation. User’s Guide
Canada’s Capital University

Using these services, under /***** (1) *****x/ we declare the input and output ports of the coupled
model. In this example, we have a coupled model with two atomic components. If there are two different
coupled models using the same port type (i.e., with the same name and message type), we declare the port
type once and we use it for both models. However, the same coupled model cannot have two ports with the
same name (i.e. in our C++ implementation, they cannot be the same type).

In our example, we only need one output port called top out, as seen in Figure 5. This port handles the
same type of message that the output port out from the Subnet model: messages of type Message t.

As we can see in Figure 6, we only define one output port, as there are no inputs in the coupled model.

Under /**x** (2) *x*%*/ we instantiate the template model iestream input (defined in
<cadmium/basic model/pdevs/iestream.hpp> to parse input messages included in a text file.
In this case, the text file will contain messages of type Message t.

We define an atomic model class called InputReader Message t that inherits all the methods of
iestream input. We instantiate iestream input with Message t and we leave the time as a
template parameter (iestream input<Message t, T>). In brief, this creates a new atomic class
that can read text input files that contains messages of type Message t asinputs.

We then need to override the constructors of the model to instantiate the template using Message t asa
parameter. In this case, we define the default constructor (marking with the keyword default). We
define a second constructor that takes the path to the text file where the model inputs are defined
(InputReader Message t (const char* file path)). We use a const parameter because
the input parameter file path cannot be modified inside the constructor. The definition inherits from
the atomic class; we need to instantiate the parameter that represents the type of message
(lestream input<Message t, T> (file path) {}).In summary, this definition instantiates
the class constructors for the new atomic class we created.

Under /***** (3) #***xx*/ we define the main function. We create atomic and coupled models
instances, loggers and we finally call the simulator runner to start the simulation cycle.

In this example, we first have a hardcoded path to the input file and save itin i input data (a pointer
to a string).

We then create an instance of InputReader Message t(i.e. input reader). We define a variable
of type shared ptr<dynamic::modeling::model> to store a pointer to the instance, in this case,
input reader. Asdiscussed earlier, we use make dynamic atomic model<> () to create the
instance. In this case, the method uses (1) InputReader Message t,(2) TIME and(3) const
char* as template parameters. The method parameters are “input reader” and

move(i input data). We will use this instance as the atomic model inside our coupled model.

Under /x**** (4) *=***x*/ we create an instance of Subnet (i.e. subnet1). We define a variable of
type shared ptr<dynamic::modeling::model> to store a pointer to the instance subnetl.
Then, make dynamic atomic model<> () creates the instance. It uses the class type of the atomic
model (Subnet), (2) TIME and (3) the parameters in the model constructor (in this case, there are no
parameters). The parameter string of the method is, in this case, "subnet1", and the constructor takes
no parameters. In brief, this declaration creates an instance of the atomic Subnet. We will use this
instance as the atomic model inside our coupled model.

Page 43 of 85

Carleton

UNIVERSITY

Cadmium

A tool for DEVS Modeling and Simulation. User’s Guide
Canada’s Capital University

Under /*x***x (5) =**x**x/ we define the top-level coupled model. In this particular case, the top

coupled model uses two atomic components. We first must define the input ports, the output ports, the

components, the external input couplings (EICs), the external output couplings (EOCs) and the internal

couplings (ICs).

Input ports: We first create a variable of type Ports to store the input ports (in this case, iports TOP).
Because our top model has no input ports, we define the variable iports TOP as an empty vector ({ }).

Output ports: We then create a variable of type Ports to store the output ports (in this case,
oports TOP). Our top model has one output port: top out. We already declared it under /**** (1)
*¥*x*/ Now, we need to assign it to our top model. Therefore, we define a vector with one element: the type
of the output port ({typeid(top out)}).

Submodels: We then create a variable of type Models to store the components of the coupled model (in
this case, submodels TOP). It contains the instances of submodels inside the coupled model. In this case,
subnetl and input reader. It does not matter the order we use to specify the components of the top
model.

External Input Couplings (EICs): We then create a variable of type EICs to store the external input
couplings (in this case, eics TOP). In our coupled model, we do not have EICs, therefore, we assign an
empty vector to the variable eics TOP ({}).

External Output Couplings (EOCs): To define the external output couplings, we create a variable of type
EOCs (in this case, eocs TOP). In our coupled model, we just have one external coupling connecting the
atomic model subnet1 to the output port top out. The external coupling is defined with the simulator
method make EOC<> () instantiated with the names of the output ports as template parameters (in this
case, Subnet defs::out, top out) and the name of the submodel as the parameter of the method
(in this case, “subnet1”).

Internal Couplings (ICs): To define the internal couplings, we create a variable of type ICs (in this case,
ics TOP). Our coupled model just has one internal coupling connecting the output port of the atomic
model input reader to the input port of the atomic model subnet1. The internal coupling is defined
with the simulator method make IC<> () instantiated with the names of the output and input ports as
template parameters (in this case, iestream input defs<Message t>::out,
Subnet defs::in) and the name of the submodel as the parameter of the method (in this case,
“input reader” and “subnetl”).

Once all the components of the coupled model are defined, we can create the instance of the coupled
model. We first declare the variable where the coupled model will be stored, in this case, TOP. TOP is a
variable of the data type shared ptr<dynamic::modeling::coupled<TIME>> defined in the
simulator. We create the instance our top model using the C++ method make shared<>(). The
parameters of the method are the name of the coupled model (i.e. “TOP”), and all the components we
have defined in the following order: submodels TOP, iports TOP, oports TOP, eics TOP,
eocs TOP, ics TOP - B - -

Once we define all the coupled models and the top model (in this case, we just have the top model), we
need to define the loggers for the simulation.

To run a test, we need to define the inputs for the top model. These inputs are stored in a text file (called
subnet input test.txt) thatthe model input reader will parse and use to generate messages.
Each line of the file is an external input, coded as follows: an event time, a packet number, and the

Page 44 of 85

Carleton

Cadmium _
YW UNIVERSITY

A tool for DEVS Modeling and Simulation. User’s Guide

Canada’s Capital University
alternating bit. We need to specify the packet before the bit, exactly as defined by the >> operator we
discussed earlier in Message t.

If we look at the input file (Figure 7), we can see, for example, that at time 10s, we are generating a packet
with id 1 and alternate bit 1; at time 20s, we are generating a packet with id 2 and alternate bit 0; etc. It is
the responsibility of the modeler to define the input file properly.

00:00:10

11
00:00:20 2 O

00:02:30 15 1
00:02:40 16 O

00:03:20 20 O

Figure 7. Test input file (subnet_input_test.txt)

Figure 8 shows a message log of the simulation for the subnet test coupled model we discussed earlier using
the input file in Figure 7. The log includes the global simulation time followed by the messages generated by
each atomic model on each port at that simulation time.

00:00:10:000

[iestream input defs<Message t>::out: {1 1}] generated by model input reader
00:00:13:000

[Subnet defs::out: {1 1}] generated by model subnetl

00:02:30:000

[iestream input defs<Message t>::out: {15 1}] generated by model input reader
00:02:40:000

[iestream input defs<Message t>::out: {16 0}] generated by model input reader
00:02:43:000

[Subnet defs::out: {16 0}] generated by model subnetl

00:03:20:000

[iestream input defs<Message t>::out: {20 0}] generated by model input reader
00:03:23:000

[Subnet defs::out: {20 0}] generated by model subnetl

Figure 8. Message log of the simulation for the subnet test coupled model

When the simulation starts, the atomic models are initialized. The input reader model is initialized in a
state with time advance zero, so it can start by reading the input event file. Similarly, if we recall our
definition of subnet, we can see that it was initialized in a passive state.

The log shows all the message bags generated by the atomic models every time the simulator collects the
outputs.

Attime 10s, input reader generates a message with value {1 1}. This message is the first input event
retrieved from the input file subnet input test.txt.|f we recall the operator << we defined for
the structure Message t, the message we get has the format {packet bit}

Page 45 of 85

Carleton

Cadmium _
YW UNIVERSITY

A tool for DEVS Modeling and Simulation. User’s Guide

Canada’s Capital University
At time 13s, the subnet1l generates the message {1 1}.The message has the same meaning as before.
If we recall the subnet1 implementation, the model resends the message received with a 95% probability
to simulate failures in a network. In this case, there was no failure.

This pattern is repeated through the simulation every time there is an event on the input file. However, as
we mentioned, the subnet model has a 5% probability of not transmitting a packet. This is what happened at
time 2min 30s. In the log, we can see that input reader generates an output message that is not
transmitted by subnet1. At time 2min 30s, input reader generates the message {15 1} and the
subnetl does not generate any message at time 2min 33s.

The simulation process continues until the simulation finishes at time 3min23s. At that time, there are no
more events in the input files and both atomic models are passivated.

We can also generate a log of the state of each atomic model (Figure 9) (we will explain later on how we
define and change the logs). The log of the state is generated base on the operator << we defined for
each atomic model class. The state log generates the global time when a state on the top model changes,
and the states of all the atomic models at that time. For the atomic model input reader, the stateis
the time of the next internal event. For example, at time 10s, the state is “next time:
00:00:00:000" The state log for the atomic model subnet1 isthe index (i.e. the number of packets the
network has received so far) and if the model is transmitting a message (i.e. 1) or not (i.e. 0). For example, at
time 10s, the stateis “index: 1 & transmitting: 1”.

00:00:10:000

State for model input reader is next time: 00:00:10:000
State for model subnetl is index: 1 & transmitting: 1
00:00:13:000

State for model input reader is next time: 00:00:10:000
State for model subnetl is index: 1 & transmitting: O

00:02:30:000

State for model input reader is next time: 00:00:10:000
State for model subnetl is index: 15 & transmitting: O

00:02:40:000

State for model input reader is next time: 00:00:10:000
State for model subnetl is index: 16 & transmitting: 1

00:02:43:000

State for model input reader is next time: 00:00:10:000
State for model subnetl is index: 16 & transmitting: O

00:03:20:000

State for model input reader is next time: inf

State for model subnetl is index: 20 & transmitting: 1
00:03:23:000

State for model input reader is next time: inf

State for model subnetl is index: 20 & transmitting: O

Figure 9. Log of the state of each atomic model

Looking in more detail, at time 10s, input reader generated the message {1 1}. After executing the
internal transition, the next event is in 10s, which is the state of the model. At time 10s, subnetl

Page 46 of 85

Carleton

UNIVERSITY

Cadmium
A tool for DEVS Modeling and Simulation. User’s Guide
Canada’s Capital University

executed the external transition with the input message {1 1}. After the external transition, the state of
the model is as follows: (1) the number of packets the network has received so faris 1 (index: 1)and (2)
the network has something to transmit (transmitting: 1). Once the elapsed time of the atomic model
subnet1 is over (in this case 3s), the internal transition is triggered in the subnet1 atomic model. As we
can see in the message log, the message {1 1}is transmitted and the model state changes from
transmitting equal true (i.e. 1) to transmitting equal false (i.e. 0). As we can see, the state of the
input reader atomic model does not change because it was not imminent. This pattern is repeated
through the whole simulation every time there is an event on the input file.

We need to notice, that when a packet is lost (e.g. time 2min30sec), the state variable index increases
because the network has received a new packet. However, the state variable t ransmitting is set to false
because that packet will not be transmitted to the output of the model.

We define the loggers under /****x () **xx*/ jnour cpp file above (Figure 6).

First, we need to define the file where we will output the message log. To do so, we create a variable
(out messages)oftype ofstream. Weinitialize out messages with the path to the output file for
the message log ("../simulation results/subnet test output messages.txt").

We then define the structure oss_sink messages to tell the simulator where we will save the output
log. The structure uses a method (sink) that returns a pointer to out messages. We use
oss_sink messages to declare the message logger.

We need to do the same for the state variable log. To do so, we define a variable (out state) of type
ofstream. We initialize out state with the path to the output file for the state log (in this case,
"../simulation results/subnet test output state.txt").

Finally, we define the structure (oss sink state) to tell the simulator where to save the state log. The
structure has a method (sink) that returns a pointer to out state. We will use oss_sink state to
declare the state logger.

To define the logger, we need to include the following declarations:

using state = logger: :logger<logger::logger_ state,
dynamic: :logger: :formatter<TIME>, oss_sink state>;

It defines the state logger. We instantiate the logger with: (1) the logger we are using, in this case
logger_state (defined in <cadmium/logger/logger.hpp>), (2) the formatter (defined in
<cadmium/logger/ dynamic_common_loggers.hpp>), and (3) the sink we just defined (i.e.
oss sink state).

All logs are defined in the same way. Only the first and third template parameters changes because they are
the ones that specify which log we are using and where we generate the log.

using log_messages = logger: :logger<logger::logger messages,
dynamic: :logger: :formatter<TIME>, oss_sink messages>;

It defines the message logger. As in the previous case, we instantiate (1) the logger we are using, in this case,
logger _messages (defined in <cadmium/logger/logger.hpp>), (2) the formatter (defined in
<cadmium/logger/ dynamic_common_loggers.hpp>), and (3) the sink just defined
(oss_sink messages).

Page 47 of 85

2 Carleton

Cadmium
YW UNIVERSITY

A tool for DEVS Modeling and Simulation. User’s Guide
Canada’s Capital University

In order to include the global time of the simulation inside the state and message log, we need to declare a

new logger: global_time. In this specific case, we need two: one for the messages and one for the states

because the logs are generated on different files.

using global time mes = logger: :logger<logger::logger global time,
dynamic: :logger: :formatter<TIME>, oss_sink messages>;

It defines the global time for the message logger. As in the previous case, we instantiate with (1) the logger
we are using, in this case logger_global time (defined in <cadmium/logger/logger.hpp>), (2) the
formatter (defined in <cadmium/logger/ dynamic_common_loggers.hpp>), and (3) the sink
(oss_sink messages).

using global time sta = logger: :logger<logger::logger global time,
dynamic: :logger: :formatter<TIME>, oss_sink state>;

It defines the global time for the state logger as in the previous cases.

Once we have declared all the loggers we need, we have to combine them, so our simulation generates all
the logs at the same time. For this purpose, we use the multilogger structure defined in
<cadmium/logger/logger.hpp> instantiated with the above log definitions (i.e. state, log messages,
global time mes, global time sta) astemplate parameters:

using logger_top = logger: :multilogger<state, log_messages,
global time mes, global time sta>;

After defining the loggers, we need to call the runner to be able to execute the simulation (Figure 7 /*x****
(7) *****/)-

We first create an instance of the runner for our top model, in this case, r. It is an instance of the runner

class defined in <cadmium/engine/ pdevs dynamic runner.hpp> under the namespace
dynamic::engine::

The runner class takes two parameters: the class used for the time (in this case, NDTime) and a logger (in
this case, Logger top). The parameters for the class constructor are the name of the top model (TOP in
our case) and the initial time for the simulation (0 in this case).

Then, we define the end time of the simulation. We have two options: (1) run the simulation until a specific
time or (2) run the simulation until all models are passivated.

To run the simulation until a specific time we use the runner method run until(). This method takes as
parameter the end time of the simulation.

To run the simulation wuntil all models are passivated, we use the runner method
run_until passivate (). This method does not take any parameter.

In our example, we run the simulation until the time is 4h.

A Summary on Port Definition

When we define a DEVS model, we assign them set of input and output ports. Each port can be defined with
a name and a set of values that it can carry. In the example above (Figure 10), we define an input port called
“in” and an output port called “out”. Both of them use the same types, and in Cadmium, this is represented
as messages of type Message t, which represents a bag of values.

Page 48 of 85

Cadmium
A tool for DEVS Modeling and Simulation. User’s Guide

2 Carleton

YW UNIVERSITY

Canada’s Capital University

inkMessage_t> Subnet out <Message_t>

»

Figure 10. Atomic model Subnet with the ports and the message type on each port

To define this port in Cadmium, we must do the following:

1-

DECLARATION OF PORTS (this was done in [***** (1) *****/ in Figure 2). In the declaration, we inform
the simulator which ports we are defining. In our example, we need two ports that are associated to
the Subnet model. The first one is called “in”, and it receives input messages of type Message t
(struct in : public in_port<Message t>{}). Here, in_port<> is a templated
structure (struct) defined in the simulator, which is used to define input ports with templates. It is
mandatory that each input port (in this case, in) is defined as a structure that inherits from
in_port<> and uses a given type of message (in this case Message t). The output port called
“out” is defined in a similar fashion, but using out port<>, a templated structure (struct)
defined in the simulator to define output ports. In summary, we declare a new data type for each
port in the atomic model, and they are declared as in_port (or out_port) that can only
receive a Message t. Therefore, they can only be used within the Subnet model (and we can
have other types called using the same name in other atomic submodels). We name the data type
with the name of the port (in this case in and out) and they inherit from in_port<> and
out_port<> based on the type of port.

ASSIGNMENT OF PORTS TO THE ATOMIC MODEL: (this was done in [***** (2) *****[in Figure 2).
Once we have declared the ports types we are using (in this case, in and out), we need to assign
them to the model that will use them, in this case, the Subnet atomic model. We assign the input
ports with using input ports=tuple<typename Subnet defs::in> We must
defined the data type input_ports, which is a tuple of the input ports declared in /****(1)****/,
In this specific example, we only have one input port named in. If we needed, for instance, two
input ports, the tuple will need to define the names of the two ports as elements (e.g. using
input ports=tuple<typename Subnet defs::inl, typename Subnet defs::
in2>), which should have been previously declared in ***(1)***. The input ports must be assigned
under the name input_ports because this is a mandatory simulation service (used to check port
types; the simulator generates compilation errors if a data type assigned to the input_ports
tuple does not inherit from in_port<> or if the data types inside the tuple have duplicated names).
Output ports are assigned similarly.

The input parameter mbs in the external transition is a bag that contains the input messages
classified by port. make message bags<input ports>:: type mbs takes the tuple
input_ports we defined earlier, and it generates the mbs tuple, whose elements are vectors of
messages. mbs has the same number of elements as input_ports (here, it is a tuple of one
element: a vector of Message t abagin port in;if we needed to use two ports, e.g. inl and
in2, make message bags<input ports>::type would define mbs as a tuple with two
elements: the first, a vector representing the bag of messages in port in1; the second, a vector
representing the bag of messages in port in2). To retrieve the bag of messages in a specific port of
mbs, we use get_messages<>, which takes the port name Subnet defs::in. The bag
retrieved is a vector, which we store in an auxiliary variable (bag port in). The bag of messages

Page 49 of 85

2 Carleton

Cadmium
YW UNIVERSITY

A tool for DEVS Modeling and Simulation. User’s Guide
Canada’s Capital University
in for a specific port is a vector, so, to access the first element of the bag stored in bag port in
weusebag port in[0].

Similarly, in the output function we return a bag of messages in the output ports (i.e. bags).
make message bags<output ports>::type takes the tuple output ports and it
generates the tuple bags, whose elements are vectors of messages. We use an auxiliary variable
to generate each message bag (in this example, we use bag port out). To place a bag in bags,
we use the method get_messages<>, which takes the port name as template parameter (in this
case, Subnet defs::out).

The declaration of ports for coupled models is similar to the one for atomic models. For our example (Figure
5), the coupled model only has one output port named top out (Figure 6 /***** (1) *****/) that handles
the same type of message that the output port out from the Subnet model (i.e. messages of type
Message t). As in the case of atomic models, the port is declared as a struct named top out that
inherits from out_port<>and uses a given type of message (in this case Message t).

In coupled models, we assign input and out ports differently. We use a data type named
dynamic: :modeling: : Ports, a vector of ports as defined in the previous paragraph (Figure 6 /#x*x*
(5) ***x*/). We need to define two variables, one for input ports and one for output ports. In this specific
example, the input ports variable (i.e. iports TOP) is an empty vector because the coupled model has no
ports. The output ports (i.e. oports TOP) is a vector with one element: the top out port declared
above. If we need, for instance, two output ports, we need to define a vector with the names of the two
ports as elements (e.g. oports TOP ={ typeid(top outl), typeid(top outl)}, which should
have been previously declared.

The names of the data types that declare the ports of both the atomic models and coupled models are used
as template parameters in the methods that the simulator provides to define the EOC, IC, and EIC. In this
specific example, we will need to use the ports from the subnet atomic model (Subnet defs::in and
Subnet defs::out), the ports from the Input reader atomic model
(iestream input defs<Message t>::out)and the portsof the top model (top out).

PORTS FOR EICs: EICs are defined using dynamic: :translate::make EIC<>(). The template
parameters of the method are: (1) the name of the data type of the input port of the coupled model and (2)
the name of the data type of the port from the submodel inside the coupled model, in this specific order (i.e.
form —to). In our example, the coupled does not have EICs, therefore we do not use this method.

PORTS FOR EOCs: EOCs are defined using dynamic: : translate: :make EOC<> () . The parameters
are (1) the name of the data type of the port from the submodel (Subnet defs::out)and (2) the name
of the data type of the output port of the coupled model (top out), in this specific order (i.e. form —to). In
our example, we connect the out port from Subnetl with top out of the coupled model.

PORTS FOR ICs: ICs are defined using dynamic: :translate: :make IC<>(). The parameters are
(1) the name of the data type of the output port of the submodel “from”
(iestream input defs<Message t>::out)and (2)the name of the data type of the input port of
the submodel “to” (Subnet defs: :1in), in this specific order (i.e. from output port— to input port). In our
example, we are connecting the out port from input_reader with in port of Subnetl.

Defining the make file to compile the test

The model we have defined along with the simulator is a regular C++ program. Here, we will explain how to
compile the program with a make file.

Page 50 of 85

Carleton

Cadmium -
YW UNIVERSITY

A tool for DEVS Modeling and Simulation. User’s Guide
Canada’s Capital University

We first need to create a file called “makefile”. The file will have the statements defined in Figure 11:

CC=g++
CFLAGS=-std=c++17

INCLUDECADMIUM=-I ../../cadmium/include
INCLUDEDESTIMES=-I ../../DESTimes/include

#CREATE BIN AND BUILD FOLDERS TO SAVE THE COMPILED FILES DURING RUNTIME

bin folder := $(shell mkdir -p bin)
build folder := $(shell mkdir -p build)
results folder := $(shell mkdir -p simulation results)

#TARGET TO COMPILE SUBNET TEST
message.o: data_structures/message.cpp

$(CC) -g -c $ (CFLAGS) $ (INCLUDECADMIUM) $ (INCLUDEDESTIMES)
data_ structures/message.cpp -o build/message.o

main subnet test.o: test/main subnet test.cpp
$ (CC) -g -C $ (CFLAGS) $ (INCLUDECADMIUM) S (INCLUDEDESTIMES)
test/main subnet test.cpp -o build/main subnet test.o

tests: main subnet test.o message.o
$(CC) -g -o bin/SUBNET TEST build/main subnet test.o build/message.o

#TARGET TO COMPILE EVERYTHING
all: tests

#CLEAN COMMANDS
clean:
rm -f bin/* build/*

Figure 11. Make file to compile the subnet test
First, we define the compiler we are using, in this case, g++.
Then we need to define the C++ standard we are using, in this case, C++17.

We also need to define the paths to Cadmium and DESTimes libraries, so the compiler can find the files we
specified in the #includes <>. We define the paths in the INCLUDECADMIUM and INCLUDEDESTIMES
variables. In a makefile, a path is preceded by -I. The paths are relative from the location of the
make file. If we download the simulator as explained at the beginning of the manual and we create new
models inside the folder “DEVS-Models” following the same structure as in the ABP, we will not need to
modify these paths.

We store intermediate built files in a folder called build; the executables in a folder called bin and the
simulation results in a folder called simulation results. To do so, we need to be sure that these
folders exist, and if they do not exist, we need to create them. We can do this in the makefile as follows:

command name := $(shell mkdir -p folder name)

We need to assign a name to the make file command, in this generic case command name, we then write a
shell command to create the directory if it does not exist. mkdir creates a directory with the name
folder name. The -p option specifies create the directory only if it does not already exist. In our case, we
create the folders: build, bin and simulation_results.

Page 51 of 85

Carleton

UNIVERSITY

Cadmium

A tool for DEVS Modeling and Simulation. User’s Guide
Canada’s Capital University

We then specify how to create the executable to run the subnet test. To create the executable, we first need
to create the object files (.0) of all the cpp files involved in our program, in this case, message.cpp and
main subnet test.cpp. The object files contain the compiled code.

To generate an object file in the context of our simulator, we need to use the following statements:

file name.o: relative path to cpp file
$(CC) -g -C $ (CFLAGS) $ (INCLUDECADMIUM) $ (INCLUDEDESTIMES)
relative path to cpp file -o build/file name.o

Where £ile name isthe name we give to the object file (we usually use the same one we gave to the cpp
file)and relative path to cpp file isthe relative path to the cpp file from where the make file is
located. $ () is used to include the variables we defined at the beginning of the make file. -g is used to
include debugging information, -c is an instruction to the preprocessor to keep comments, and -o is used to
specify the name of the output file.

For the subnet test, we need to create the object files of message.cppandmain subnet test.cpp.

Once we have the object files, we need to link them together to create the executable. We need to use the
following line of code:

tests: main_ subnet test.o message.o
$(CC) -g -o bin/SUBNET TEST build/main subnet test.o build/message.o

tests is the name we give to the make file command that performs the linking. We then need to specify all
the other make file commands we need to execute before this one. In this case, main subnet test.o
and message.o to generate the build objects. We then tell the compiler to perform the linkage of the .o
files to generate the executable. We give the name SUBNET TEST to our executable.

To be able to use the command “make all” to compile, we need to define what all means. In this case, all
means execute the command tests.

We all need to define a “clean” command that deletes all the object and executable files in the bin and
build folders before compiling (i.e. rm -f bin/* build/*).

Once the make file is ready, to compile the test we open the bash terminal inside the folder ABP. To compile
the project, type: make clean; make all.

To run the test, open a bash terminal inside the subfolder bin and type the command: . /SUBNET TEST.
The simulation results will be in the folder simulation results.

Simulating the complete ABP model

Figure 2 presented the structure of the ABP model coupled model discussing throughout this document. The
Alternating Bit communication protocol tries to provide reliable transmission on an unreliable network. The
ABP model consists of 3 components: A sender, which transmits messages; a network, and a receiver, which
receives the messages transmitted by the sender and returns acknowledgement messages (positive or
negative). The network is decomposed further to two subnets corresponding to the sending and receiving
channels respectively. The sender and the receiver communicate with each other through the network
component.

As we already mentioned, the Subnet atomic model uses one input port and one output port, and the model
passes the data it receives after a time delay of 3 seconds. To model the unreliability of the network, only
approximately 95% of the data will be transferred (i.e. 5% of the data will be lost through the subnet).

Page 52 of 85

Carleton

UNIVERSITY

Cadmium

A tool for DEVS Modeling and Simulation. User’s Guide
Canada’s Capital University

The behavior of the receiver is to receive the data and send back an acknowledgment extracted from the

received data after a time period. The implementation of the receiver atomic class is available in Appendix B.

The sender sends data packets and waits for an acknowledgment. If the acknowledgment is not received
after a period of time, it sends the same packet again. If the acknowledgment is received, the sender sends
the next packet. The implementation of the sender atomic class is available in Appendix C.

The implementation of the ABP coupled model is available in Appendix D.

The full logs of the simulation are available in Appendix E (message log) and Appendix F (state log). Here we
explain the most relevant aspects of the logs.

The input data we use for our simulation is as follows: at time 10s, we tell the sender that it will need to send
a message that is 5 packets long and at time 15min, we tell it to send a message that is 3 packets long.

00:00:10 5
00:15:00 3

In the next snippet, we can see the message generated when the sender transmits a packet until it
receives the confirmation that the packet was received and starts sending a new packet.

At time 10s, we generate a message (coming from the input file) that tells the sender that it will need to
send a message that is 5 packets long. The message is generated by the model input reader (i.e. the
one in charge of transforming the input files in DEVS messages).

At time 20s, the sender sends the first packet with the alternate bit ({1 0}) through the port dataOut and
the packet number (i.e. 1) through the packetSentOut port (the output of the top model). The port
dataOut is connected to the subnet model. After a 3s delay, the subnet transmits the packet with the
alternate bit i.e. it generates the message {1 0} in the port out. The out port of the subnet is connected
to the receiver. Once the receiver receives the packet, after a 10s delay, it sends an acknowledgment
({0 0}). For the acknowledgment, the second element represents the alternate bit. The acknowledgment is
transmitted through the network (i.e. at time 36s, subnet?2 generates {0 0} on its out port). The out
port of subnet?2 is connected to the sender. As soon as the sender receives the acknowledgement (i.e.
time advance 0), it generates a message in the ackReceivedOut. The message is the alternate bit (i.e.
0). After a 10s delay, i.e. at time 46s, the process starts again with the second packet.

00:00:10:000

[iestream input defs<int>::out: {5}] generated by model input reader

00:00:20:000

[Sender defs::packetSentOut: {1}, Sender defs::ackReceivedOut: {1},
Sender defs::dataOut: {1 0}] generated by model senderl

00:00:23:000

[Subnet defs::out: {1 0}] generated by model subnetl

00:00:33:000

[Receiver defs::out: {0 0}] generated by model receiverl

00:00:36:000

[Subnet defs::out: {0 0}] generated by model subnet2

00:00:36:000

[Sender defs::packetSentOut: {}, Sender defs::ackReceivedOut: {0},
Sender defs::dataOut: {}] generated by model senderl

00:00:46:000

[Sender defs::packetSentOut: {2}, Sender defs::ackReceivedOut: {},
Sender defs::dataOut: {2 1}] generated by model senderl

Page 53 of 85

Carleton

Cadmium _
YW UNIVERSITY

A tool for DEVS Modeling and Simulation. User’s Guide

Canada’s Capital University
In the next snippet, we can see some states of the atomic models. For example, at time 10s, after the
external transition of the sender1 atomic model is executed, the state of the model is packetNum: 1 &
totalPacketNum: 5 (i.e.the modelis sending the first packet and it has to send 5 packets in total). At
time 23s, once the subnet model has transmitted the packet, the state of subnetl is index: 1 &
transmitting: O (i.e. the subnet has received one packet so far and it does not need to transmit
anything). After the receiver sends the acknowledgement (i.e. at time 33s), the state of the receiver
is ackNum: O (i.e. the last alternate bit received is 0) and the state of subnet2 is index: 1 &
transmitting: 1 (i.e. it has received a packet so far and it has something to transmit). At time 36s,
once the sender receives the acknowledgment, it updates its state to packetNum: 2 &
totalPacketNum: 5 (i.e.the next packet it has to send is 2 and the total number is 5, which means the
full message is not sent yet).

00:00:10:000
State for model senderl is packetNum: 1 & totalPacketNum: 5

00:00:23:000
State for model subnetl is index: 1 & transmitting: O

00:00:33:000
State for model receiverl is ackNum: O
State for model subnet2 is index: 1 & transmitting: 1

00:00:36:000
State for model senderl is packetNum: 2 & totalPacketNum: 5

Defining the make file to compile all the test and the ABP

As per good programming practices, a project should have a single makefile. Therefore, we modify the
makefile we already create to include the generation of the executable for the unit tests of the receiver
and subnet and the ABP simulator.

We need to generate an object file as we did for message.cpp and main_subnet_test.cpp for the following
files: main_sender_test.cpp, main_receiver_test.cpp and main.cpp.

Once we have all the object files, we need to generate the executables. We generate the executables for the
tests under the make command tests. To generate the ABP simulator executable, we create a new
command, simulator, and we write the instructions to link the necessary object files.

Finally, we add simulator to the a1l command.

CC=g++
CFLAGS=-std=c++17

INCLUDECADMIUM=-I ../../cadmium/include
INCLUDEDESTIMES=-I ../../DESTimes/include

#CREATE BIN AND BUILD FOLDERS TO SAVE THE COMPILED FILES DURING RUNTIME

bin folder := $(shell mkdir -p bin)
build folder := $(shell mkdir -p build)
results folder := $(shell mkdir -p simulation results)

Page 54 of 85

Carleton

UNIVERSITY

Cadmium

A tool for DEVS Modeling and Simulation. User’s Guide
Canada’s Capital University

#TARGET TO COMPILE ALL TESTS
message.o: data structures/message.cpp

$(CC) -g -C $ (CFLAGS) $ (INCLUDECADMIUM) S (INCLUDEDESTIMES)
data structures/message.cpp -o build/message.o

main subnet test.o: test/main subnet test.cpp
$(CC) -g -C $ (CFLAGS) $ (INCLUDECADMIUM) S (INCLUDEDESTIMES)
test/main subnet test.cpp -o build/main subnet test.o

main sender test.o: test/main sender test.cpp
$(CC) -g -C $ (CFLAGS) $ (INCLUDECADMIUM) S (INCLUDEDESTIMES)
test/main sender test.cpp -o build/main sender test.o

main receiver test.o: test/main receiver test.cpp
$(CC) -g -C $ (CFLAGS) $ (INCLUDECADMIUM) S (INCLUDEDESTIMES)
test/main receiver test.cpp -o build/main receiver test.o

tests: main subnet test.o main sender test.o main receiver test.o message.o
$(CC) -g -o bin/SUBNET TEST build/main subnet test.o build/message.o
$(CC) -g -o bin/SENDER TEST build/main sender test.o build/message.o
$(CC) -g -o bin/RECEIVER _TEST build/main receiver test.o build/message.o

#TARGET TO COMPILE ONLY ABP SIMULATOR
main top.o: top model/main.cpp

$(CC) -g -C $ (CFLAGS) $ (INCLUDECADMIUM) $ (INCLUDEDESTIMES)
top model/main.cpp -o build/main top.o

simulator: main top.o message.o
$(CC) -g -o bin/ABP build/main top.o build/message.o

#TARGET TO COMPILE EVERYTHING (ABP SIMULATOR + TESTS TOGETHER)
all: simulator tests

#CLEAN COMMANDS
clean:
rm -f bin/* build/*

Cadmium’s Services for Atomic Models

The atomic models are defined in an hpp file following the template provided in Appendix A.

Each atomic model implementation must include the following headers:

#ifndef ATOMIC MODEL NAME HPP
#define ATOMIC MODEL NAME HPP

//Include simulator headers
#include <cadmium/modeling/ports.hpp>
#include <cadmium/modeling/message_bag.hpp>

//Include other headers needed for the C++ implementation of the model

#include <limits>
#include <assert.h>

Page 55 of 85

Carleton

UNIVERSITY

Cadmium

A tool for DEVS Modeling and Simulation. User’s Guide
Canada’s Capital University

//Include the relative path to message types for not built-in C++ types such as
float, int, string, etc.
#include "../data structures/message.hpp"

using namespace cadmium;
using namespace std;

//Here goes the port declaration
//Here goes the atomic model class implementation

#endif //ATOMIC MODEL NAME HPP

First, we need to include the libraries of the simulator that provide the services to define new ports
(<cadmium/modeling/ports.hpp>) and to handle bags of messages
(<cadmium/modeling/message_bag.hpp>) . Then, we need to include any C++ library that we
use in the model implementation. The library 1imits is used when we need to passivate a model (i.e. set
the time advance to infinity). The rest of the libraries are optional and the ones to be included depends on
the specific model implementation. Assert .h is useful to stop the simulation and generate an error if we
have non-desired behavior. For example, the model definition states that the inputs to the model are
integers between 0 and 9. When we implement our model, we can use a conditional statement and the
methods provided in assert . h to check that the condition is satisfied. If not, the simulation is stopped and
an error explaining the reason is displayed. Other libraries may be needed based on the model
implementation.

In Cadmium, we can use built-in C++ types as messages (integer, float, string, double, bool, etc.) or we can
define our own ones as C++ structures. In that case, we need to include the path to the hpp file where the
structure is defined (e.g. #include "../data structures/message.hpp").

Finally, before starting with the model implementation (port and atomic model definition), we declare the
namespaces we are using, in this case: cadmium and std. If we do not declare them, every time we use a
method/service from the standard C++ library (std), we have to write std: : followed by the name of the
service. The same occurs with cadmium (cadmium: :).

Declaring ports

We define the ports as a structure (in this general implementation, we called it
model name ports defs) that contains all the input and output ports of the atomic/coupled model.
Two ports cannot have the same name. Different ports can handle the same message type.

In this general implementation, each port is defined as a structure that inherits from the template structures
out port and in port defined in the simulator, specifying the type of message handled by the port. In
this case, we define two output ports, the first one is called out port namel and it handles messages of
type message type 1; the second oneis called out port name2 and it handles messages of type
message type 2. We also define two input ports, the first one is called in port namel and it
handles messages of type message type 3; thesecondoneiscalled in port name2 and it handles
messages of type message type 4.

Page 56 of 85

Carleton

Cadmium -
YW UNIVERSITY

A tool for DEVS Modeling and Simulation. User’s Guide
Canada’s Capital University

//Port definition

struct model name ports defs {
struct out port namel : public out_port<message type 1> {};
struct out port name2 : public out_port<message type 2> {};
struct in port namel : public in_port<message type 3> {};
struct in port name? : public in_port<message type 4> {};

bi

Implementing atomic models: a C++ class

Atomic models are implemented as a templated C++ class (atomic model name) in the hpp file we
mentioned at the beginning of the section (//Here goes the atomic model class
implementation). The template parameter of the class represents the type of time (TIME)

Each class representing an atomic model MUST contains the following variables, methods, and constructors.
Everything inside the class is public as the simulator has to access the methods of the class to execute the
simulation.

Port definition

As discussed earlier, the ports were declared inside the structure model name ports defs. To access
the input port 1, we would need to use model name ports defs::in port namel and to use the
output port 1 model name ports defs::out port namel.

The ports are assigned to the corresponding atomic model as follows:

using input ports=tuple<typename model name ports defs::in port namel , typename
model name ports defs::in port name2>;

using output ports=tuple< typename model name ports defs::out port namel p
typename model name ports defs::out port name2>;

The C++ keyword using allows us to rename a data type. Each atomic model must define their input and
output ports as a data type called “input ports” and “output ports” respectively. We need to use
these specific names because the simulator will use them to check that the atomic model has all the needed
components and that the ports are properly defined (e.g. there are not two input ports with the same
name). Both the input and out ports are defined as a tuple (tuple<>), a C++ object that packs elements of
possibly different types together in a single object. We can see it as a vector with elements of different
types. Because of this, we need to specify the type of each of the elements in the tuple. The typename
specifies that model name ports defs::out port namel, etc. are data types that will overwrite
the template class in the simulator.

Model parameters

If we want to define a parameterized model, the parameters are defined as variables inside the class. The
value of these variables will be overwritten inside the constructor of the class. See Appendix C for an
example.

State definition

The state variables of the model are declared in a structure called state type. All the state variables of
the model must be declared inside the structure, and a single state variable of type state type name
state must be defined. We need to use these specific names because they are explicitly used by the
simulator to check that the model is implemented according to the DEVS formalism. The simulator verifies if

Page 57 of 85

Carleton

Cadmium _
YW UNIVERSITY

A tool for DEVS Modeling and Simulation. User’s Guide

Canada’s Capital University
this structure (which represents the model’s state) is updated inside the output function or the time advance
function (remember that these two operations are not valid according to DEVS specifications).

struct state_type {

//Declare the state variables here
}i
state_type state;

Class Constructor

Each class must have at least one default constructor (i.e. without parameters): atomic model name().
Inside the constructor, both the parameters (if we defined a parameterized model) and the state of the
model are initialized. As in any C++ class, we can have more than one constructor as long as they take
different parameters.

Having a constructor that takes the model parameters as inputs is useful if we want to create instances of
the class with different parameters.

Internal Transition Function

The internal transition function is defined as a void method called internal transition(), andit
takes no parameters (because the method can access the state variable of the class).

void internal transition() {
//Define internal transition here

}

External Transition Function

The external transition function is called when an external event arrives in one of the model’s output ports.
It is defined as a void method called external transition. The method takes two parameters, the
elapsed time (e) and a bag of input messages (mbs). There is one bag of messages per input port.

void external transition(TIME e, typename make message_bags<input_ports>::type
mbs) {
//Define external transition here

}

There are some primitives devoted to handling the messages:

- typename make message bags<input ports>::type mbs — It creates an input message
bag called mbs. As we already mentioned, typename indicates that the expression that follows is a
data type. make message bags<> is a template data type declared in
<cadmium/modeling/message bag.hpp>, used to declare a bag of messages for input or output
ports. We need to instantiate the template with the word input ports to define the input bag, using
::type. The parameter declaration, in this case, declares mbs as a tuple whose elements are the
message bags on the input ports. The messages inside the set of messages in the bag are stored in a C++
vector.

- get messages<typename model name ports defs::in port namel>(mbs) - It gets the
message bag from the input port in port name stored in the tuple mbs. The method
get messages uses a template parameter for the port we want to access, in this case, the

in port namel port, defined by typename model name ports defs::in port namel

Page 58 of 85

Carleton

Cadmium _
YW UNIVERSITY

A tool for DEVS Modeling and Simulation. User’s Guide
Canada’s Capital University
The function parameter is the bag of messages we want to access, in this case mbs. The retrieved bag is
a C++ vector. The data type of the elements inside the vector is the one handled by the port.

Confluent Transition Function

The confluent transition function is called when an internal transition is scheduled at the same time as an
external event arrives. The method to define this void function, called confluence transition, takes
two parameters: the elapsed time (e) and a bag of messages (mbs) The default implementation for the
confluent function is to execute the model’s internal transition first, and the external transition after that, with
an elapsed time equal to zero.

All the primitives useful for handling messages in the external transition can also be used here.

void confluence_transition(TIME e, typename make_ message_bags<input_ ports>::type
mbs) {

internal transition();

external transition(TIME(), std::move (mbs));

}

Output Function

The output function is called when a model is imminent, and before calling the internal transition function
(or the confluent function). It is defined as a constant method (i.e. we are not allowed to change the state of
the model) that returns a bag of messages in the output ports. It does not take any parameter because the
method can access the state variable of the class. It is called output ()

typename make message bags<output ports>::type output() const {
typename make message bags<output ports>::type bags;
//Define output function here
return bags;

}

To handle messages, we use the same primitives as in the external transition function but instantiated for
the output ports instead of the input ports.

Time Advance Function

The time advance function is defined as a constant method (i.e. we are not allowed to modify the state of
the model) that returns the time of the next internal transition and takes no parameters. It is called
time_advance.

TIME time_advance() const {
TIME next internal;
//Define time advance function here
return next_internal;

}

There are two useful primitives to set the time advance of the model to zero and infinity

- numeric limits<TIME>::infinity() (a method in the limits library). It is used to
passivate the model.
- TIME () - Itsetsthe time advance to zero.

Page 59 of 85

2 Carleton

Cadmium
YW UNIVERSITY

A tool for DEVS Modeling and Simulation. User’s Guide
Canada’s Capital University

IMPORTANT: According to ST-DEVS, only the transition functions (i.e. external,
internal and confluence) can be stochastic. The time advance function and the
output function MUST be deterministic.

State the Logs
Once all the DEVS functions are defined, we specify how we want to output the state of the model in the state

log. To declare how to log the state of the model, we define the << operator for the structure state type.
The following method shows how to do this.

friend ostringstreamé& operator << (ostringstreamsé os, const typename
atomic model name<TIME>::state_type& state) {

//Define how to log the state here

return os;

}

The operator takes a pointer to the stream where we want to log (i.e. os) and the memory address of the
state variable of the model (i.e. state)

We use a const type to ensure that it will not be modified inside the operator. It is important to notice that we
need to use typename atomic model name<TIME>::state type to specify the type of the state. That
expression is used to access the structure state type inside the template class
atomic model name<TIME>. We need to declare the operator using the keyword friend to specify that
the function can access the private members of the structure state type.

Using Atomic Models: Creating Instances from the Class

To be able to use the atomic models we have defined or the ones available in the libraries, we need to
create an instance. To create instances of atomic models, Cadmium provides a data type and a method:

- model is an empty class defined in <cadmium/modeling/dynamic model.hpp> under the
namespace dynamic::modeling. It allows pointer-based polymorphism between classes
derived from atomic and coupled models. It is an abstract class that encapsulates both atomic and
coupled models in such a way that they can be elements in a vector of models.

- make_dynamic_atomic_model<>() is a template method defined in
<cadmium/modeling/dynamic model translator.hpp>.Itis used to create an instance
of an atomic model. It takes the class type of the atomic model, TIME (because all atomic models
are templated classes that need to be instantiated with a TIME data type), and all the types of the
parameters for the model constructor. The parameters of the method are the name of the atomic
model (a string) and the parameters we need to pass to the constructor. If a parameter in the
constructor is a pointer, we need to use the C++ method move () to pass the pointer to the
constructor.

The instances of the atomic models are created (along with the coupled models, the logger and the runner)
inside the main function defined in a cpp file. At the top of the cpp, we MUST include the headers of all the
atomic classes we are using.

An atomic instance is created as follows:

shared ptr<dynamic::modeling: :model> name atomic model instance =
dynamic::translate: :make dynamic_atomic_model< atomic_model name, TIME>
("instance name");

Page 60 of 85

Carleton

UNIVERSITY

Cadmium

A tool for DEVS Modeling and Simulation. User’s Guide
Canada’s Capital University

To store the instances of atomic models, Cadmium uses one advanced C++ data type: shared ptr<>,
defined in the standard library. shared ptr<>is a smart pointer that allows shared ownership of an
object through a pointer.

Cadmium’s Services for Coupled Models

Coupled models are defined inside the main function in a cpp file (along with the instances of the atomic
models, the logger and the runner).

Coupled models are defined using C++ functions and data types defined in the simulator. The functions were
built following the formal definitions for DEVS coupled models. Therefore, each of the components defined
formally for DEVS coupled models can be included.

Declaring ports

Port declaration for coupled models is done using the same method as for atomic models.

//Port definition

struct model name ports defs{
struct out port namel : public out_port<message type 1> {};
struct out port name2 : public out_port<message type 2> {};
struct in port namel : public in_port<message type 3> {};
struct in port name2 : public in_port<message type 4> {};

};

In coupled models, we can omit grouping all the ports in a single structure and declare them as follows:

struct out port namel : public out_port<message type 1> {};
struct out port name2 : public out_port<message type 2> {};
struct in port namel : public in_port<message type 3> {};
struct in port name2 : public in_port<message type 4> {};

If there are two different coupled models using the same port type (i.e., with the same name and message
type), we declare the port type once and we use it for both models. However, the same coupled model
cannot have two ports with the same name (i.e. in our C++ implementation, they cannot be the same type).

Defining coupled models

Coupled model ports

To assign the input and output ports we already declared to a coupled model, Cadmium use the data type
Ports. Ports is a data type used to define input and output ports. It is defined in
<cadmium/modeling/dynamic model.hpp> under the namespace dynamic: :modeling. Itis a
vector that takes as elements the typeid of the port structure declaration. To provide the type of a port,
we use the method typeid () defined in the std C++ library (typeid () takes a data type as input).

Input ports

We need to create a variable of type Ports (in this generic example, iports coupled name) to store
all the input ports as follows:

Page 61 of 85

Carleton

Cadmium -
YW UNIVERSITY

A tool for DEVS Modeling and Simulation. User’s Guide
Canada’s Capital University

dynamic: :modeling: :Ports iports coupled name = {
typeid (model name ports defs::in port namel),
typeid(model name ports defs::in port name?2)
}i

Output ports

The output ports are also stored inside a variable of type Ports in the same way.

dynamic: :modeling: :Ports oports coupled name = {
typeid(model name ports defs::out port namel),
typeid(model name ports defs::out port name2)
}i

Submodels

Submodels are stored inside a variable of type Models. As already explained, Models is used to define
the components of a coupled model. It is defined in <cadmium/modeling/dynamic model.hpp>
under the namespace dynamic: :modeling. It is a vector that takes as elements pointers to models
(shared ptr<dynamic::modeling::model>>)

In this generic case, the name of the variable is submodels coupled name. It contains the instances of
submodels inside the coupled model. In this generic case, name component instancel and
name component instance?2. It does not matter the order we use to specify the components of the
top model.

dynamic: :modeling: :Models submodels coupled name =
{ name component instancel,
name component instancel};

name component instance x are the names given to the variables that store the instance of the
components of the coupled model. They can be instances of atomic models or coupled models.

External Input Couplings (EICs)

Cadmium provides a data type and a method to define EICs.

The EICs data type is used to define the set of external input couplings. The set is stored as a vector with
elements of type EIC, another data type to define each external input. It is implemented as a structure
with two elements: the name of the submodel connected to the external input (a string), and a link that
represents the external input (a shared ptr<>). Both EICs and EIC are defined in
<cadmium/modeling/dynamic model.hpp> under the namespace dynamic: :modeling

make EIC<>() is used to create an EIC structure. It is defined in
<cadmium/modeling/dynamic model translator.hpp>, and it returns an element of type
EIC. It takes template parameters of the types of the input ports of the coupled model and the submodel
inside the coupled model, in this specific order (i.e. form — to). It uses as parameter a string with the name of
the submodel.

dynamic: :modeling::EICs eics_ coupled name = {
dynamic::translate: :make EIC<model name ports defs::in port namel,
component port name>("instance name"),
dynamic::translate: :make EICK model name ports defs::in port name?Z,
component port name2>("instance name2")

};

Page 62 of 85

Carleton

Cadmium _
YW UNIVERSITY

A tool for DEVS Modeling and Simulation. User’s Guide
Canada’s Capital University

In this generic case, the name of the variable is eics coupled name. It contains two EICs: (1) the input

port “in port namel” of the coupled model is connected to the input port “component port name”

of the subcomponent “instance name”; (2)theinputport“in port name2” of the coupled model is

connected to the input port “component port name2” ofthe subcomponent “instance name2”.

instance namel (and 2) are unique names given to each instance of the components of the coupled
model. They can be instances of atomic models or coupled models.

External Output Couplings (EOCs)

Cadmium provides a data type and a method to define EOCs.
EOCs is a data type similar to EICs above, but for the External Output Couplings.

make EOC<>() is a method similar to make EIC<>() above, but for the External Output Couplings. It
returns an element of type EOC, using the types of the output port of the submodel in the coupled model,
and the output port of the coupled model, in this specific order (i.e. form — to). The parameter of the
method is a string with the name of the submodel.

dynamic: :modeling: :EOCs eocs_ coupled name = {
dynamic::translate: :make EOC<component port name, model name ports defs::
out port namel>("instance name"),
dynamic::translate: :make EOC<component port nameZ, model name ports defs::
in port name2>("instance name2")

};

In this generic case, the name of the variable is eocs coupled name. It contains two EOCs: (1) the
output port “component port name” of the subcomponent “instance name” is connected to the
output port “out port namel” of the coupled model; (2)the output port “component port name2”
of the subcomponent “instance name2” is connected to the output port “out port name2” of the
coupled model.

instance namel (and 2) are unique names given to each instance of the components of the coupled
model. They can be instances of atomic models or coupled models.

Internal Couplings (ICs)

Cadmium provides a data type and a method to define the ICs.

ICs is a data type to define internal couplings. It is stored as a vector that takes elements of type IC, used
to define each internal connection. It is implemented as a structure with three elements: (1) the name of the
“from” component (i.e. a string), (2) the name of the “to” component (i.e. a string), and (3) a link to connect
the output port of one component with the input port of the other component. They are defined in
<cadmium/modeling/dynamic_model.hpp> under the namespace dynamic: :modeling

make IC<>() is used to create the internal couplings, i.e., elements of type IC. It is defined in
<cadmium/modeling/dynamic model translator.hpp>. It uses the type of the output port of
the submodel “from” and the type of the input port of the submodel “to”, in this specific order (i.e. from
output port— to input port). The parameters of the method are two strings, the first one with the name of
the “from” submodel and the second one with the name of the “to” submodel (i.e. from submodel name —
to submodel name).

Page 63 of 85

Carleton

Cadmium _
YW UNIVERSITY

A tool for DEVS Modeling and Simulation. User’s Guide
Canada’s Capital University

dynamic: :modeling::ICs ics_ coupled name = {
dynamic::translate: :make EIC<component port name outl,
component port name inl>("instance name outl","instance name inl"),
dynamic::translate: :make EIC<component port name out2,
component port name in2>("instance name out2","instance name in2")

};

In this generic case, the name of the variable is ics coupled name. It contains two ICs: (1) the output
port “component port name outl” of the subcomponent “instance name outl” is connected to
the input port “component port name inl” of the subcomponent “instance name inl”; (2)the
output port “component port name out2” of the subcomponent “instance name out2” is
connected to the input port “component port name in2” of the subcomponent

“instance name in2”.

instance name in/out 1 (and 2)are unique names given to each instance of the components of the
coupled model. They can be instances of atomic models or coupled models.

Coupled model variable

Cadmium defines the class coupled<TIME> to define coupled models. We use it to create coupled models
instances. It is defined in <cadmium/modeling/dynamic coupled.hpp> under the namespace
dynamic: :modeling. The class uses seven variables: (1) a string with the model name, (2) a variable of
type Models representing the subcomponents, (3) a variable of type Ports for the input ports, (4) a
variable of type Ports for the output ports, (5) a variable of type EICs for external input couplings, (6)
a variable of type EOCs for external output couplings and (7) a variable of type ICs for internal
couplings. The constructor of this class takes all these parameters in this specific order.

To create the coupled model we need to define all the elements explained in this section (i.e. input ports,
output ports, submodels, EICs, EOCs, and ICs).

We declare the variable where the coupled model will be stored, in this generic case,
coupled name variable. The variable where the coupled model is stored is of the data type
shared ptr<dynamic::modeling::coupled<TIME>> defined inthe simulator.

To create an instance of the coupled model, we use the C++ method make shared<>().
make shared<>() is a method that allows creating a shared ptr<>. It uses as a template
parameter the data type that will be stored in the pointer, and as function parameters the constructor
parameters for the data type. In Cadmium, to create coupled models, the function parameters are the ones
used in the constructor of the class coupled<TIME>: (1) model name, (2) components, (3) input ports,
(4) output ports, (5) EICs, (6) EOCs and (7) ICs in this specific order as in the following general example:

shared ptr<dynamic::modeling: :coupled<TIME>> coupled name variable =
make shared<dynamic::modeling: :coupled<TIME>>(
"coupled name", submodels coupled name, iports_ coupled name,
oports_coupled name, eics_coupled name, eocs_coupled name, ics_coupled name

);

coupled name isa unique name given to the coupled model.

The resulting coupled model can be used inside other coupled models.

Page 64 of 85

Carleton

Cadmium .
YW UNIVERSITY

A tool for DEVS Modeling and Simulation. User’s Guide
Canada’s Capital University

Cadmium’s Services to create Logs

Cadmium also provides services for generating logs of the simulation. There are two basic logs: (1) messages
generated on the output ports and (2) state of the atomic model.

The logs are defined as follows:

/*************** Loggers *******************/

static ofstream out messages("../simulation results/messages log.txt");
struct oss_sink messages({
static ostreamé& sink () {
return out messages;

}i
static ofstream out state("../simulation results/output state log.txt");
struct oss_sink state({

static ostreamé& sink () {
return out state;

bi

using state=logger::logger<logger::logger state,
dynamic::logger::formatter<TIME>, oss_sink state>;

using log messages=logger: :logger<logger::logger messages,
dynamic::logger::formatter<TIME>, oss_sink messages>;

using global time mes=logger::logger<logger::logger global time,
dynamic::logger::formatter<TIME>, oss_sink messages>;

using global time sta=logger::logger<logger::logger global time,
dynamic::logger::formatter<TIME>, oss_sink state>;

using logger top=logger::multilogger<state, log _messages, global time mes,
global time sta>;

First, we need to define the file where we will output the message log. To do so, we create a variable
(out messages)oftype of stream. Weinitialize out messages with the path to the output file for
the message log (" . ./simulation results/messages log.txt").

We then define the structure oss_sink messages to tell the simulator where we will save the output
log. The structure uses a method (sink) that returns a pointer to out messages. We use
oss_sink messages to declare the message logger.

We need to do the same for the state variable log. To do so, we define a variable (out state) of type

ofstream. We initialize out state with the path to the output file for the state log (
"../simulation results/state log.txt").

Finally, we define the structure (oss_sink state) to tell the simulator where to save the state log. The
structure has a method (sink) that returns a pointer to out state. We will use oss_sink state to
declare the state logger.

To define the logger, we need to include the following declarations:

Page 65 of 85

Carleton

Cadmium
YW UNIVERSITY

A tool for DEVS Modeling and Simulation. User’s Guide

Canada’s Capital University
using state = logger: :logger<logger::logger_state,
dynamic: :logger: :formatter<TIME>, oss_sink state>;

It defines the state logger. We instantiate the logger with: (1) the logger we are using, in this case
logger_ state (defined in <cadmium/logger/logger.hpp>), (2) the formatter (defined in
<cadmium/logger/ dynamic_common_loggers.hpp>), and (3) the sink we just defined (i.e.
oss_sink state).

All logs are defined in the same way. Only the first and third template parameters changes because they are
the ones that specify which log we are using and where we generate the log.

using log_messages = logger: :logger<logger::logger messages,
dynamic: :logger: :formatter<TIME>, oss_sink messages>;

It defines the message logger. As in the previous case, we instantiate (1) the logger we are using, in this case,
logger messages (defined in <cadmium/logger/logger.hpp>), (2) the formatter (defined in
<cadmium/logger/ dynamic_common_loggers.hpp>), and (3) the sink just defined
(oss_sink messages).

In order to include the global time of the simulation inside the state and message log, we need to declare a
new logger: global_time. In this specific case, we need two: one for the messages and one for the states
because the logs are generated on different files.

using global time mes = logger: :logger<logger::logger global time,
dynamic: :logger: :formatter<TIME>, oss_sink messages>;

It defines the global time for the message logger. As in the previous case, we instantiate with (1) the logger
we are using, in this case logger_global time (defined in <cadmium/logger/logger.hpp>), (2) the
formatter (defined in <cadmium/logger/ dynamic_common_loggers.hpp>), and (3) the sink
(oss_sink messages).

using global time sta = logger: :logger<logger::logger global time,
dynamic: :logger: :formatter<TIME>, oss_sink state>;

It defines the global time for the state logger as in the previous cases.

Once we have declared all the loggers we need, we have to combine them, so our simulation generates all
the logs at the same time. For this purpose, we use the multilogger structure defined in
<cadmium/logger/logger.hpp> instantiated with the above log definitions (i.e. state, log messages,
global time mes, global time sta) astemplate parameters:

using logger_top = logger: :multilogger<state, log_messages,
global time mes, global time sta>;

Cadmium’s Services to Run the Simulation

Cadmium provides a templated class to execute the model: runner. The runner class defined in
<cadmium/engine/pdevs dynamic runner.hpp> under the namespace dynamic::engine:: takes two
template parameters: the class used for the time (in this example, NDTime) and a logger (in this case,
logger_ top). The parameters for the class constructor are the name of the top model (Top in this generic
case) and the initial time for the simulation (usually 0).

dynamic::engine::runner<NDTime, logger top> r(TOP, {0});

Page 66 of 85

Carleton

Cadmium -
YW UNIVERSITY

A tool for DEVS Modeling and Simulation. User’s Guide
Canada’s Capital University

To define the end time of the simulation, we have two options: (1) run the simulation until a specific time or
(2) run the simulation until all models are passivated.

To run the simulation until a specific time we use the runner method run until(). This method takes as
parameter the end time of the simulation.

r.run until (TIME ("04:00:00:000"));

To run the simulation until all models are passivated, we use the runner method run until passivate() .
This method does not take any parameter.

r.run _until passivate();

Page 67 of 85

A = Carleton

A tool for DEVS Modeling and Simulation. User’s Guide UNIVERSITY
Canada’s Capital University

Appendix A

Template for the definition of an atomic model.

#ifndef ATOMIC MODEL NAME HPP
#define ATOMIC MODEL NAME HPP

//Include simulator headers
#include <cadmium/modeling/ports.hpp>
#include <cadmium/modeling/message_bag.hpp>

//Include other headers needed for the C++ implementation of the model
#include <limits>

#include <math.h>

#include <assert.h>

//Include the relative path to the message types
#include "../data_structures/message.hpp"

using namespace cadmium;
using namespace std;

//Port definition
struct model name_ports defs{
struct out _port namel : public out_port<message type 1> {};
struct out _port name2 : public out_port<message type 2> {};
struct in_port namel : public in_port<message type 3> {};
struct in_port_name2 : public in_port<message type 4> {};

};

//Atomic model class
template<typename TIME> class model name {

public:
//Ports definition
using input_ports = tuple<typename model name_ports defs:: in_port_namel,
typename model name_ports _defs:: in_port_name2>;
using output_ports = tuple<typename model name ports defs:: out_port_namel,

typename model name_ports _defs:: out_port_name2s;
//Model parameters to be overwritten during instantiation

struct state_type{
//Declare the state variables here

s
state_type state;

//Default constructor without parameters
model name () noexcept{
//Define the default constructor here

}

//Constructor with parameters if needed

void internal_transition() {

Page 68 of 85

Carleton

UNIVERSITY

Cadmium

A tool for DEVS Modeling and Simulation. User’s Guide
Canada’s Capital University

//Define internal transition here
}
void external_transition(TIME e, typename make_message_bags<input_ports>::type mbs){
//Define external transition here
}
void confluence_transition(TIME e,typename make_message_bags<input_ports>::type mbs){
//Define confluence transition here
//Default definition
internal_transition();
external_transition(TIME(), std::move(mbs));
}
typename make_message_bags<output_ports>::type output() const {
typename make_message_bags<output_ports>::type bags;
//Define output function here
return bags;
}
TIME time_advance() const {
TIME next_internal;
//Define time advance function here
return next_internal;

}

friend ostringstream& operator<<(ostringstream& os, const typename
Subnet<TIME>::state_type& state) {
//Define how to log the state here
return os;
}
}s
#endif //ATOMIC_MODEL_NAME_HPP

Page 69 of 85

=2 Carleton

Cadmium
YW UNIVERSITY

A tool for DEVS Modeling and Simulation. User’s Guide
Canada’s Capital University

Appendix B

Implementation of the receiver atomic class

#ifndef RECEIVER HPP
#define RECEIVER HPP

#include <cadmium/modeling/ports.hpp>
#include <cadmium/modeling/message bag.hpp>

#include <limits>
#include <assert.h>
#include <string>

#include "../data structures/message.hpp"

using namespace cadmium;
using namespace std;

//Port definition
struct Receiver defs{
struct out : public out port<Message t> { };
struct in : public in port<Message t> { };
}i

template<typename TIME> class Receiver({
public:
//Parameters to be overwriten when instantiating the atomic model
TIME preparationTime;
// default constructor
Receiver () noexcept{

preparationTime = TIME("00:00:10");
state.ackNum = 0;
state.sending = false;

// state definition
struct state type{
int ackNum;
bool sending;
}i
state type state;
// ports definition
using input ports=std::tuple<typename Receiver defs::in>;
using output ports=std::tuple<typename Receiver defs::out>;

// internal transition
void internal transition() {
state.sending = false;

// external transition
void external transition (TIME e, typename
make message bags<input ports>::type mbs) {

Page 70 of 85

Cadmium =2 Carleton

A tool for DEVS Modeling and Simulation. User’s Guide . UNIVERSITY
Canada’s Capital University

if (get messages<typename Receiver defs::in>(mbs) .size()>1)
assert (false && "one message per time uniti");

vector<Message t> message port in;

message port in = get messages<typename Receiver defs::in>(mbs);

state.ackNum = message port in[0].bit;

state.sending = true;

// confluence transition
void confluence transition (TIME e, typename
make message bags<input ports>::type mbs) {
internal transition();
external transition(TIME (), std::move (mbs));

// output function

typename make message bags<output ports>::type output () const {
typename make message bags<output ports>::type bags;
Message t out aux;
out aux = Message t (0, state.ackNum);

get messages<typename Receiver defs::out>(bags) .push back (out aux);
return bags;

// time advance function
TIME time advance () const {
TIME next internal;
if (state.sending) {

next internal = preparationTime;
lelse {
next internal = std::numeric limits<TIME>::infinity();

}

return next internal;

friend std::ostringstream& operator<<(std::ostringstreamé& os, const
typename Receiver<TIME>::state typeé& i) {
0s << "ackNum: " << i.ackNum;

return os;

}s

#endif // RECEIVER HPP

Page 71 of 85

Carleton

Cadmium
YW UNIVERSITY

A tool for DEVS Modeling and Simulation. User’s Guide
Canada’s Capital University

Appendix C

Implementation of the sender atomic class

#ifndef SENDER HPP
#define SENDER HPP

#include <cadmium/modeling/ports.hpp>
#include <cadmium/modeling/message bag.hpp>

#include <limits>
#include <assert.h>
#include <string>
#include <random>

#include "../data structures/message.hpp"

using namespace cadmium;
using namespace std;

//Port definition

struct Sender defs/{
struct packetSentOut : public out port<int> { };
struct ackReceivedOut : public out port<int> {};
struct dataOut : public out port<Message t> { };
struct controlIn : public in port<int> { };
struct ackIn : public in port<Message t> { };

}i

template<typename TIME> class Sender{
public:
//Parameters to be overwriten when instantiating the atomic model
TIME preparationTime;
TIME timeout;
// default constructor
Sender () noexcept{

preparationTime = TIME("00:00:10");

timeout = TIME ("00:00:20");

state.alt bit = 0;

state.next internal = std::numeric limits<TIME>::infinity();

state.model active false;

// state definition
struct state type{
bool ack;
int packetNum;
int totalPacketNum;
int alt bit;
bool sending;
bool model active;
TIME next internal;
}i
state type state;

Page 72 of 85

=2 Carleton

Cadmium
YW UNIVERSITY

A tool for DEVS Modeling and Simulation. User’s Guide
Canada’s Capital University

// ports definition

using input ports=std::tuple<typename Sender defs::controlln, typename
Sender defs::ackIn>;

using output ports=std::tuple<typename Sender defs::packetSentOut,
typename Sender defs::ackReceivedOut, typename Sender defs::datalOut>;

// internal transition
void internal transition() {
if (state.ack){
if (state.packetNum < state.totalPacketNum) {
state.packetNum ++;
state.ack = false;

state.alt bit = (state.alt bit + 1) % 2;
state.sending = true;
state.model active = true;
state.next internal = preparationTime;
} else {
state.model active = false;
state.next internal = std::numeric limits<TIME>::infinity();
}
} else{
if (state.sending) {
state.sending = false;
state.model active = true;
state.next internal = timeout;
} else {
state.sending = true;
state.model active = true;

state.next internal = preparationTime;

// external transition
void external transition (TIME e, typename
make message bags<input ports>::type mbs) {
if ((get messages<typename
Sender defs::controlIn>(mbs) .size()+get messages<typename

Sender defs::ackIn>(mbs).size())>1)
assert (false && "one message per time uniti");
for (const auto &X : get messages<typename
Sender defs::controlIn>(mbs)) {
if (state.model active == false) {

state.totalPacketNum = x;
if (state.totalPacketNum > 0) {
state.packetNum = 1;
state.ack = false;
state.sending = true;
state.alt bit = 0; //set initial alt_bit

state.model active = true;
state.next internal = preparationTime;
lelse(

if (state.next internal !=
std::numeric 1limits<TIME>::infinity()) {
state.next internal = state.next internal - e;

Page 73 of 85

=2 Carleton

Cadmium
YW UNIVERSITY

A tool for DEVS Modeling and Simulation. User’s Guide
Canada’s Capital University

}

for (const auto &x : get messages<typename Sender defs::ackIn>(mbs)) {

if (state.model active == true) {
if (state.alt bit == x.bit) {
state.ack = true;
state.sending = false;
state.next internal = TIME("00:00:00");
lelse(

if (state.next internal =
std::numeric limits<TIME>::infinity()) {
state.next internal = state.next internal - e;

// confluence transition
void confluence transition (TIME e, typename
make message bags<input ports>::type mbs) {
internal transition();
external transition(TIME(), std::move(mbs));

// output function
typename make message bags<output ports>::type output () const ({
typename make message bags<output ports>::type bags;
Message t out;
if (state.sending) {
out.packet = state.packetNum;
out.bit = state.alt bit;
get messages<typename Sender defs::dataOut>(bags) .push back (out);
get messages<typename
Sender defs::packetSentOut> (bags) .push back(state.packetNum) ;
lelse(
if (state.ack) {
get messages<typename
Sender defs::ackReceivedOut> (bags) .push back(state.alt bit);
}
}

return bags;

// time advance function
TIME time advance () const {
return state.next internal;

friend std::ostringstreamé& operator<< (std::ostringstreams os, const

typename Sender<TIME>::state type& i) {
os << "packetNum: " << i.packetNum << " & totalPacketNum: " <<

i.totalPacketNum;

return os;

}
}i
#endif // _ SENDER HPP

Page 74 of 85

Cadmium
A tool for DEVS Modeling and Simulation. User’s Guide

Carleton

YW UNIVERSITY

Canada’s Capital University

Appendix D

Implementation of the ABP coupled model

//Cadmium Simulator headers

#include <cadmium/modeling/ports.hpp>

#include <cadmium/modeling/dynamic model.hpp>

#include <cadmium/modeling/dynamic model translator.hpp>
#include <cadmium/engine/pdevs_dynamic_ runner.hpp>
#include <cadmium/logger/common loggers.hpp>

//Time class header
#include <NDTime.hpp>

//Messages structures
#include "../data structures/message.hpp"

//Atomic model headers

#include <cadmium/basic_model/pdevs/iestream.hpp> //Atomic model for inputs
#include "../atomics/subnet.hpp"

#include "../atomics/sender.hpp"

#include "../atomics/receiver.hpp"

//C++ headers
#include <iostream>
#include <chrono>
#include <algorithm>
#include <string>

using namespace std;
using namespace cadmium;
using namespace cadmium:: and cadmium::basic _models::pdevs;

using TIME = NDTime;

/***x%* Define input port for coupled models **x*x/
struct inp control : public in port<int>{};

struct inp 1 : public in port<Message t>{};

struct inp 2 : public in port<Message t>{};

/***** Define output ports for coupled model ****x*/
struct outp ack : public out port<int>{};

struct outp 1 : public out port<Message t>{};
struct outp 2 : public out port<Message t>{};
struct outp pack : public out port<int>{};

/****x% Input Reader atomic model declaration ***xskkxxddkxdkxxdkx/
template<typename T>
class InputReader Int : public iestream input<int,T> {
public:
InputReader Int() = default;

InputReader Int (const char* file path) : iestream input<int,T>(file path)

}s

Page 75 of 85

{}

=2 Carleton

Cadmium
YW UNIVERSITY

A tool for DEVS Modeling and Simulation. User’s Guide
Canada’s Capital University

int main(int argc, char ** argv) {

if (argc < 2) {
cout << "Program used with wrong parameters. The program must be invoked
as follow:";
cout << argv[0] << " path to the input file " << endl;
return 1;

}

/*****x Tnput Reader atomic model instantiation *****kkxxkkkkkxkkkxx /

string input = argv([1l];
const char * i input = input.c str();
shared ptr<dynamic::modeling::model> input reader =

*

dynamic::translate::make dynamic atomic model<InputReader Int, TIME, const char
>("input reader" , move (i input));

/****x% Sender atomic model instantiation ***xAkxxddkxddkkxdkx/
shared ptr<dynamic::modeling::model> senderl =
dynamic::translate::make dynamic atomic model<Sender, TIME>("senderl");

/*****x% Receilver atomic model instantiation ***kxxdkxsdkxthkxi/
shared ptr<dynamic::modeling::model> receiverl =

dynamic::translate::make dynamic atomic model<Receiver, TIME>("receiverl");

/*****x* Syubnet atomic models instantiation *****xx*xkkkkkxxkkkkkx /

shared ptr<dynamic::modeling::model> subnetl =
dynamic::translate::make dynamic atomic model<Subnet, TIME>("subnetl");
shared ptr<dynamic::modeling::model> subnet?2 =

dynamic::translate::make dynamic atomic model<Subnet, TIME> ("subnet2");

[**HFHxx*x*NETWORKS COUPLED MODEL* ** % * %% /

dynamic::modeling::Ports iports Network = {typeid(inp 1), typeid(inp 2)};

dynamic::modeling::Ports oports Network = {typeid(outp 1), typeid(outp 2)};

dynamic::modeling: :Models submodels Network = {subnetl, subnet2};

dynamic::modeling::EICs eics Network = {
dynamic::translate::make EIC<inp 1, Subnet defs::in>("subnetl"),
dynamic::translate::make EIC<inp 2, Subnet defs::in>("subnet2")

}i

dynamic::modeling::EOCs eocs Network = {
dynamic::translate::make EOC<Subnet defs::out,outp 1>("subnetl"),
dynamic::translate::make EOC<Subnet defs::out,outp 2>("subnet2")

}i

dynamic::modeling::ICs ics_ Network = {};

shared ptr<dynamic::modeling::coupled<TIME>> NETWORK;

NETWORK = make shared<dynamic::modeling::coupled<TIME>> (
"Network", submodels Network, iports Network, oports Network,

eics Network, eocs Network, ics Network

);

/***xxxx*x ABP SIMULATOR COUPLED MODEL*****x*xxx /

dynamic::modeling::Ports iports ABP = {typeid(inp_ control)};

dynamic::modeling::Ports oports ABP = {typeid(outp ack), typeid(outp pack)};

dynamic::modeling: :Models submodels ABP = {senderl, receiverl, NETWORK};

dynamic::modeling::EICs eics ABP = ({

cadmium: :dynamic::translate::make EIC<inp control, Sender defs::controlIn>

("senderl")

}i

dynamic::modeling: :EOCs eocs ABP = ({

Page 76 of 85

=2 Carleton

Cadmium
YW UNIVERSITY

A tool for DEVS Modeling and Simulation. User’s Guide
Canada’s Capital University

dynamic::translate: :make EOC<Sender defs::packetSentOut,outp pack>("senderl"),

dynamic::translate::make EOC<Sender defs::ackReceivedOut,outp ack>("senderl")
}i

dynamic::modeling::ICs ics ABP = {

dynamic::translate::make IC<Sender defs::datalut, inp 1>
("senderl", "Network"),

dynamic::translate::make IC<outp 2, Sender defs::ackIn>
("Network", "senderl"),

dynamic::translate::make IC<Receiver defs::out, inp 2>
("receiverl", "Network"),

dynamic::translate::make IC<outp 1, Receiver defs::in>

("Network", "receiverl")
}i
shared ptr<dynamic::modeling::coupled<TIME>> ABP;
ABP = make shared<dynamic::modeling::coupled<TIME>> (
"ABP", submodels ABP, iports ABP, oports ABP, eics ABP, eocs ABP, ics ABP

)7

/*******TOP COUPLED MODEL********/

dynamic::modeling::Ports iports TOP = {};

dynamic::modeling::Ports oports TOP = {typeid(outp pack),typeid(outp ack)};

dynamic::modeling: :Models submodels TOP = {input reader, ABP};

dynamic::modeling::EICs eics TOP = {};

dynamic::modeling::EOCs eocs TOP = {
dynamic::translate::make EOC<outp pack,outp pack>("ABP"),
dynamic::translate::make EOC<outp ack,outp ack>("ABP")

bi

dynamic::modeling::ICs ics TOP = {
dynamic::translate::make IC<iestream input defs<int>::out, inp control>

("input reader","ABP")

bi

shared ptr<cadmium::dynamic::modeling::coupled<TIME>> TOP;

TOP = make shared<dynamic::modeling::coupled<TIME>>(
"TOP", submodels TOP, iports TOP, oports TOP, eics TOP, eocs TOP, ics_ TOP

)7

/*************** Loggers *******************/
static ofstream
out messages ("../simulation results/ABP_ output messages.txt");
struct oss sink messages({
static ostreamé& sink () {
return out messages;

b
static ofstream out state("../simulation results/ABP_output state.txt");
struct oss_sink state({
static ostreamé& sink () {
return out state;

}s

using state=logger::logger<logger::logger state,
dynamic::logger::formatter<TIME>, oss sink state>;

Page 77 of 85

Cadmium
A tool for DEVS Modeling and Simulation. User’s Guide

Carleton

YW UNIVERSITY

Canada’s Capital University

using log messages=logger::logger<logger::logger messages,

dynamic::logger::formatter<TIME>, oss sink messages>;

using global time mes=logger::logger<logger::logger global time,

dynamic::logger::formatter<TIME>, oss_sink messages>;

using global time sta=logger::logger<logger::logger global time,

dynamic::logger::formatter<TIME>, oss_sink state>;

using logger top=logger::multilogger<state, log messages,
global time sta>;

/************** Runner Call ************************/
dynamic::engine::runner<NDTime, logger top> r (TOP, {0});
r.run _until passivate();

return 0;

global time mes,

Page 78 of 85

Cadmium

A tool for DEVS Modeling and Simulation. User’s Guide

=2 Carleton

YW UNIVERSITY

Canada’s Capital University

Appendix E

Message log for the ABP simulation

00:00:00:000

[iestream input defs<int>::out: {}] generated by model input reader

00:00:10:000

[iestream input defs<int>::out: {5}] generated by model input reader

00:00:20:000
[Sender defs
Sender defs:
00:00:23:000
[Subnet defs
00:00:33:000

[Receiver defs::out:

00:00:36:000

[Subnet defs:

00:00:36:000
[Sender defs
Sender defs:
00:00:46:000
[Sender defs
Sender defs:
00:00:49:000

[Subnet defs:

00:00:59:000

[Receiver defs::out:

00:01:02:000

[Subnet defs:

00:01:02:000
[Sender defs
Sender defs:
00:01:12:000
[Sender defs
Sender defs:
00:01:15:000

[Subnet defs:

00:01:25:000

[Receiver defs::out:

00:01:28:000

[Subnet defs:

00:01:28:000
[Sender defs
Sender defs:
00:01:38:000
[Sender defs
Sender defs:
00:01:41:000

[Subnet defs:

00:01:51:000

[Receiver defs::out:

00:01:54:000

[Subnet defs:

00:01:54:000
[Sender defs
Sender defs:
00:02:04:000

Page 79 of 85

: :packetSentOut: {1},
:dataOut: {1 0}] generated by model senderl

::out: {1 0}] generated by model subnetl
{0 0}] generated by model receiverl

:out: {0 0}] generated by model subnet2

: :packetSentOut: {1, Sender defs::ackReceivedOut:
:dataOut: {}] generated by model senderl

: :packetSentOut: {2},
:dataOut: {2 1}] generated by model senderl

:out: {2 1}] generated by model subnetl
{0 1}] generated by model receiverl
:out: {0 1}] generated by model subnet?2

::packetSentOut: {}, Sender defs::ackReceivedOut:
:dataOut: {}] generated by model senderl

: :packetSentOut: {3},
:dataOut: {3 0}] generated by model senderl

:out: {3 0}] generated by model subnetl
{0 0}] generated by model receiverl
:out: {0 0}] generated by model subnet2

: :packetSentOut: {1, Sender defs::ackReceivedOut:
:dataOut: {}] generated by model senderl

::packetSentOut: {4},
:dataOut: {4 1}] generated by model senderl

cout: {4 1}] generated by model subnetl
{0 1}] generated by model receiverl
:out: {0 1}] generated by model subnet2

: :packetSentOut: {1}, Sender defs::ackReceivedOut:
:dataOut: {}] generated by model senderl

Sender defs::ackReceivedOut:

Sender defs::ackReceivedOut:

Sender defs::ackReceivedOut:

Sender defs::ackReceivedOut:

{,

{0},

{1},

{1,

{0},

{1y

{1},

Cadmium
A tool for DEVS

[Sender defs
Sender defs:
00:02:07:000

[Subnet defs:

00:02:17:000

[Receiver defs::out:

00:02:20:000

[Subnet defs:

00:02:20:000
[Sender defs
Sender defs:
00:15:00:000

=2 Carleton

Modeling and Simulation. User’s Guide

YW UNIVERSITY

Canada’s Capital University

: :packetSentOut: {5},
:dataOut: {5 0}] generated by model senderl

:out: {5 0}] generated by model subnetl
{0 0}] generated by model receiverl
:out: {0 0}] generated by model subnet2

: :packetSentOut: {}, Sender defs::ackReceivedOut:
:dataOut: {}] generated by model senderl

[iestream input defs<int>::out: {3}] generated by model input reader

00:15:10:000
[Sender defs
Sender defs:
00:15:13:000
[Subnet defs
00:15:23:000

[Receiver defs::out:

00:15:26:000

[Subnet defs:

00:15:26:000
[Sender defs
Sender defs:
00:15:36:000
[Sender defs
Sender defs:
00:15:39:000

[Subnet defs:

00:15:49:000

[Receiver defs::out:

00:15:52:000

[Subnet defs:

00:15:52:000
[Sender defs
Sender defs:
00:16:02:000

[Sender defs:

Sender defs:
00:16:22:000

[Sender defs:

Sender defs:
00:16:32:000

[Sender defs:

Sender defs:
00:16:35:000

[Subnet defs:

00:16:45:000

[Receiver defs::out:

00:16:48:000

[Subnet defs:

00:16:48:000
[Sender defs
Sender defs:

: :packetSentOut: {1},
:dataOut: {1 0}] generated by model senderl

::out: {1 0}] generated by model subnetl
{0 0}] generated by model receiverl

:out: {0 0}] generated by model subnet2

: :packetSentOut: {}, Sender defs::ackReceivedOut:
:dataOut: {}] generated by model senderl

: :packetSentOut: {2},
:dataOut: {2 1}] generated by model senderl

:out: {2 1}] generated by model subnetl
{0 1}] generated by model receiverl
:out: {0 1}] generated by model subnet2

::packetSentOut: {}, Sender defs::ackReceivedOut:
:dataOut: {}] generated by model senderl

:packetSentOut: {3},
:dataOut: {3 0}] generated by model senderl

:packetSentOut: {},
:dataOut: {}] generated by model senderl

:packetSentOut: {3},
:dataOut: {3 0}] generated by model senderl

:out: {3 0}] generated by model subnetl
{0 0}] generated by model receiverl
:out: {0 0}] generated by model subnet2

::packetSentOut: {}, Sender defs::ackReceivedOut:
:dataOut: {}] generated by model senderl

Sender defs::ackReceivedOut:

Sender defs::ackReceivedOut:

Sender defs::ackReceivedOut:

Sender defs::ackReceivedOut:

Sender defs::ackReceivedOut:

Sender defs::ackReceivedOut:

{1y

{0},

{3,

{0},

{1,

{1},

{1,

{1,

{1,

{0},

Page 80 of 85

Carleton

Cadmium
YW UNIVERSITY

A tool for DEVS Modeling and Simulation. User’s Guide
Canada’s Capital University

Appendix F

State log for the ABP simulation

00:00:00:000

State for model input reader is next time: 00:00:00:000
State for model senderl is packetNum: 0 & totalPacketNum: O
State for model receiverl is ackNum: O

State for model subnetl is index: 0 & transmitting: O

State for model subnet2 is index: 0 & transmitting: O
00:00:00:000

State for model input reader is next time: 00:00:10:000
State for model senderl is packetNum: 0 & totalPacketNum: O
State for model receiverl is ackNum: O

State for model subnetl is index: 0 & transmitting: O

State for model subnet2 is index: 0 & transmitting: O
00:00:10:000

State for model input reader is next time: 00:14:50:000
State for model senderl is packetNum: 1 & totalPacketNum: 5
State for model receiverl is ackNum: O

State for model subnetl is index: 0 & transmitting: O

State for model subnet2 is index: 0 & transmitting: O
00:00:20:000

State for model input reader is next time: 00:14:50:000
State for model senderl is packetNum: 1 & totalPacketNum: 5
State for model receiverl is ackNum: O

State for model subnetl is index: 1 & transmitting: 1

State for model subnet?2 is index: 0 & transmitting: O
00:00:23:000

State for model input reader is next time: 00:14:50:000
State for model senderl is packetNum: 1 & totalPacketNum: 5
State for model receiverl is ackNum: O

State for model subnetl is index: 1 & transmitting: O

State for model subnet2 is index: 0 & transmitting: O
00:00:33:000

State for model input reader is next time: 00:14:50:000
State for model senderl is packetNum: 1 & totalPacketNum: 5
State for model receiverl is ackNum: O

State for model subnetl is index: 1 & transmitting: O

State for model subnet2 is index: 1 & transmitting: 1
00:00:36:000

State for model input reader is next time: 00:14:50:000
State for model senderl is packetNum: 1 & totalPacketNum: 5
State for model receiverl is ackNum: O

State for model subnetl is index: 1 & transmitting: O

State for model subnet? is index: 1 & transmitting: O
00:00:36:000

State for model input reader is next time: 00:14:50:000
State for model senderl is packetNum: 2 & totalPacketNum: 5
State for model receiverl is ackNum: O

State for model subnetl is index: 1 & transmitting: O

State for model subnet2 is index: 1 & transmitting: O
00:00:46:000

State for model input reader is next time: 00:14:50:000

Page 81 of 85

Cadmium
A tool for DEVS Modeling and Simulation. User’s Guide

State
State
State
State

00:00:

State
State
State
State
State

00:00:

State
State
State
State
State

00:01:

State
State
State
State
State

00:01:

State
State
State
State
State

00:01:

State
State
State
State
State

00:01:

State
State
State
State
State
00:01
State
State
State
State
State
00:01
State
State
State
State
State
00:01
State
State
State
State

for
for
for
for

model
model
model
model

49:000

for
for
for
for
for

model
model
model
model
model

59:000

for
for
for
for
for

model
model
model
model
model

02:000

for
for
for
for
for

model
model
model
model
model

02:000

for
for
for
for
for

model
model
model
model
model

12:000

for
for
for
for
for

model
model
model
model
model

15:000

for
for
for
for
for

for
for
for
for
for

for
for
for
for
for

for
for
for
for

model
model
model
model
model

:25:000

model
model
model
model
model

:28:000

model
model
model
model
model

:28:000

model
model
model
model

Page 82 of 85

senderl is packetNum: 2 & totalPacketNum:

receiverl is ackNum: O
subnetl is index: 2 & transmitting: 1
subnet?2 is index: 1 & transmitting: O

input reader is next time: 00:14:50:000

senderl is packetNum: 2 & totalPacketNum:

receiverl is ackNum: 1
subnetl is index: 2 & transmitting: O
subnet?2 is index: 1 & transmitting: O

input reader is next time: 00:14:50:000

senderl is packetNum: 2 & totalPacketNum:

receiverl is ackNum: 1
subnetl is index: 2 & transmitting: O
subnet2 is index: 2 & transmitting: 1

input reader is next time: 00:14:50:000

senderl is packetNum: 2 & totalPacketNum:

receiverl is ackNum: 1
subnetl is index: 2 & transmitting: O
subnet2 is index: 2 & transmitting: O

input reader is next time: 00:14:50:000

senderl is packetNum: 3 & totalPacketNum:

receiverl is ackNum: 1
subnetl is index: 2 & transmitting: O
subnet2 is index: 2 & transmitting: O

input reader is next time: 00:14:50:000

senderl is packetNum: 3 & totalPacketNum:

receiverl is ackNum: 1
subnetl is index: 3 & transmitting: 1
subnet2 is index: 2 & transmitting: O

input reader is next time: 00:14:50:000

senderl is packetNum: 3 & totalPacketNum:

receiverl is ackNum: O
subnetl is index: 3 & transmitting: O
subnet2 is index: 2 & transmitting: O

input reader is next time: 00:14:50:000

senderl is packetNum: 3 & totalPacketNum:

receiverl is ackNum: O
subnetl is index: 3 & transmitting: O
subnet2 is index: 3 & transmitting: 1

input reader is next time: 00:14:50:000

senderl is packetNum: 3 & totalPacketNum:

receiverl is ackNum: O
subnetl is index: 3 & transmitting: O
subnet?2 is index: 3 & transmitting: O

input reader is next time: 00:14:50:000

senderl is packetNum: 4 & totalPacketNum:

receiverl is ackNum: O
subnetl is index: 3 & transmitting: O

Canada’s Capital University

5

Carleton

YW UNIVERSITY

Carleton

Cadmium
YW UNIVERSITY

A tool for DEVS Modeling and Simulation. User’s Guide
Canada’s Capital University

State for model subnet2 is index: 3 & transmitting: O
00:01:38:000

State for model input reader is next time: 00:14:50:000
State for model senderl is packetNum: 4 & totalPacketNum: 5
State for model receiverl is ackNum: O

State for model subnetl is index: 4 & transmitting: 1

State for model subnet? is index: 3 & transmitting: O
00:01:41:000

State for model input reader is next time: 00:14:50:000
State for model senderl is packetNum: 4 & totalPacketNum: 5
State for model receiverl is ackNum: 1

State for model subnetl is index: 4 & transmitting: O

State for model subnet2 is index: 3 & transmitting: O
00:01:51:000

State for model input reader is next time: 00:14:50:000
State for model senderl is packetNum: 4 & totalPacketNum: 5
State for model receiverl is ackNum: 1

State for model subnetl is index: 4 & transmitting: 0

State for model subnet2 is index: 4 & transmitting: 1
00:01:54:000

State for model input reader is next time: 00:14:50:000
State for model senderl is packetNum: 4 & totalPacketNum: 5
State for model receiverl is ackNum: 1

State for model subnetl is index: 4 & transmitting: O

State for model subnet2 is index: 4 & transmitting: O
00:01:54:000

State for model input reader is next time: 00:14:50:000
State for model senderl is packetNum: 5 & totalPacketNum: 5
State for model receiverl is ackNum: 1

State for model subnetl is index: 4 & transmitting: O

State for model subnet?2 is index: 4 & transmitting: O
00:02:04:000

State for model input reader is next time: 00:14:50:000
State for model senderl is packetNum: 5 & totalPacketNum: 5
State for model receiverl is ackNum: 1

State for model subnetl is index: 5 & transmitting: 1

State for model subnet2 is index: 4 & transmitting: 0
00:02:07:000

State for model input reader is next time: 00:14:50:000
State for model senderl is packetNum: 5 & totalPacketNum: 5
State for model receiverl is ackNum: O

State for model subnetl is index: 5 & transmitting: O

State for model subnet2 is index: 4 & transmitting: 0
00:02:17:000

State for model input reader is next time: 00:14:50:000
State for model senderl is packetNum: 5 & totalPacketNum: 5
State for model receiverl is ackNum: O

State for model subnetl is index: 5 & transmitting: O

State for model subnet2 is index: 5 & transmitting: 1
00:02:20:000

State for model input reader is next time: 00:14:50:000
State for model senderl is packetNum: 5 & totalPacketNum: 5
State for model receiverl is ackNum: O

State for model subnetl is index: 5 & transmitting: O

State for model subnet2 is index: 5 & transmitting: O
00:02:20:000

State for model input reader is next time: 00:14:50:000

Page 83 of 85

Cadmium
A tool for DEVS Modeling and Simulation. User’s Guide

State
State
State
State

00:15:

State
State
State
State
State

00:15:

State
State
State
State
State

00:15:

State
State
State
State
State
00:15
State
State
State
State
State
00:15
State
State
State
State
State
00:15
State
State
State
State
State

00:15:

State
State
State
State
State

00:15:

State
State
State
State
State

00:15:

State
State
State
State

for
for
for
for

model
model
model
model

00:000

for
for
for
for
for

model
model
model
model
model

10:000

for
for
for
for
for

model
model
model
model
model

13:000

for
for
for
for
for

for
for
for
for
for

for
for
for
for
for

for
for
for
for
for

model
model
model
model
model

:23:000

model
model
model
model
model

:26:000

model
model
model
model
model

:26:000

model
model
model
model
model

36:000

for
for
for
for
for

model
model
model
model
model

39:000

for
for
for
for
for

model
model
model
model
model

49:000

for
for
for
for

model
model
model
model

Page 84 of 85

senderl is packetNum: 5 & totalPacketNum:

receiverl is ackNum: O
subnetl is index: 5 & transmitting: O
subnet2 is index: 5 & transmitting: O

input reader is next time: inf

senderl is packetNum: 1 & totalPacketNum:

receiverl is ackNum: O
subnetl is index: 5 & transmitting: O
subnet?2 is index: 5 & transmitting: O

input reader is next time: inf

senderl is packetNum: 1 & totalPacketNum:

receiverl is ackNum: O
subnetl is index: 6 & transmitting: 1
subnet2 is index: 5 & transmitting: O

input reader is next time: inf

senderl is packetNum: 1 & totalPacketNum:

receiverl is ackNum: 0
subnetl is index: 6 & transmitting: O
subnet2 is index: 5 & transmitting: O

input reader is next time: inf

senderl is packetNum: 1 & totalPacketNum:

receiverl is ackNum: O
subnetl is index: 6 & transmitting: O
subnet2 is index: 6 & transmitting: 1

input reader is next time: inf

senderl is packetNum: 1 & totalPacketNum:

receiverl is ackNum: O
subnetl is index: 6 & transmitting: O
subnet2 is index: 6 & transmitting: O

input reader is next time: inf

senderl is packetNum: 2 & totalPacketNum:

receiverl is ackNum: O
subnetl is index: 6 & transmitting: O
subnet2 is index: 6 & transmitting: O

input reader is next time: inf

senderl is packetNum: 2 & totalPacketNum:

receiverl is ackNum: O
subnetl is index: 7 & transmitting: 1
subnet2 is index: 6 & transmitting: O

input reader is next time: inf

senderl is packetNum: 2 & totalPacketNum:

receiverl is ackNum: 1
subnetl is index: 7 & transmitting: O
subnet?2 is index: 6 & transmitting: O

input reader is next time: inf

senderl is packetNum: 2 & totalPacketNum:

receiverl is ackNum: 1
subnetl is index: 7 & transmitting: O

Canada’s Capital University

5

Carleton

YW UNIVERSITY

=2 Carleton

Cadmium
YW UNIVERSITY

A tool for DEVS Modeling and Simulation. User’s Guide
Canada’s Capital University

State for model subnet2 is index: 7 & transmitting: 1
00:15:52:000

State for model input reader is next time: inf

State for model senderl is packetNum: 2 & totalPacketNum: 3
State for model receiverl is ackNum: 1

State for model subnetl is index: 7 & transmitting: O

State for model subnet?2 is index: 7 & transmitting: O
00:15:52:000

State for model input reader is next time: inf

State for model senderl is packetNum: 3 & totalPacketNum: 3
State for model receiverl is ackNum: 1

State for model subnetl is index: 7 & transmitting: O

State for model subnet2 is index: 7 & transmitting: O
00:16:02:000

State for model input reader is next time: inf

State for model senderl is packetNum: 3 & totalPacketNum: 3
State for model receiverl is ackNum: 1

State for model subnetl is index: 8 & transmitting: O

State for model subnet?2 is index: 7 & transmitting: O
00:16:22:000

State for model input reader is next time: inf

State for model senderl is packetNum: 3 & totalPacketNum: 3
State for model receiverl is ackNum: 1

State for model subnetl is index: 8 & transmitting: O

State for model subnet2 is index: 7 & transmitting: O
00:16:32:000

State for model input reader is next time: inf

State for model senderl is packetNum: 3 & totalPacketNum: 3
State for model receiverl is ackNum: 1

State for model subnetl is index: 9 & transmitting: 1

State for model subnet?2 is index: 7 & transmitting: O
00:16:35:000

State for model input reader is next time: inf

State for model senderl is packetNum: 3 & totalPacketNum: 3
State for model receiverl is ackNum: O

State for model subnetl is index: 9 & transmitting: O

State for model subnet2 is index: 7 & transmitting: O
00:16:45:000

State for model input reader is next time: inf

State for model senderl is packetNum: 3 & totalPacketNum: 3
State for model receiverl is ackNum: O

State for model subnetl is index: 9 & transmitting: O

State for model subnet2 is index: 8 & transmitting: 1
00:16:48:000

State for model input reader is next time: inf

State for model senderl is packetNum: 3 & totalPacketNum: 3
State for model receiverl is ackNum: O

State for model subnetl is index: 9 & transmitting: O

State for model subnet? is index: 8 & transmitting: 0
00:16:48:000

State for model input reader is next time: inf

State for model senderl is packetNum: 3 & totalPacketNum: 3
State for model receiverl is ackNum: O

State for model subnetl is index: 9 & transmitting: O

State for model subnet? is index: 8 & transmitting: 0

Page 85 of 85

