

Cadmium
A tool for DEVS Modeling and Simulation. User’s Guide

Page 1 of 85

Cadmium

A tool for DEVS Modeling and

Simulation

User’s Guide

DRAFT – 19/02/2020

Cristina Ruiz Martin
Gabriel A. Wainer

Department of Systems and Computer Engineering

Carleton University

1125 Colonel By Dr. Ottawa, ON. Canada

http://cell-devs.sce.carleton.ca

http://www.sce.carleton.ca/faculty/wainer

gwainer@sce.carleton.ca

http://cell-devs.sce.carleton.ca/
http://www.sce.carleton.ca/faculty/wainer
mailto:gwainer@sce.carleton.ca

Cadmium
A tool for DEVS Modeling and Simulation. User’s Guide

Page 2 of 85

Table of Contents
Cadmium ... 4

Windows - Installation and example ... 4

Installing Cygwin, GCC and Boost .. 4

Downloading and installing the Cadmium Simulator .. 12

Compiling and Running a Cadmium DEVS Model ... 14

Ubuntu - Installation and example .. 15

System requirements .. 15

Installing Boost .. 15

Installing g++ .. 17

Installing Git ... 21

Installing the ‘make’ command ... 23

Downloading and installing the Cadmium Simulator .. 24

Compiling and Running a Cadmium DEVS Model ... 25

MacOS - Installation and example ... 26

System requirements .. 26

Installing Command Line Tools .. 26

Installing Homebrew and Boost .. 27

Downloading and installing the Cadmium Simulator .. 27

Compiling and Running a Cadmium DEVS Model ... 28

DEVS Model definition: An Example ... 30

Subnet: an atomic model example implemented in Cadmium ... 30

Unit testing the Subnet atomic model .. 37

A Summary on Port Definition... 48

Defining the make file to compile the test .. 50

Simulating the complete ABP model ... 52

Defining the make file to compile all the test and the ABP .. 54

Cadmium’s Services for Atomic Models .. 55

Declaring ports .. 56

Implementing atomic models: a C++ class .. 57

Using Atomic Models: Creating Instances from the Class ... 60

Cadmium’s Services for Coupled Models .. 61

Declaring ports .. 61

Defining coupled models ... 61

Cadmium’s Services to create Logs ... 65

Cadmium
A tool for DEVS Modeling and Simulation. User’s Guide

Page 3 of 85

Cadmium’s Services to Run the Simulation ... 66

Appendix A .. 68

Appendix B ... 70

Appendix C ... 72

Appendix D .. 75

Appendix E ... 79

Appendix F ... 81

Cadmium
A tool for DEVS Modeling and Simulation. User’s Guide

Page 4 of 85

Cadmium

Cadmium is a tool for Discrete-Event modeling and simulation, based on the DEVS formalism. DEVS is a

discrete event paradigm that allows a hierarchical and modular description of the models. Each DEVS model

can be behavioral (atomic) or structural (coupled), consisting of inputs, outputs, state variables, and

functions to compute the next states and outputs.

Cadmium is a cross-platform header-only library implemented in C++. This document is a user's guide to

Cadmium, and we will only focus on tool-related aspects. Readers interested in the underlying theory should

consult:

- G. Wainer. Discrete-Event Modeling and Simulation: a practitioner's approach. Taylor and Francis.
2008.

- B. Zeigler, H. Praehofer, T. G. Kim. “Theory of Modeling and Simulation”. 2nd Edition. Academic
Press. 2000.

More references about related topics are available at http://cell-devs.sce.carleton.ca:

From now on, a complete understanding of DEVS models is assumed. Details about the DEVS formalism can

be found in the literature above.

To report errors in this user manual please contact gwainer@sce.carleton.ca.

Windows - Installation and example

NOTE: If we follow these instructions step by step, we will be able to download Cadmium and to

compile and execute models in Cadmium DEVS simulator. If we are an expert C++ programmer,

we can install the tools in your own different way. Cadmium is a C++ header library only that

depends on Boost library. In that case, we can get Cadmium here:

https://github.com/SimulationEverywhere/cadmium

Installing Cygwin, GCC and Boost

1. Create the folder C:\cygwin64

2. Visit http://www.cygwin.com/. Look for the section "Installing Cygwin" and select the appropriate
version (32 bit or 64 bit) for your PC. In this example, we will show how to install the 64-bit version.

http://cell-devs.sce.carleton.ca/
mailto:gwainer@sce.carleton.ca
https://github.com/SimulationEverywhere/cadmium
http://www.cygwin.com/

Cadmium
A tool for DEVS Modeling and Simulation. User’s Guide

Page 5 of 85

Download the setup file chosen in C:\cygwin64. Based on the OS version we will get a file named
setup-x86_64.exe (64-bit installation) or setup-x86.exe (32-bit installation)

3. Execute setup-x86_64.exe (64-bit installation) or setup-x86.exe (32-bit installation) and click on
“Next >”. We will see the following welcome screen.

4. Select the option "Install from Internet" and click on “Next >”

5. We need to select the Root Install directory for storage of Cygwin files. Choose the default
(c:\cygwin64, as seen in the screenshot, and “All Users (RECOMMENDED)”. Click on “Next >”

Cadmium
A tool for DEVS Modeling and Simulation. User’s Guide

Page 6 of 85

6. Choose your preferred directory for storage of Cygwin local package directory as in the screenshot (i.e.
the folder we just created) and click on “Next >”

7. Select the option “Use System Proxy Setting” and click on “Next >”

Cadmium
A tool for DEVS Modeling and Simulation. User’s Guide

Page 7 of 85

8. After a few seconds, the following window will appear. Choose a Download Site as in the screenshot.
Click on “Next >” (in this case, http://cygwin.mirror.constant.com)

9. Cygwin will start the installation process. The following window will appear

Cadmium
A tool for DEVS Modeling and Simulation. User’s Guide

Page 8 of 85

10. When we get the following window, if we click on “All”, we will see all the existing packages. Do not
choose anything; simply click “Next >” leaving everything as default (as in the screenshot). This will
install the default tools and libraries.

11. The following window will appear. Click on “Next >”

Cadmium
A tool for DEVS Modeling and Simulation. User’s Guide

Page 9 of 85

12. The progress window below will appear.

13. Once the installation finishes, select the option “Create icon on Desktop” to easily access the Cygwin
terminal. Click on “Finish”

14. Once the installation finishes, if we open the cygwin64 folder, it should have the following content.

Cadmium
A tool for DEVS Modeling and Simulation. User’s Guide

Page 10 of 85

15. Open the windows terminal (Command Prompt; type “cmd” on your Windows search).
Type
cd c:\cygwin64

For the 64-bit installation, type:

setup-x86_64.exe -q -P chere -P wget -P gcc-g++ -P make -P

diffutils -P libmpfr-devel -P libgmp-devel -P libmpc-devel -P git

(For 32-bit installation, replace by setup-x86.exe)

It will install all the necessary libraries and the last version of gcc/g++ compiler.

16. A Progress window will pop up while all the required packages along with their dependencies are
downloaded and installed, as in the following screen capture.

The installation process will take several minutes. Once the installation process finishes, the window

will disappear automatically, and we can close the Command Prompt.

17. Run Cygwin on your desktop, in administrator mode (right-click on the desktop icon and select the

option “Run as administrator”; we can also use c:\cygwin64, and run the script “cygwin.bat” in

Administrator mode). The skeleton files will be created:

Copying skeleton files.

These files are for the users to personalise their cygwin experience.

They will never be overwritten nor automatically updated.

'./.bashrc' -> '/YOURDIRECTORY//.bashrc'

'./.bash_profile' -> '/YOURDIRECTORY//.bash_profile'

'./.inputrc' -> '/YOURDIRECTORY//.inputrc'

'./.profile' -> '/YOURDIRECTORY//.profile'

YOURDIRECTORY~

$

Cadmium
A tool for DEVS Modeling and Simulation. User’s Guide

Page 11 of 85

18. Type the following command on the terminal and press “Enter” (in this case, we show an example for

user “User” running Cygwin on the Desktop):

wget rawgit.com/transcode-open/apt-cyg/master/apt-cyg

19. Type the following command and press “Enter”
install apt-cyg /bin

"apt-cyg" is a command in Cygwin similar to the "sudo apt-get" command in Linux. It is used to install

packages, update them, list them, etc.

20. Type the following command and press “Enter”
chere -i -t mintty -s bash

This will allow us to open a Cygwin bash terminal from any folder in your Windows File Explorer or other

applications.

Cadmium
A tool for DEVS Modeling and Simulation. User’s Guide

Page 12 of 85

21. Type the following command on Cygwin terminal and press “Enter”.

apt-cyg install libboost-devel

This installs the Boost Library. A progress message will show the installation.

Downloading and installing the Cadmium Simulator

1. Type the following commands:
git clone https://github.com/SimulationEverywhere/Cadmium-Simulation-

Environment.git

cd Cadmium-Simulation-Environment/

git submodule update --init --recursive

https://github.com/SimulationEverywhere/Cadmium-Simulation-Environment.git
https://github.com/SimulationEverywhere/Cadmium-Simulation-Environment.git

Cadmium
A tool for DEVS Modeling and Simulation. User’s Guide

Page 13 of 85

Now we have Cadmium set up. If we open the folder Cadmium-Simulation-Environment, it has to look as

follows:

Cadmium
A tool for DEVS Modeling and Simulation. User’s Guide

Page 14 of 85

Compiling and Running a Cadmium DEVS Model
When we download Cadmium, we obtain a Model Library (Folder: DEVS-Models). We will use the ABP model

found in that directory as an example to show how to compile a Cadmium model and how to run the tests

for that model.

1. Compile the project and the tests

a. Open a Bash Prompt inside the folder ABP:

Inside the Cadmium-ABP folder, right-click + “Bash Prompt Here”

b. To compile the project and the tests, type in the Bash Prompt:
 make clean; make all

2. Run tests

a. A subfolder, called bin, has been created. The simulation examples we will execute are in

that directory (cd bin).

b. To run the subnet test, type in the Bash Prompt:
./SUBNET_TEST.exe

c. To run the receiver test, type in the Bash Prompt:
./RECEIVER_TEST.exe

d. To run the sender test, type in the Bash Prompt:
./SENDER_TEST.exe

e. To check the output of the tests, go to the folder “../simulation_results” and open the

respective files

3. Run the top model

Cadmium
A tool for DEVS Modeling and Simulation. User’s Guide

Page 15 of 85

a. Inside the subfolder “bin”, type
./ABP.exe ../input_data/input_abp_1.txt

b. To check the output of the model, go to the folder simulation_results and open

"abp_output.txt"

4. To run the model with different inputs

a. Create new .txt files with the same structure as input_abp_0.txt or input_abp_1.txt in the

folder input_data

b. Run the model using the instructions in step 3

c. If we want to keep the output, rename abp_output.txt. Otherwise, it will be overwritten

when we run the next simulation.

Ubuntu - Installation and example

System requirements
1. Ubuntu 16.04 or higher

2. RAM 16GB (we will be able to run small models with 4GB ram)

Installing Boost

1. Open the Ubuntu terminal. To open Ubuntu terminal press: "Ctrl + Alt + t".

2. Type the following command in the Ubuntu terminal screen that appears, and press ENTER
sudo apt-get install libboost-all-dev

3. Type the administrative password, i.e. the password we use for signing in into your Ubuntu account

and press ENTER.

4. The installation begins. After a while, the installation is temporarily paused, and the following

question appears: "Do we want to continue?", type: y and then press ENTER to resume the

installation process.

Cadmium
A tool for DEVS Modeling and Simulation. User’s Guide

Page 16 of 85

5. Wait until the installation is finished.

….

Cadmium
A tool for DEVS Modeling and Simulation. User’s Guide

Page 17 of 85

Installing g++
Cadmium is tested using g++7.2 compiler. Previous versions of g++ do not work because they cannot compile

C++17 code.

Instructions to install gcc 7.2 and g++ 7.2 and make them as default compilers:

1. Open Ubuntu terminal. To open Ubuntu terminal press: “Ctrl + Alt + t”. Do not close the terminal
until the installation process is complete.

2. Type the following command on the Ubuntu terminal and press ENTER:
sudo add-apt-repository ppa:jonathonf/gcc-7.1

3. Enter the administrative password, i.e. the password we use for signing in into your Ubuntu account
and press ENTER. The installation process begins.

4. After a while, we will be asked to "Press [ENTER] to continue or Ctrl-c to cancel adding it". Press
ENTER to continue with the installation.

5. The following text will appear on the terminal. Wait until the installation is finished.

Cadmium
A tool for DEVS Modeling and Simulation. User’s Guide

Page 18 of 85

6. Type the following command on the terminal and press ENTER:
sudo apt-get update

7. Enter the administrative password if we are asked. Wait until the installation is finished

Cadmium
A tool for DEVS Modeling and Simulation. User’s Guide

Page 19 of 85

8. Type the following command in the Ubuntu terminal and press ENTER:
sudo apt-get install gcc-7 g++-7

9. When we are asked "Do we want to continue?" type: y and press ENTER to resume with the
installation. Wait until the installation process is finished.

10. Type the following command in the Ubuntu terminal and press ENTER:

Cadmium
A tool for DEVS Modeling and Simulation. User’s Guide

Page 20 of 85

sudo update-alternatives --install /usr/bin/gcc gcc /usr/bin/gcc-7

60 --slave /usr/bin/gcc-ar gcc-ar /usr/bin/gcc-ar-7 --slave

/usr/bin/gcc-nm gcc-nm /usr/bin/gcc-nm-7 --slave /usr/bin/gcc-

ranlib gcc-ranlib /usr/bin/gcc-ranlib-7

11. Enter the administrative password if we are asked. Wait until the installation is finished

12. Type the following command in the Ubuntu terminal and press ENTER:

sudo update-alternatives --install /usr/bin/g++ g++ /usr/bin/g++-7

60 --slave /usr/bin/g++-ar g++-ar /usr/bin/g++-ar-7 --slave

/usr/bin/g++-nm g++-nm /usr/bin/g++-nm-7 --slave /usr/bin/g++-

ranlib g++-ranlib /usr/bin/g++-ranlib-7

13. Enter the administrative password if we are asked. Wait until the installation is finished

14. To verify that g++-7 is installed on your computer, type the following command in the terminal and
press ENTER:

 g++ --version

Cadmium
A tool for DEVS Modeling and Simulation. User’s Guide

Page 21 of 85

Installing Git

1. To check if your computer has Git installed in, open Ubuntu terminal by pressing: “Ctrl + Alt + t”. Do
not close the terminal until the installation process is complete.

2. Type the following command and press ENTER:
git
If git is not installed, the terminal looks like this.

If git is already installed, the terminal looks as follows and we can skip the rest of this section.

3. To install git on your computer, type the following command
sudo apt-get install git

Cadmium
A tool for DEVS Modeling and Simulation. User’s Guide

Page 22 of 85

4. Enter the administrative password, i.e. the password we use for signing in into your Ubuntu account
and press ENTER. The installation process begins.

5. After a while, the installation is temporarily paused, and the following question appears on the
Ubuntu terminal "Do we want to continue?", type: y and then press ENTER to resume the
installation process. Wait until the installation process is finished.

Cadmium
A tool for DEVS Modeling and Simulation. User’s Guide

Page 23 of 85

Installing the ‘make’ command
1. Open the terminal (Press CTRL + Alt + t) and the type following command:

sudo apt-get install make

2. Enter the administrative password if we are asked. Wait until the installation is finished

Cadmium
A tool for DEVS Modeling and Simulation. User’s Guide

Page 24 of 85

Downloading and installing the Cadmium Simulator

1. Create a new folder in the Home directory and name it as “CADMIUM”.

2. Open Ubuntu terminal by pressing: “Ctrl + Alt + t”. Type the following commands:
cd CADMIUM/

git clone https://github.com/SimulationEverywhere/Cadmium-Simulation-

Environment.git

cd Cadmium-Simulation-Environment

git submodule update --init -–recursive

Now we have Cadmium set up. If we open the folder Cadmium-Simulation-Environment, it has to look as

follows:

https://github.com/SimulationEverywhere/Cadmium-Simulation-Environment.git
https://github.com/SimulationEverywhere/Cadmium-Simulation-Environment.git

Cadmium
A tool for DEVS Modeling and Simulation. User’s Guide

Page 25 of 85

Compiling and Running a Cadmium DEVS Model

As we could see, when we download the Cadmium Simulation Environment it comes with a Model Library

(Folder: DEVS-Models). We will use the ABP model as an example to show how to compile a Cadmium model

and how to run the tests and the model.

1. Compile the project and the tests

1. Open terminal inside the folder ABP:
Inside the Cadmium-ABP folder, (Press CTRL + Alt + t).

2. To compile the project and the tests, type:
make clean; make all

2. Run tests
1. Open a terminal inside the subfolder bin:

 Inside the bin folder, (Press CTRL + Alt + t) to open the terminal.
2. To run the subnet test, type:

 ./SUBNET_TEST

3. To run the receiver test, type:
 ./RECEIVER_TEST

4. To run the sender test, type:
 ./SENDER_TEST

5. To check the output of the tests, go to the folder simulation_results and open the respective
files

3. Run the top model

Cadmium
A tool for DEVS Modeling and Simulation. User’s Guide

Page 26 of 85

1. Open a terminal inside the subfolder bin:
 Inside the bin folder, (Press CTRL + Alt + t) to open the terminal.

2. To run the model, type:
 ./ABP ../input_data/input_abp_1.txt

3. To check the output of the model, go to the folder simulation_results and open
"abp_output.txt"

4. To run the model with different inputs

1. Create new .txt files with the same structure as input_abp_0.txt or input_abp_1.txt in the
folder input_data

2. Run the model using the instructions in step 3

3. If we want to keep the output, rename abp_output.txt. Otherwise, it will be overwritten
when we run the next simulation.

MacOS - Installation and example

System requirements

1. MacOS 10.11 or higher

2. RAM 16GB (we will be able to run small models with 4GB RAM)

Installing Command Line Tools

In order to run Cadmium, we need to install different tools, such as make, git, or g++. To do so, follow the

next steps:

1. Open a terminal:

a. Use the keyboard shortcut “Command + Space” to open Spotlight Search.

b. Type in “terminal”.

c. You should see the Terminal application under Top Hit at the top of your results. Double-

click it and Terminal will open.

2. Type the following command in the terminal screen, and press ENTER
xcode-select –install

3. A software update popup window will appear asking for permission to install the command line

developer tools. Click “Install” to download them and agree to the Terms of Service (after reading

them, of course).

Cadmium
A tool for DEVS Modeling and Simulation. User’s Guide

Page 27 of 85

Installing Homebrew and Boost
Cadmium uses different C++ source libraries provided by Boost. We have to install first Homebrew, a

package manager for MacOS.

1. Open a terminal:

a. Use the keyboard shortcut “Command + Space” to open Spotlight Search.

b. Type in “terminal”.

c. You should see the Terminal application under Top Hit at the top of your results. Double-

click it and Terminal will open.

2. Type the following command and press ENTER: /usr/bin/ruby –e “$(curl –fsSL

https://raw.githubusercontent.com/Homebrew/install /master/install)”

3. Install Boost typing the following command: brew install boost

Downloading and installing the Cadmium Simulator

1. Create a new folder in the Home directory and name it as “CADMIUM”.

2. Open a terminal:

a. Use the keyboard shortcut “Command + Space” to open Spotlight Search.

b. Type in “terminal”.

c. You should see the Terminal application under Top Hit at the top of your results. Double-

click it and Terminal will open.

3. Type the following commands:
cd CADMIUM/

git clone https://github.com/SimulationEverywhere/Cadmium-Simulation-

Environment.git

cd Cadmium-Simulation-Environment/

git submodule update --init -–recursive

https://github.com/SimulationEverywhere/Cadmium-Simulation-Environment.git
https://github.com/SimulationEverywhere/Cadmium-Simulation-Environment.git

Cadmium
A tool for DEVS Modeling and Simulation. User’s Guide

Page 28 of 85

Now we have Cadmium set up. If we open the folder Cadmium-Simulation-Environment, it has to look as

follows:

Compiling and Running a Cadmium DEVS Model

As we could see, when we download the Cadmium Simulation Environment it comes with a Model Library

(Folder: DEVS-Models). We will use the ABP model as an example to show how to compile a Cadmium model

and how to run the tests and the model.

1. Compile the project and the tests
1. Open a terminal:

i. Use the keyboard shortcut “Command + Space” to open Spotlight Search.

ii. Type in “terminal”

iii. You should see the Terminal application under Top Hit at the top of your results.
Double-click it and Terminal will open

2. Type the following to change the working directory to Cadmium-DEVS-Models/ABP folder:
cd CADMIUM/Cadmium-Simulation-Environment/DEVS-Models/ABP

Cadmium
A tool for DEVS Modeling and Simulation. User’s Guide

Page 29 of 85

3. To compile the project and the tests, type:
make clean; make all

2. Run tests
1. Open a terminal:

i. Use the keyboard shortcut “Command + Space” to open Spotlight Search.

ii. Type in “terminal”

iii. You should see the Terminal application under Top Hit at the top of your results.
Double-click it and Terminal will open

2. Type the following to change the working directory to Cadmium-DEVS-Models/ABP/bin
folder:
cd CADMIUM/Cadmium-Simulation-Environment/DEVS-Models/ABP/bin

3. To run the subnet test, type:
 ./SUBNET_TEST

4. To run the receiver test, type:
 ./RECEIVER_TEST

5. To run the sender test, type:
 ./SENDER_TEST

6. To check the output of the tests, go to the folder simulation_results and open the respective
files

3. Run the top model
1. Open a terminal:

i. Use the keyboard shortcut “Command + Space” to open Spotlight Search.

ii. Type in “terminal”.

iii. You should see the Terminal application under Top Hit at the top of your results.
Double-click it and Terminal will open

2. Type the following to change the working directory to Cadmium-DEVS-Models/ABP/bin
folder:
cd CADMIUM/Cadmium-Simulation-Environment/DEVS-Models/ABP/bin

Cadmium
A tool for DEVS Modeling and Simulation. User’s Guide

Page 30 of 85

3. To run the model, type:
 ./ABP ../input_data/input_abp_1.txt

4. To check the output of the model, go to the folder simulation_results and open
"abp_output.txt"

4. To run the model with different inputs
1. Create new .txt files with the same structure as input_abp_0.txt or input_abp_1.txt in the

folder input_data

2. Run the model using the instructions in step 3

If we want to keep the output, rename abp_output.txt. Otherwise, it will be overwritten when we run the
next simulation.

DEVS Model definition: An Example

This section describes the mechanism to define and incorporate new atomic models into Cadmium. These

models can be used to interact directly with other models or to be part of a DEVS coupled model.

Atomic models have to be defined in an .hpp file and coded in C++. These .hpp files can be created with our

preferred text editor. We will start defining a simple example of an atomic model. We use this example to

explain how to define an atomic model. In the following sections, we will continue using this example to

explain how to define a coupled model, how to define simulation loggers and how to call the simulator.

Subnet: an atomic model example implemented in Cadmium
When we download Cadmium following the instructions in this Manual, a library of models will be

downloaded. These models are available in the folder called DEVS-Models. One of them is an Alternate Bit

Protocol (ABP) model, and it is stored in the folder ABP. Repository available at:

https://github.com/SimulationEverywhere/Cadmium-Simulation-Environment. We will use this ABP example

to explain how to implement models in Cadmium.

Figure 1 shows the ABP model coupled model. The Alternating Bit communication protocol tries to provide

reliable transmission on an unreliable network. The ABP model consists of 3 components: A sender, which

transmits messages; a network, and a receiver, which receives the messages transmitted by the sender and

returns acknowledgement messages (positive or negative). The network is decomposed further to two

subnets corresponding to the sending and receiving channels respectively. The sender and the receiver

communicate with each other through the network component.

https://github.com/SimulationEverywhere/Cadmium-Simulation-Environment

Cadmium
A tool for DEVS Modeling and Simulation. User’s Guide

Page 31 of 85

Figure 1 ABP Simulator coupled model

In this section, we will discuss the definition of the subnet atomic model, as an example to introduce the

definition of atomic models in Cadmium. The remaining models are available in the simulator package.

The Subnet atomic model uses one input port and one output port, and the model passes the data it

receives after a time delay. To model the unreliability of the network, only approximately 95% of the data

will be transferred (i.e. 5% of the data will be lost through the subnet).

Figure 2 shows the subnet model implementation in Cadmium.

#ifndef _SUBNET_HPP__

#define _SUBNET_HPP__

#include <cadmium/modeling/ports.hpp>

#include <cadmium/modeling/message_bag.hpp>

#include <limits>

#include <assert.h>

#include <string>

#include <random>

#include "../data_structures/message.hpp"

using namespace cadmium;

using namespace std;

/***** (1) *****/

//Port definition

 struct Subnet_defs{

 struct in : public in_port<Message_t> {};

 struct out : public out_port<Message_t> {};

 };

/***** (2) *****/

template<typename TIME> class Subnet{

 public:

 using input_ports=tuple<typename Subnet_defs::in>;

 using output_ports=tuple<typename Subnet_defs::out>;

 /***** (3) *****/

 // state definition

 struct state_type{

Cadmium
A tool for DEVS Modeling and Simulation. User’s Guide

Page 32 of 85

 bool transmitting;

 Message_t packet;

 int index;

 };

 state_type state;

 /***** (4) *****/

 // default constructor

 Subnet(){

 state.transmitting = false;

 state.index = 0;

 }

 /***** (5) *****/

 // internal transition

 void internal_transition() {

 state.transmitting = false;

 }

 /***** (6) *****/

 // external transition

 void external_transition(TIME e, typename

 make_message_bags<input_ports>::type mbs) {

 vector<Message_t> bag_port_in;

 bag_port_in = get_messages<typename Subnet_defs::in>(mbs);

 state.index++;

 if ((double)rand() / (double) RAND_MAX < 0.95){

 state.packet = bag_port_in[0];

 state.transmitting = true;

 }else{

 state.transmitting = false;

 }

 }

 /***** (7) *****/

 // confluent transition

 void confluence_transition(TIME e, typename

 make_message_bags<input_ports>::type mbs) {

 internal_transition();

 external_transition(TIME(), move(mbs));

 }

 /***** (8) *****/

 // output function

 typename make_message_bags<output_ports>::type output() const {

 typename make_message_bags<output_ports>::type bags;

 vector<Message_t> bag_port_out;

 bag_port_out.push_back(state.packet);

 get_messages<typename Subnet_defs::out>(bags) = bag_port_out;

 return bags;

 }

 /***** (9) *****/

 // time_advance function

 TIME time_advance() const {

Cadmium
A tool for DEVS Modeling and Simulation. User’s Guide

Page 33 of 85

 TIME next_internal;

 if (state.transmitting) {

 next_internal = TIME("00:00:03:000");

 }else {

 next_internal = numeric_limits<TIME>::infinity();

 }

 return next_internal;

 }

 /***** (10) *****/

 friend ostringstream& operator<<(ostringstream& os,

 const typename Subnet<TIME>::state_type& i) {

 os << "index: " << i.index << " & transmitting: " << i.transmitting;

 return os;

 }

};

#endif // _SUBNET_HPP__

Figure 2. Cadmium implementation of the Subnet atomic model

Creating the hpp where the atomic model is defined

We first create the subnet.hpp file, using the structure provided in Appendix A.

It is important to notice that we cannot have two atomic models with the same name. We use a macro to

avoid multiple “includes” in the atomic model (in this case, we call it __SUBNET_HPP__).

Then, we need to include the simulator libraries that provide services to define new ports

(<cadmium/modeling/ports.hpp>) and to handle bags of messages

(<cadmium/modeling/message_bag.hpp>). We then include any C++ library needed to

implement the model. In this example, we use the limits library to set the time advance value to infinity

(when we need to passivate the model). We also use assert.h, which is useful to stop the simulation and

check for errors for non-desired behavior. For example, let us assume that the DEVS atomic model definition

states that the inputs to the model are only integers between 0 and 9. When the model is implemented, we

can use a conditional statement and the methods provided in assert.h to check that the condition is

satisfied. If the condition is not satisfied, the simulation stops, and an error message is displayed. The rest of

the libraries provides some services we use in this specific C++ implementation. In this example, we use

String as we need to manipulate strings, and random to generate random numbers. We use those

functions to generate different delays in message transmission.

In Cadmium, we can transmit messages containing built-in C++ types (integer, float, string, double, bool, etc.)

or we can define our own types. In this case, we define the message as a structure. In this example, we

include the path to the hpp file where the structure is defined (e.g., #include

"../data_structures/message.hpp"). If we define more than one type of message (i.e. structure),

we will need to include all the ones used in the model. We will explain the content of message.hpp in the

next section.

Finally, we declare the namespaces we are using, in this case: cadmium and std (otherwise, every time we

use a method/service from the standard C++ library (std), we have to write std::; the same for

cadmium::).

Cadmium
A tool for DEVS Modeling and Simulation. User’s Guide

Page 34 of 85

Declaring ports

As seen in Figure 1, the Subnet uses one input port called “in” and one output port called “out”; both ports

carry the same type of message, in this case, a C++ structure called Message_t, which is declared in

message.hpp.

As shown in Figure 3, Message_t uses two integer variables: packet and bit.

struct Message_t{

 Message_t(){}

 Message_t(int i_packet, int i_bit)

 :packet(i_packet), bit(i_bit){}

 int packet;

 int bit;

};

istream& operator>> (istream& is, Message_t& msg);

ostream& operator<<(ostream& os, const Message_t& msg);

Figure 3. Message_t data type declaration

The struct Message_t shown here is defined in message.hpp. It is a C++ structure with two

components: packet (which contains the packet number sent through the network), and bit (which

contains an alternating bit used to identify two consecutive packets to provide reliability in the

transmission). Inside the structure, we also have two constructors. The default one (without parameters)

generates a variable of type Message_t filled with “garbage”. The second one also generates a variable of

type Message_t, but it is filled with the values used to call the constructor.

Inside message.hpp we also declare operators << and >>. We use >> to read data from a file and fill the

structure – optional if you do not have input data coming from a file – and << to save the content of the

structure in a file – needed by the simulator to log the messages.

The two operators are implemented inside a new file called message.cpp (Figure 4). For the output

operator, we need to specify how we want to output the content of the struct. In this case, we output “the

packet space the bit”. For the input operator, we need to specify in which order the data we read

comes. In this case, we will have two elements, the first one will be assigned to the packet and the second

one to the bit.

It is important to define the >> operator when we are not using built-in data types for messages and we

need to read inputs for the model from a text file. Considering the current definition of the operator, we

need to define the inputs in the input file as “TIME packet_value bit_value”. If we define the inputs in

another order, for example, “TIME bit_value packet_value, packet will not contain “bit_value” and bit

will contain “packet_value”.

//Output the content of the structure

ostream& operator<<(ostream& os, const Message_t& msg) {

 os << msg.packet << " " << msg.bit;

 return os;

}

//Fill the structure

istream& operator>> (istream& is, Message_t& msg) {

 is >> msg.packet;

 is >> msg.bit;

 return is;

Figure 4. Implementation of the << and >> operators

Cadmium
A tool for DEVS Modeling and Simulation. User’s Guide

Page 35 of 85

Under “//Port definition” (/***** (1) *****/) we define the ports used by the atomic

model. We define them as a structure that contains all the input and output ports of the atomic model (in

this case called Subnet_defs). We use a structure (named using the convention

“AtomicModelName_defs”; in this example, Subnet_defs) to avoid compilation problems (multiple

declaration errors). For example, if we have two different atomic models with a port called in and we

declare the ports outside the structure, we will get a compilation error stating ambiguous definition for type

“in”. We avoid this issue declaring the ports inside a structure with a unique name.

Each port is defined as a structure that inherits from the template structures out_port and in_port

defined in the simulator, specifying the type of message handled by the port. In this case, we defined an

output port called out that handles messages of type Message_t and an input port called in that also

handles messages of type Message_t.

Declaring the atomic model

Under “/***** (2) *****/”, we define the atomic model as a C++ class that implements the model

state and all the DEVS functions following the template in Appendix A.

The models are implemented following a template-based C++ programming style. This style allows us to use

different time classes without changing the model implementation. For experienced users, it also allows

implementing models that can be instantiated with different messages types. For example, we could

implement a subnet model that can transmit any type of message and not just messages of type
Message_t.

We give a name to the class used to represent the model; in this case, we call it Subnet and we define the

input and output ports in the class. Everything inside the class is public, as the simulator has to access the

methods of the class to execute the simulation. As discussed earlier, the ports were declared inside the

structure Subnet_defs. To access the input port we would need to use Subnet_defs::in and to use

the output port Subnet_defs::out.

Once we have declared the types of ports we have (i.e. Subnet_defs), we need to assign those ports to the

corresponding atomic model (in this case, defined by the class Subnet). We assign them as follows:

using input_ports=tuple<typename Subnet_defs::in>;

using output_ports=tuple<typename Subnet_defs::out >;

The C++ keyword using that allows us to rename a data type. Each atomic model must define their input

and output ports as a data type called “input_ports” and “output_ports” respectively. We need to

use these specific names because the simulator will use them to check that the atomic model has all the

needed components and that the ports are properly defined (e.g. there are not two input ports with the

same name). Both the input and out ports are defined as a tuple (tuple<>), a C++ object that packs

elements of possibly different types together in a single object. We can see it as a vector with elements of

different types. Because of this, we need to specify the type of each of the elements in the tuple. In this

example, both tuples use only one element. Subnet_defs::in is the type of the input port tuple and

Subnet_defs::out is the type of the output port type. The typename specifies that

Subnet_defs::in and Subnet_defs::out are data types that will overwrite the template class in

the simulator.

Under “/***** (3) *****/”, we declare the state variables of the model inside a structure called

state_type. All the state variables of the model must be declared inside a structure called

state_type, and a single state variable of type state_type name state must be defined. We need

to use these specific names because they are explicitly used by the simulator to check that the model is

Cadmium
A tool for DEVS Modeling and Simulation. User’s Guide

Page 36 of 85

implemented according to the DEVS formalism. The simulator verifies if this structure (which represents the

model’s state) is updated inside the output function or the time advance function (two invalid operations

according to DEVS specifications).

In this example, the state comprises three variables: transmitting, packet, and index.

Transmitting is a Boolean used to define that the model has something to output. Packet stores the

packet to be sent. Index counts the packets that went through the network. Once the state structure has

been declared, we create an instance of the structure called state.

Under “/***** (4) *****/”, we define the constructor for the model, including the initial state. We

must define a default constructor (i.e. without parameters).

We define the default constructor Subnet(). We set index to 0 and transmitting to false. The

content of “packet” is “garbage”, as we do not care about the content of packet until an input message

arrives at the atomic model.

We then define the behavior of all the DEVS functions.

- Internal transition function (/***** (5) *****/): defined by internal_transition(), here

the model sets the state variable transmitting to false.

- External transition function (/***** (6) *****/): defined in external_transition, it takes

two parameters: the elapsed time (e) and a bag of message (mbs). The declaration of the bag of

messages is as follows: typename make_message_bags<input_ports>::type mbs. As we

already mentioned, typename indicates that the expression that follows is a data type.

make_message_bags<> is a template data type declared in the simulator in

<cadmium/modeling/message_bag.hpp>, used to declare a bag of messages for input or output

ports. We need to instantiate the template with the word input_ports to define the input bag, using

::type. The parameter declaration, in this case, declares mbs as a tuple whose elements are the

message bags on the input ports. Here, mbs is a tuple of one bag: the message bag in port in. The

messages inside the set of messages in the bag are stored in a C++ vector.

We use get_messages<typename Subnet_defs::in>(mbs) to get the message bag from the

input port in. The method get_messages uses a template parameter for the port we want to

access, in this case, the in port, defined by typename Subnet_defs::in. The function

parameter is the bag of messages we want to access, in this case mbs.

In this example, the bag of the inport port in has a vector of elements of type Message_t. We

define the auxiliary variable bag_port_in (of type vector of Message_t) to store the bag in the

port called in. We use the method get_messages to retrieve the bag. When a message is received,

it is stored in the state variable packet. Because we are assuming that we receive a single message, we

retrieve the first element of the bag in the in port and we assign it the state variable packet

(state.packet = bag_port_in[0]). Then, we set transmitting to true with a 95%

probability. With a 5% probability, the message received is lost and therefore the model is not

transmitting anything (transmitting = false).

- Confluent transition function (/***** (7) *****/): In this example, we use the default

implementation for the confluence function, which is executing the model’s internal transition first, and

the external transition after that, with an elapsed time equal to zero.

- Output function (/***** (8) *****/): output uses a bag of messages declared as follows:

typename make_message_bags<output_ports>::type bags, where typename

indicates that the expression that follows is a data type; make_message_bags<> is a template data

type that the simulator needs (found in <cadmium/modeling/message_bag.hpp>), which is

Cadmium
A tool for DEVS Modeling and Simulation. User’s Guide

Page 37 of 85

instantiated as output_ports to define the output bag. Therefore, bags is a tuple whose elements

are the message bags available on the different output ports.

We then declare an auxiliary variable (bag_port_out) of type vector<Message_t> to build the

message bag for the output port out.

We add the packet stored in the state variable state.packet to bag_port_out. We use the C++

method push_back(), which takes as parameter the element that we want to append to the vector,

in this case, state.packet.

Finally, we copy the content of bag_port_out to the bag of the port out. To access the content of

the bag of the output port out, we use the method get_messages< >. As we already explained

get_messages uses a template parameter for the port we want to access, in this case, the port out,

defined as typename Subnet_defs::out. The function parameter is the bag of messages we want

to access, in this case bags.

- Time advance function (/***** (9) *****/): time_advance is used to implement the time

advance function of the model. In this case, if we are transmitting, the time advance is 3 seconds. If

we do not transmit, the model passivates. The model uses next_internal to store the next time

advance. If the state of the model is transmitting, we define the next time advance by updating the

variable next_internal. TIME(“00:00:03:000”) is the time in hours, minutes, seconds and

milliseconds. If the model is not transmitting, we passivate the model, by making next_internal

infinity using the statement numeric_limits<TIME>::infinity() (a method in the limits

library).

IMPORTANT: According to ST-DEVS, only the transition functions (i.e. external,

internal and confluence) can be stochastic. The time advance function and the

output function MUST be deterministic.

Once all the DEVS functions are defined, we specify how we want to output the state of the model in the

state log (/***** (10) *****/). In this case, we only display two of the state variables: index and

transmitting.

To declare how to log the state of the model, we need to define the << operator for the structure

state_type. The operator takes as input parameters the address of the stream where we want to log

(i.e. os) and the state of the model (i.e. i) We use the keyword const before specifying the type of the

state to assure that it will not be modified inside the operator. It is important to notice that we need to use

typename Subnet<TIME>::state_type to specify the type of the state. That sentence means that

we are accessing the structure state_type inside the template class Subnet<TIME>. We need to

declare the operator using the keyword friend to specify that the function can access the private

members of the structure state_type. In this example, the output of our state looks as follows:

“index: index_value & transmitting: transmiting_value”.

Unit testing the Subnet atomic model
To test the subnet atomic model, we will define a coupled model that contains a generator of test cases

connected to the model, in order to generate simulations scenarios to verify the execution of the model:

Cadmium
A tool for DEVS Modeling and Simulation. User’s Guide

Page 38 of 85

Figure 5. Coupled model for testing the subnet atomic model

The coupled model includes two atomic components: input_reader and subnet1. The input_reader reads a

list of input events stored in a text file that we use to test the Subnet model; the entries in this file have the

format “TIME Message”, and it includes one entrance per line. Cadmium provides a template version of this

model (iestream.hpp) that need to be instantiated with the type of message we want to read.

In Cadmium, all the coupled models are defined in a cpp file (in this case, the file is named

main_subnet_test.cpp). The logger definition and the call to the simulator runner are also

implemented inside this file.

Figure 6 shows the subnet test coupled model implementation in Cadmium.

//Cadmium Simulator headers

#include <cadmium/modeling/ports.hpp>

#include <cadmium/modeling/dynamic_model.hpp>

#include <cadmium/modeling/dynamic_coupled.hpp>

#include <cadmium/modeling/dynamic_model_translator.hpp>

#include <cadmium/engine/pdevs_dynamic_runner.hpp>

#include <cadmium/logger/common_loggers.hpp>

//Time class header

#include <NDTime.hpp>

//Messages structures

#include "../data_structures/message.hpp"

//Atomic model headers

#include "../atomics/subnet.hpp"

#include <cadmium/basic_model/pdevs/iestream.hpp> //Atomic model for inputs

//C++ libraries

#include <iostream>

#include <string>

using namespace std;

using namespace cadmium;

using namespace cadmium::basic_models::pdevs;

using TIME = NDTime;

/***** (1) *****/

/***** Define input port for coupled models *****/

/***** Define output ports for coupled model *****/

struct top_out: public out_port<Message_t>{};

/***** (2) *****/

/****** Input Reader atomic model declaration *******************/

template<typename T>

input_reader subnet1
out top_out out in

Cadmium
A tool for DEVS Modeling and Simulation. User’s Guide

Page 39 of 85

class InputReader_Message_t : public iestream_input<Message_t, T> {

 public:

 InputReader_Message_t () = default;

 InputReader_Message_t (const char* file_path) :

 iestream_input<Message_t,T> (file_path) {}

};

/***** (3) *****/

int main(){

 /****** Input Reader atomic model instantiation *******************/

 const char * i_input_data = "../input_data/subnet_input_test.txt";

 shared_ptr<dynamic::modeling::model> input_reader;

 input_reader = dynamic::translate::make_dynamic_atomic_model

 <InputReader_Message_t, TIME, const char*>("input_reader", move(i_input_data));

 /***** (4) *****/

 /****** Subnet atomic model instantiation *******************/

 shared_ptr<dynamic::modeling::model> subnet1;

 subnet1 = dynamic::translate::make_dynamic_atomic_model<Subnet, TIME>("subnet1");

 /***** (5) *****/

 /*******TOP MODEL********/

 dynamic::modeling::Ports iports_TOP;

 iports_TOP = {};

 dynamic::modeling::Ports oports_TOP;

 oports_TOP = {typeid(top_out)};

 dynamic::modeling::Models submodels_TOP;

 submodels_TOP = {input_reader, subnet1};

 dynamic::modeling::EICs eics_TOP;

 eics_TOP = {}; // _EIC WOULD GO HERE ; NOT NEEDED BECAUSE IT IS EMTPY IN THIS EXAMPLE

 dynamic::modeling::EOCs eocs_TOP;

 eocs_TOP = {

 dynamic::translate::make_EOC<Subnet_defs::out,top_out>("subnet1")

 };

 dynamic::modeling::ICs ics_TOP;

 ics_TOP = {

 dynamic::translate::make_IC<iestream_input_defs<Message_t>::out,Subnet_defs::in>(

 "input_reader","subnet1")

 };

 shared_ptr<dynamic::modeling::coupled<TIME>> TOP;

 TOP = make_shared<dynamic::modeling::coupled<TIME>>(

 "TOP", submodels_TOP, iports_TOP, oports_TOP, eics_TOP, eocs_TOP, ics_TOP

);

 /***** (6) *****/

 /*************** Loggers *******************/

 static ofstream out_messages("../simulation_results/subnet_test_output_messages.txt");

 struct oss_sink_messages{

 static ostream& sink(){

 return out_messages;

Cadmium
A tool for DEVS Modeling and Simulation. User’s Guide

Page 40 of 85

 }

 };

 static ofstream out_state("../simulation_results/subnet_test_output_state.txt");

 struct oss_sink_state{

 static ostream& sink(){

 return out_state;

 }

 };

 using state = logger::logger<logger::logger_state, dynamic::logger::formatter<TIME>,

oss_sink_state>;

 using log_messages = logger::logger<logger::logger_messages,

dynamic::logger::formatter<TIME>, oss_sink_messages>;

 using global_time_mes = logger::logger<logger::logger_global_time,

dynamic::logger::formatter<TIME>, oss_sink_messages>;

 using global_time_sta = logger::logger<logger::logger_global_time,

dynamic::logger::formatter<TIME>, oss_sink_state>;

 using logger_top = logger::multilogger<state, log_messages, global_time_mes,

global_time_sta>;

 /***** (7) *****/

 /************** Runner call ************************/

 dynamic::engine::runner<NDTime, logger_top> r(TOP, {0});

 r.run_until(NDTime("04:00:00:000"));

 return 0;

}

Figure 6. Subnet test coupled model implementation

We first include the simulator libraries that provide the different services needed to build and run the

simulation. We need to be able to:

- Define new ports (<cadmium/modeling/ports.hpp>)

- Create every element of a coupled model definition: input ports, output ports, submodels, external

input couplings, external output couplings and internal couplings

(<cadmium/modeling/dynamic_model.hpp>)

- Define the data types for coupled models <cadmium/modeling/dynamic_coupled.hpp>

- Create new instances of atomic models and make EIC, EOC and IC

(<cadmium/modeling/dynamic_model_translator.hpp>)

- Build coupled models (<cadmium/modeling/dynamic_coupled.hpp>)

- Use the Runner <cadmium/engine/pdevs_dynamic_runner.hpp>

- Define the loggers we are using (state, message, debug, etc.)
<cadmium/logger/common_loggers.hpp>

We then include the header of the Time class we are using, in this case <NDTime.hpp>. NDTime is a C++

class that implements time operations and allows defining the time as in digital clock format

(“hh:mm:ss:mss”) or as a list of integer elements ({ hh, mm, ss, mss}).

As we already mentioned, in Cadmium, we can transmit messages containing built-in C++ types (integer,

float, string, double, bool, etc.) or we can define our own types. In this case, we need to transmit our own

message, which is defined as a structure. Therefore, we include the path to the hpp file where such structure

Cadmium
A tool for DEVS Modeling and Simulation. User’s Guide

Page 41 of 85

is defined ("../data_structures/message.hpp"). If we need to define more than one message

type, we need to include all the ones used in the model.

The content of message.hpp is the one explained in the previous section (i.e. it contains the definition of

the message structure Message_t).

We then need to include the headers of all the atomic models we are using as components of our coupled

model. In this case, "../atomics/subnet.hpp", where the Subnet atomic model class is defined.

We will use it to create the instance subnet1. We also include

<cadmium/basic_model/pdevs/iestream.hpp>, where the template class

iestream_input is defined. We will instantiate this general class to create the instance of our atomic

model input_reader.

We also need to include the headers of any C++ library needed to implement the model. In this example, we

use the ioestream library to generate simulation logs in files, and String to manipulate strings.

We then declare the namespaces we are using, in this case: cadmium ,

cadmium::basic_models::pdevs and std (otherwise, every time we use a method/service from

the standard C++ library (std), we have to write std::; the same for cadmium:: and

cadmium::basic_models::pdevs). Then, we define that the template parameter TIME is

instantiated with the type NDTime.

Cadmium provides different methods and data types to create instances of atomic models, define, and

create instances of coupled models. It also uses one advanced C++ data type, shared_ptr<>, and one

advanced C++ method, make_shared<>(), both of them defined in the standard library.

shared_ptr<> is a smart pointer that allows shared ownership of an object through a pointer.

make_shared<>() is a method that allows creating a shared_ptr<>. It uses as a template

parameter the data type that will be stored in the pointer, and as function parameters the constructor

parameters for the data type. We will show a few examples later.

The data types and methods defined in Cadmium are as follows:

- out_port is a structure used to declare the output ports of a model. It is the same structure we

used to declare the output ports of an atomic model. Each port is defined as a structure that inherits

from the template structure out_port specifying the type of message handled by the port. It is

defined in <cadmium/modeling/ports.hpp>.

- in_port is a templated structure similar to out_port, but for input ports.

- model is an empty class defined in <cadmium/modeling/dynamic_model.hpp> under the

namespace dynamic::modeling. It allows pointer-based polymorphism between classes

derived from atomic and coupled models. This means, that it is an abstract class that encapsulates

both atomic and coupled models in such a way that they can be elements in a vector of models.

- make_dynamic_atomic_model<>() is a template method defined in

<cadmium/modeling/dynamic_model_translator.hpp>. It is used to create an instance

of an atomic model. It takes the class type of the atomic model, TIME (because all atomic models

are templated classes that need to be instantiated with a TIME data type), and all the types of the

parameters for the model constructor. The parameters of the method are the name of the atomic

model (a string) and the parameters we need to pass to the constructor. If a parameter in the

constructor is a pointer, we need to use the C++ method move() to pass the pointer to the

constructor.

Cadmium
A tool for DEVS Modeling and Simulation. User’s Guide

Page 42 of 85

- Ports is a data type used to defined input and output ports. It is defined in

<cadmium/modeling/dynamic_model.hpp> under the namespace

dynamic::modeling. It is a vector that takes as elements the typeid of the port structure

declaration. To provide the type of a port, we use the method typeid() defined in the std C++

library (typeid() takes a data type as input).

- Models is a data type used to define the components of a coupled model. It is defined in

<cadmium/modeling/dynamic_model.hpp> under the namespace

dynamic::modeling. It is a vector that takes as elements pointers to models

(shared_ptr<dynamic::modeling::model>>)

- EICs is a data type used to define the set of external input couplings. The set is stored as a vector

with elements of type EIC, which is another data type to define each external input. It is

implemented as a structure with two elements: the name of the submodel connected to the

external input (implemented as a string), and a link that represents the external input (implemented

as a shared_ptr<>). Both EICs and EIC are defined in

<cadmium/modeling/dynamic_model.hpp> under the namespace

dynamic::modeling.

- make_EIC<>() is used to create an EIC structure. It is defined in

<cadmium/modeling/dynamic_model_translator.hpp>, and it returns an element of

type EIC. It takes template parameters of the types of the input ports of the coupled model and

the submodel inside the coupled model, in this specific order (i.e. from – to). It uses a parameter

that is a string with the name of the submodel.

- EOCs is a data type similar to EICs above, but for the External Output Couplings.

- make_EOC<>() is a method similar to make_EIC<>() above, but for the External Output

Couplings. It returns an element of type EOC, using the types of the output port of the submodel in

the coupled model, and the output port of the coupled model, in this specific order (i.e. form – to).

The parameter of the method is a string with the name of the submodel.

- ICs is a data type to define internal couplings. It is stored as a vector that takes elements of type

IC, used to define each internal connection. It is implemented as a structure with three elements:

(1) the name of the “from” component (i.e. a string), (2) the name of the “to” component (i.e. a

string), and (3) a link to connect the output port of one component with the input port of the other

component. They are defined in <cadmium/modeling/dynamic_model.hpp> under the

namespace dynamic::modeling.

- make_IC<>() is used to create the internal couplings, i.e., elements of type IC. It is defined in

<cadmium/modeling/dynamic_model_translator.hpp>. It uses the type of the output

port of the submodel “from” and the type of the input port of the submodel “to”, in this specific

order (i.e. from output port– to input port). The parameters of the method are two strings, the first

one with the name of the “from” submodel and the second one with the name of the “to” submodel

(i.e. from submodel name – to submodel name).

- coupled<TIME> is a class that defines a coupled model. We use it to create coupled models

instances. It is defined in <cadmium/modeling/dynamic_coupled.hpp> under the

namespace dynamic::modeling. The class uses seven variables: (1) a string with the model

name, (2) a variable of type Models representing the subcomponents, (3) a variable of type

Ports for the input ports, (4) a variable of type Ports for the output ports, (5) a variable of

type EICs for external input couplings, (6) a variable of type EOCs for external output couplings

and (7) a variable of type ICs for internal couplings. The constructor of this class takes all these

parameters in this specific order.

Cadmium
A tool for DEVS Modeling and Simulation. User’s Guide

Page 43 of 85

Using these services, under /***** (1) *****/ we declare the input and output ports of the coupled

model. In this example, we have a coupled model with two atomic components. If there are two different

coupled models using the same port type (i.e., with the same name and message type), we declare the port

type once and we use it for both models. However, the same coupled model cannot have two ports with the

same name (i.e. in our C++ implementation, they cannot be the same type).

In our example, we only need one output port called top_out, as seen in Figure 5. This port handles the

same type of message that the output port out from the Subnet model: messages of type Message_t.

As we can see in Figure 6, we only define one output port, as there are no inputs in the coupled model.

Under /***** (2) *****/ we instantiate the template model iestream_input (defined in

<cadmium/basic_model/pdevs/iestream.hpp> to parse input messages included in a text file.

In this case, the text file will contain messages of type Message_t.

We define an atomic model class called InputReader_Message_t that inherits all the methods of

iestream_input. We instantiate iestream_input with Message_t and we leave the time as a

template parameter (iestream_input<Message_t, T>). In brief, this creates a new atomic class

that can read text input files that contains messages of type Message_t as inputs.

We then need to override the constructors of the model to instantiate the template using Message_t as a

parameter. In this case, we define the default constructor (marking with the keyword default). We

define a second constructor that takes the path to the text file where the model inputs are defined

(InputReader_Message_t (const char* file_path)). We use a const parameter because

the input parameter file_path cannot be modified inside the constructor. The definition inherits from

the atomic class; we need to instantiate the parameter that represents the type of message

(iestream_input<Message_t, T> (file_path) {}). In summary, this definition instantiates

the class constructors for the new atomic class we created.

Under /***** (3) *****/ we define the main function. We create atomic and coupled models

instances, loggers and we finally call the simulator runner to start the simulation cycle.

In this example, we first have a hardcoded path to the input file and save it in i_input_data (a pointer

to a string).

We then create an instance of InputReader_Message_t (i.e. input_reader). We define a variable

of type shared_ptr<dynamic::modeling::model> to store a pointer to the instance, in this case,

input_reader. As discussed earlier, we use make_dynamic_atomic_model<>()to create the

instance. In this case, the method uses (1) InputReader_Message_t,(2) TIME and (3) const

char* as template parameters. The method parameters are “input_reader” and

move(i_input_data). We will use this instance as the atomic model inside our coupled model.

Under /***** (4) *****/ we create an instance of Subnet (i.e. subnet1). We define a variable of

type shared_ptr<dynamic::modeling::model> to store a pointer to the instance subnet1.

Then, make_dynamic_atomic_model<>() creates the instance. It uses the class type of the atomic

model (Subnet), (2) TIME and (3) the parameters in the model constructor (in this case, there are no

parameters). The parameter string of the method is, in this case, "subnet1", and the constructor takes

no parameters. In brief, this declaration creates an instance of the atomic Subnet. We will use this

instance as the atomic model inside our coupled model.

Cadmium
A tool for DEVS Modeling and Simulation. User’s Guide

Page 44 of 85

Under /***** (5) *****/ we define the top-level coupled model. In this particular case, the top

coupled model uses two atomic components. We first must define the input ports, the output ports, the

components, the external input couplings (EICs), the external output couplings (EOCs) and the internal

couplings (ICs).

Input ports: We first create a variable of type Ports to store the input ports (in this case, iports_TOP).

Because our top model has no input ports, we define the variable iports_TOP as an empty vector ({}).

Output ports: We then create a variable of type Ports to store the output ports (in this case,

oports_TOP). Our top model has one output port: top_out. We already declared it under /**** (1)

****/. Now, we need to assign it to our top model. Therefore, we define a vector with one element: the type

of the output port ({typeid(top_out)}).

Submodels: We then create a variable of type Models to store the components of the coupled model (in

this case, submodels_TOP). It contains the instances of submodels inside the coupled model. In this case,

subnet1 and input_reader. It does not matter the order we use to specify the components of the top

model.

External Input Couplings (EICs): We then create a variable of type EICs to store the external input

couplings (in this case, eics_TOP). In our coupled model, we do not have EICs, therefore, we assign an

empty vector to the variable eics_TOP ({}).

External Output Couplings (EOCs): To define the external output couplings, we create a variable of type

EOCs (in this case, eocs_TOP). In our coupled model, we just have one external coupling connecting the

atomic model subnet1 to the output port top_out. The external coupling is defined with the simulator

method make_EOC<>() instantiated with the names of the output ports as template parameters (in this

case, Subnet_defs::out,top_out) and the name of the submodel as the parameter of the method

(in this case, “subnet1”).

Internal Couplings (ICs): To define the internal couplings, we create a variable of type ICs (in this case,

ics_TOP). Our coupled model just has one internal coupling connecting the output port of the atomic

model input_reader to the input port of the atomic model subnet1. The internal coupling is defined

with the simulator method make_IC<>() instantiated with the names of the output and input ports as

template parameters (in this case, iestream_input_defs<Message_t>::out,

Subnet_defs::in) and the name of the submodel as the parameter of the method (in this case,

“input_reader” and “subnet1”).

Once all the components of the coupled model are defined, we can create the instance of the coupled

model. We first declare the variable where the coupled model will be stored, in this case, TOP. TOP is a

variable of the data type shared_ptr<dynamic::modeling::coupled<TIME>> defined in the

simulator. We create the instance our top model using the C++ method make_shared<>(). The

parameters of the method are the name of the coupled model (i.e. “TOP”), and all the components we

have defined in the following order: submodels_TOP, iports_TOP, oports_TOP, eics_TOP,
eocs_TOP, ics_TOP

Once we define all the coupled models and the top model (in this case, we just have the top model), we

need to define the loggers for the simulation.

To run a test, we need to define the inputs for the top model. These inputs are stored in a text file (called

subnet_input_test.txt) that the model input_reader will parse and use to generate messages.

Each line of the file is an external input, coded as follows: an event time, a packet number, and the

Cadmium
A tool for DEVS Modeling and Simulation. User’s Guide

Page 45 of 85

alternating bit. We need to specify the packet before the bit, exactly as defined by the >> operator we

discussed earlier in Message_t.

If we look at the input file (Figure 7), we can see, for example, that at time 10s, we are generating a packet

with id 1 and alternate bit 1; at time 20s, we are generating a packet with id 2 and alternate bit 0; etc. It is

the responsibility of the modeler to define the input file properly.

00:00:10 1 1

00:00:20 2 0

...

00:02:30 15 1

00:02:40 16 0

...

00:03:20 20 0

Figure 7. Test input file (subnet_input_test.txt)

Figure 8 shows a message log of the simulation for the subnet test coupled model we discussed earlier using

the input file in Figure 7. The log includes the global simulation time followed by the messages generated by

each atomic model on each port at that simulation time.

...

00:00:10:000

[iestream_input_defs<Message_t>::out: {1 1}] generated by model input_reader

00:00:13:000

[Subnet_defs::out: {1 1}] generated by model subnet1

...

00:02:30:000

[iestream_input_defs<Message_t>::out: {15 1}] generated by model input_reader

00:02:40:000

[iestream_input_defs<Message_t>::out: {16 0}] generated by model input_reader

00:02:43:000

[Subnet_defs::out: {16 0}] generated by model subnet1

...

00:03:20:000

[iestream_input_defs<Message_t>::out: {20 0}] generated by model input_reader

00:03:23:000

[Subnet_defs::out: {20 0}] generated by model subnet1

Figure 8. Message log of the simulation for the subnet test coupled model

When the simulation starts, the atomic models are initialized. The input_reader model is initialized in a

state with time advance zero, so it can start by reading the input event file. Similarly, if we recall our

definition of subnet, we can see that it was initialized in a passive state.

The log shows all the message bags generated by the atomic models every time the simulator collects the

outputs.

At time 10s, input_reader generates a message with value {1 1}. This message is the first input event

retrieved from the input file subnet_input_test.txt. If we recall the operator << we defined for

the structure Message_t, the message we get has the format {packet bit}.

Cadmium
A tool for DEVS Modeling and Simulation. User’s Guide

Page 46 of 85

At time 13s, the subnet1 generates the message {1 1}. The message has the same meaning as before.

If we recall the subnet1 implementation, the model resends the message received with a 95% probability

to simulate failures in a network. In this case, there was no failure.

This pattern is repeated through the simulation every time there is an event on the input file. However, as

we mentioned, the subnet model has a 5% probability of not transmitting a packet. This is what happened at

time 2min 30s. In the log, we can see that input_reader generates an output message that is not

transmitted by subnet1. At time 2min 30s, input_reader generates the message {15 1} and the

subnet1 does not generate any message at time 2min 33s.

The simulation process continues until the simulation finishes at time 3min23s. At that time, there are no

more events in the input files and both atomic models are passivated.

We can also generate a log of the state of each atomic model (Figure 9) (we will explain later on how we

define and change the logs). The log of the state is generated base on the operator << we defined for

each atomic model class. The state log generates the global time when a state on the top model changes,

and the states of all the atomic models at that time. For the atomic model input_reader, the state is

the time of the next internal event. For example, at time 10s, the state is “next time:

00:00:00:000” The state log for the atomic model subnet1 is the index (i.e. the number of packets the

network has received so far) and if the model is transmitting a message (i.e. 1) or not (i.e. 0). For example, at

time 10s, the state is “index: 1 & transmitting: 1”.

...

00:00:10:000

State for model input_reader is next time: 00:00:10:000

State for model subnet1 is index: 1 & transmitting: 1

00:00:13:000

State for model input_reader is next time: 00:00:10:000

State for model subnet1 is index: 1 & transmitting: 0

...

00:02:30:000

State for model input_reader is next time: 00:00:10:000

State for model subnet1 is index: 15 & transmitting: 0

00:02:40:000

State for model input_reader is next time: 00:00:10:000

State for model subnet1 is index: 16 & transmitting: 1

00:02:43:000

State for model input_reader is next time: 00:00:10:000

State for model subnet1 is index: 16 & transmitting: 0

...

00:03:20:000

State for model input_reader is next time: inf

State for model subnet1 is index: 20 & transmitting: 1

00:03:23:000

State for model input_reader is next time: inf

State for model subnet1 is index: 20 & transmitting: 0

Figure 9. Log of the state of each atomic model

Looking in more detail, at time 10s, input_reader generated the message {1 1}. After executing the

internal transition, the next event is in 10s, which is the state of the model. At time 10s, subnet1

Cadmium
A tool for DEVS Modeling and Simulation. User’s Guide

Page 47 of 85

executed the external transition with the input message {1 1}. After the external transition, the state of

the model is as follows: (1) the number of packets the network has received so far is 1 (index: 1) and (2)

the network has something to transmit (transmitting: 1). Once the elapsed time of the atomic model

subnet1 is over (in this case 3s), the internal transition is triggered in the subnet1 atomic model. As we

can see in the message log, the message {1 1}is transmitted and the model state changes from

transmitting equal true (i.e. 1) to transmitting equal false (i.e. 0). As we can see, the state of the

input_reader atomic model does not change because it was not imminent. This pattern is repeated

through the whole simulation every time there is an event on the input file.

We need to notice, that when a packet is lost (e.g. time 2min30sec), the state variable index increases

because the network has received a new packet. However, the state variable transmitting is set to false

because that packet will not be transmitted to the output of the model.

We define the loggers under /***** (6) *****/ in our cpp file above (Figure 6).

First, we need to define the file where we will output the message log. To do so, we create a variable

(out_messages) of type ofstream. We initialize out_messages with the path to the output file for

the message log ("../simulation_results/subnet_test_output_messages.txt").

We then define the structure oss_sink_messages to tell the simulator where we will save the output

log. The structure uses a method (sink) that returns a pointer to out_messages. We use

oss_sink_messages to declare the message logger.

We need to do the same for the state variable log. To do so, we define a variable (out_state) of type

ofstream. We initialize out_state with the path to the output file for the state log (in this case,
"../simulation_results/subnet_test_output_state.txt").

Finally, we define the structure (oss_sink_state) to tell the simulator where to save the state log. The

structure has a method (sink) that returns a pointer to out_state. We will use oss_sink_state to

declare the state logger.

To define the logger, we need to include the following declarations:

using state = logger::logger<logger::logger_state,

dynamic::logger::formatter<TIME>, oss_sink_state>;

It defines the state logger. We instantiate the logger with: (1) the logger we are using, in this case

logger_state (defined in <cadmium/logger/logger.hpp>), (2) the formatter (defined in

<cadmium/logger/ dynamic_common_loggers.hpp>), and (3) the sink we just defined (i.e.

oss_sink_state).

All logs are defined in the same way. Only the first and third template parameters changes because they are

the ones that specify which log we are using and where we generate the log.

using log_messages = logger::logger<logger::logger_messages,

dynamic::logger::formatter<TIME>, oss_sink_messages>;

It defines the message logger. As in the previous case, we instantiate (1) the logger we are using, in this case,

logger_messages (defined in <cadmium/logger/logger.hpp>), (2) the formatter (defined in

<cadmium/logger/ dynamic_common_loggers.hpp>), and (3) the sink just defined

(oss_sink_messages).

Cadmium
A tool for DEVS Modeling and Simulation. User’s Guide

Page 48 of 85

In order to include the global time of the simulation inside the state and message log, we need to declare a

new logger: global_time. In this specific case, we need two: one for the messages and one for the states

because the logs are generated on different files.

using global_time_mes = logger::logger<logger::logger_global_time,

dynamic::logger::formatter<TIME>, oss_sink_messages>;

It defines the global time for the message logger. As in the previous case, we instantiate with (1) the logger

we are using, in this case logger_global_time (defined in <cadmium/logger/logger.hpp>), (2) the

formatter (defined in <cadmium/logger/ dynamic_common_loggers.hpp>), and (3) the sink

(oss_sink_messages).

using global_time_sta = logger::logger<logger::logger_global_time,

dynamic::logger::formatter<TIME>, oss_sink_state>;

It defines the global time for the state logger as in the previous cases.

Once we have declared all the loggers we need, we have to combine them, so our simulation generates all

the logs at the same time. For this purpose, we use the multilogger structure defined in

<cadmium/logger/logger.hpp> instantiated with the above log definitions (i.e. state, log_messages,

global_time_mes, global_time_sta) as template parameters:

using logger_top = logger::multilogger<state, log_messages,

global_time_mes, global_time_sta>;

After defining the loggers, we need to call the runner to be able to execute the simulation (Figure 7 /*****

(7) *****/).

We first create an instance of the runner for our top model, in this case, r. It is an instance of the runner

class defined in <cadmium/engine/ pdevs_dynamic_runner.hpp> under the namespace
dynamic::engine::

The runner class takes two parameters: the class used for the time (in this case, NDTime) and a logger (in

this case, logger_top). The parameters for the class constructor are the name of the top model (TOP in

our case) and the initial time for the simulation (0 in this case).

Then, we define the end time of the simulation. We have two options: (1) run the simulation until a specific

time or (2) run the simulation until all models are passivated.

To run the simulation until a specific time we use the runner method run_until(). This method takes as

parameter the end time of the simulation.

To run the simulation until all models are passivated, we use the runner method

run_until_passivate(). This method does not take any parameter.

In our example, we run the simulation until the time is 4h.

A Summary on Port Definition
When we define a DEVS model, we assign them set of input and output ports. Each port can be defined with

a name and a set of values that it can carry. In the example above (Figure 10), we define an input port called

“in” and an output port called “out”. Both of them use the same types, and in Cadmium, this is represented

as messages of type Message_t, which represents a bag of values.

Cadmium
A tool for DEVS Modeling and Simulation. User’s Guide

Page 49 of 85

Figure 10. Atomic model Subnet with the ports and the message type on each port

To define this port in Cadmium, we must do the following:

1- DECLARATION OF PORTS (this was done in /***** (1) *****/ in Figure 2). In the declaration, we inform

the simulator which ports we are defining. In our example, we need two ports that are associated to

the Subnet model. The first one is called “in”, and it receives input messages of type Message_t

(struct in : public in_port<Message_t>{}). Here, in_port<> is a templated

structure (struct) defined in the simulator, which is used to define input ports with templates. It is

mandatory that each input port (in this case, in) is defined as a structure that inherits from

in_port<> and uses a given type of message (in this case Message_t). The output port called

“out” is defined in a similar fashion, but using out_port<>, a templated structure (struct)

defined in the simulator to define output ports. In summary, we declare a new data type for each

port in the atomic model, and they are declared as in_port (or out_port) that can only

receive a Message_t. Therefore, they can only be used within the Subnet model (and we can

have other types called using the same name in other atomic submodels). We name the data type

with the name of the port (in this case in and out) and they inherit from in_port<> and

out_port<> based on the type of port.

2- ASSIGNMENT OF PORTS TO THE ATOMIC MODEL: (this was done in /***** (2) *****/ in Figure 2).

Once we have declared the ports types we are using (in this case, in and out), we need to assign

them to the model that will use them, in this case, the Subnet atomic model. We assign the input

ports with using input_ports=tuple<typename Subnet_defs::in>. We must

defined the data type input_ports, which is a tuple of the input ports declared in /****(1)****/.

In this specific example, we only have one input port named in. If we needed, for instance, two

input ports, the tuple will need to define the names of the two ports as elements (e.g. using
input_ports=tuple<typename Subnet_defs::in1, typename Subnet_defs::

in2>), which should have been previously declared in ***(1)***. The input ports must be assigned

under the name input_ports because this is a mandatory simulation service (used to check port

types; the simulator generates compilation errors if a data type assigned to the input_ports

tuple does not inherit from in_port<> or if the data types inside the tuple have duplicated names).

Output ports are assigned similarly.

The input parameter mbs in the external transition is a bag that contains the input messages

classified by port. make_message_bags<input_ports>:: type mbs takes the tuple

input_ports we defined earlier, and it generates the mbs tuple, whose elements are vectors of

messages. mbs has the same number of elements as input_ports (here, it is a tuple of one

element: a vector of Message_t a bag in port in; if we needed to use two ports, e.g. in1 and

in2, make_message_bags<input_ports>::type would define mbs as a tuple with two

elements: the first, a vector representing the bag of messages in port in1; the second, a vector

representing the bag of messages in port in2). To retrieve the bag of messages in a specific port of

mbs, we use get_messages<>, which takes the port name Subnet_defs::in. The bag

retrieved is a vector, which we store in an auxiliary variable (bag_port_in). The bag of messages

Subnet out <Message_t> in<Message_t>

Cadmium
A tool for DEVS Modeling and Simulation. User’s Guide

Page 50 of 85

in for a specific port is a vector, so, to access the first element of the bag stored in bag_port_in

we use bag_port_in[0].

Similarly, in the output function we return a bag of messages in the output ports (i.e. bags).

make_message_bags<output_ports>::type takes the tuple output_ports and it

generates the tuple bags, whose elements are vectors of messages. We use an auxiliary variable

to generate each message bag (in this example, we use bag_port_out). To place a bag in bags,

we use the method get_messages<>, which takes the port name as template parameter (in this

case, Subnet_defs::out).

The declaration of ports for coupled models is similar to the one for atomic models. For our example (Figure

5), the coupled model only has one output port named top_out (Figure 6 /***** (1) *****/) that handles

the same type of message that the output port out from the Subnet model (i.e. messages of type

Message_t). As in the case of atomic models, the port is declared as a struct named top_out that

inherits from out_port<> and uses a given type of message (in this case Message_t).

In coupled models, we assign input and out ports differently. We use a data type named

dynamic::modeling::Ports, a vector of ports as defined in the previous paragraph (Figure 6 /*****

(5) *****/). We need to define two variables, one for input ports and one for output ports. In this specific

example, the input ports variable (i.e. iports_TOP) is an empty vector because the coupled model has no

ports. The output ports (i.e. oports_TOP) is a vector with one element: the top_out port declared

above. If we need, for instance, two output ports, we need to define a vector with the names of the two

ports as elements (e.g. oports_TOP = { typeid(top_out1), typeid(top_out1)}, which should

have been previously declared.

The names of the data types that declare the ports of both the atomic models and coupled models are used

as template parameters in the methods that the simulator provides to define the EOC, IC, and EIC. In this

specific example, we will need to use the ports from the subnet atomic model (Subnet_defs::in and

Subnet_defs::out), the ports from the Input reader atomic model

(iestream_input_defs<Message_t>::out) and the ports of the top model (top_out).

PORTS FOR EICs: EICs are defined using dynamic::translate::make_EIC<>(). The template

parameters of the method are: (1) the name of the data type of the input port of the coupled model and (2)

the name of the data type of the port from the submodel inside the coupled model, in this specific order (i.e.

form – to). In our example, the coupled does not have EICs, therefore we do not use this method.

PORTS FOR EOCs: EOCs are defined using dynamic::translate::make_EOC<>(). The parameters

are (1) the name of the data type of the port from the submodel (Subnet_defs::out) and (2) the name

of the data type of the output port of the coupled model (top_out), in this specific order (i.e. form – to). In

our example, we connect the out port from Subnet1 with top_out of the coupled model.

PORTS FOR ICs: ICs are defined using dynamic::translate::make_IC<>(). The parameters are

(1) the name of the data type of the output port of the submodel “from”

(iestream_input_defs<Message_t>::out) and (2) the name of the data type of the input port of

the submodel “to” (Subnet_defs::in), in this specific order (i.e. from output port– to input port). In our

example, we are connecting the out port from input_reader with in port of Subnet1.

Defining the make file to compile the test
The model we have defined along with the simulator is a regular C++ program. Here, we will explain how to

compile the program with a make file.

Cadmium
A tool for DEVS Modeling and Simulation. User’s Guide

Page 51 of 85

We first need to create a file called “makefile”. The file will have the statements defined in Figure 11:

CC=g++

CFLAGS=-std=c++17

INCLUDECADMIUM=-I ../../cadmium/include

INCLUDEDESTIMES=-I ../../DESTimes/include

#CREATE BIN AND BUILD FOLDERS TO SAVE THE COMPILED FILES DURING RUNTIME

bin_folder := $(shell mkdir -p bin)

build_folder := $(shell mkdir -p build)

results_folder := $(shell mkdir -p simulation_results)

#TARGET TO COMPILE SUBNET TEST

message.o: data_structures/message.cpp

 $(CC) -g -c $(CFLAGS) $(INCLUDECADMIUM) $(INCLUDEDESTIMES)

data_structures/message.cpp -o build/message.o

main_subnet_test.o: test/main_subnet_test.cpp

 $(CC) -g -c $(CFLAGS) $(INCLUDECADMIUM) $(INCLUDEDESTIMES)

test/main_subnet_test.cpp -o build/main_subnet_test.o

tests: main_subnet_test.o message.o

 $(CC) -g -o bin/SUBNET_TEST build/main_subnet_test.o build/message.o

#TARGET TO COMPILE EVERYTHING

all: tests

#CLEAN COMMANDS

clean:

 rm -f bin/* build/*

Figure 11. Make file to compile the subnet test

First, we define the compiler we are using, in this case, g++.

Then we need to define the C++ standard we are using, in this case, C++17.

We also need to define the paths to Cadmium and DESTimes libraries, so the compiler can find the files we

specified in the #includes <>. We define the paths in the INCLUDECADMIUM and INCLUDEDESTIMES

variables. In a makefile, a path is preceded by -I. The paths are relative from the location of the

make file. If we download the simulator as explained at the beginning of the manual and we create new

models inside the folder “DEVS-Models” following the same structure as in the ABP, we will not need to

modify these paths.

We store intermediate built files in a folder called build; the executables in a folder called bin and the

simulation results in a folder called simulation_results. To do so, we need to be sure that these

folders exist, and if they do not exist, we need to create them. We can do this in the makefile as follows:

command_name := $(shell mkdir -p folder_name)

We need to assign a name to the make file command, in this generic case command_name, we then write a

shell command to create the directory if it does not exist. mkdir creates a directory with the name

folder_name. The -p option specifies create the directory only if it does not already exist. In our case, we

create the folders: build, bin and simulation_results.

Cadmium
A tool for DEVS Modeling and Simulation. User’s Guide

Page 52 of 85

We then specify how to create the executable to run the subnet test. To create the executable, we first need

to create the object files (.o) of all the cpp files involved in our program, in this case, message.cpp and

main_subnet_test.cpp. The object files contain the compiled code.

To generate an object file in the context of our simulator, we need to use the following statements:

file_name.o: relative_path_to_cpp_file

 $(CC) -g -c $(CFLAGS) $(INCLUDECADMIUM) $(INCLUDEDESTIMES)

relative_path_to_cpp_file -o build/file_name.o

Where file_name is the name we give to the object file (we usually use the same one we gave to the cpp

file) and relative_path_to_cpp_file is the relative path to the cpp file from where the make file is

located. $() is used to include the variables we defined at the beginning of the make file. -g is used to

include debugging information, -c is an instruction to the preprocessor to keep comments, and -o is used to

specify the name of the output file.

For the subnet test, we need to create the object files of message.cpp and main_subnet_test.cpp.

Once we have the object files, we need to link them together to create the executable. We need to use the

following line of code:

tests: main_subnet_test.o message.o

 $(CC) -g -o bin/SUBNET_TEST build/main_subnet_test.o build/message.o

tests is the name we give to the make file command that performs the linking. We then need to specify all

the other make file commands we need to execute before this one. In this case, main_subnet_test.o

and message.o to generate the build objects. We then tell the compiler to perform the linkage of the .o

files to generate the executable. We give the name SUBNET_TEST to our executable.

To be able to use the command “make all” to compile, we need to define what all means. In this case, all

means execute the command tests.

We all need to define a “clean” command that deletes all the object and executable files in the bin and

build folders before compiling (i.e. rm -f bin/* build/*).

Once the make file is ready, to compile the test we open the bash terminal inside the folder ABP. To compile
the project, type: make clean; make all.

To run the test, open a bash terminal inside the subfolder bin and type the command: ./SUBNET_TEST.

The simulation results will be in the folder simulation_results.

Simulating the complete ABP model
Figure 2 presented the structure of the ABP model coupled model discussing throughout this document. The

Alternating Bit communication protocol tries to provide reliable transmission on an unreliable network. The

ABP model consists of 3 components: A sender, which transmits messages; a network, and a receiver, which

receives the messages transmitted by the sender and returns acknowledgement messages (positive or

negative). The network is decomposed further to two subnets corresponding to the sending and receiving

channels respectively. The sender and the receiver communicate with each other through the network

component.

As we already mentioned, the Subnet atomic model uses one input port and one output port, and the model

passes the data it receives after a time delay of 3 seconds. To model the unreliability of the network, only

approximately 95% of the data will be transferred (i.e. 5% of the data will be lost through the subnet).

Cadmium
A tool for DEVS Modeling and Simulation. User’s Guide

Page 53 of 85

The behavior of the receiver is to receive the data and send back an acknowledgment extracted from the

received data after a time period. The implementation of the receiver atomic class is available in Appendix B.

The sender sends data packets and waits for an acknowledgment. If the acknowledgment is not received

after a period of time, it sends the same packet again. If the acknowledgment is received, the sender sends

the next packet. The implementation of the sender atomic class is available in Appendix C.

The implementation of the ABP coupled model is available in Appendix D.

The full logs of the simulation are available in Appendix E (message log) and Appendix F (state log). Here we

explain the most relevant aspects of the logs.

The input data we use for our simulation is as follows: at time 10s, we tell the sender that it will need to send

a message that is 5 packets long and at time 15min, we tell it to send a message that is 3 packets long.

00:00:10 5

00:15:00 3

In the next snippet, we can see the message generated when the sender transmits a packet until it
receives the confirmation that the packet was received and starts sending a new packet.

At time 10s, we generate a message (coming from the input file) that tells the sender that it will need to

send a message that is 5 packets long. The message is generated by the model input reader (i.e. the

one in charge of transforming the input files in DEVS messages).

At time 20s, the sender sends the first packet with the alternate bit ({1 0}) through the port dataOut and

the packet number (i.e. 1) through the packetSentOut port (the output of the top model). The port

dataOut is connected to the subnet model. After a 3s delay, the subnet transmits the packet with the

alternate bit i.e. it generates the message {1 0} in the port out. The out port of the subnet is connected

to the receiver. Once the receiver receives the packet, after a 10s delay, it sends an acknowledgment

({0 0}). For the acknowledgment, the second element represents the alternate bit. The acknowledgment is

transmitted through the network (i.e. at time 36s, subnet2 generates {0 0} on its out port). The out

port of subnet2 is connected to the sender. As soon as the sender receives the acknowledgement (i.e.

time advance 0), it generates a message in the ackReceivedOut. The message is the alternate bit (i.e.

0). After a 10s delay, i.e. at time 46s, the process starts again with the second packet.

...

00:00:10:000

[iestream_input_defs<int>::out: {5}] generated by model input_reader

00:00:20:000

[Sender_defs::packetSentOut: {1}, Sender_defs::ackReceivedOut: {},

Sender_defs::dataOut: {1 0}] generated by model sender1

00:00:23:000

[Subnet_defs::out: {1 0}] generated by model subnet1

00:00:33:000

[Receiver_defs::out: {0 0}] generated by model receiver1

00:00:36:000

[Subnet_defs::out: {0 0}] generated by model subnet2

00:00:36:000

[Sender_defs::packetSentOut: {}, Sender_defs::ackReceivedOut: {0},

Sender_defs::dataOut: {}] generated by model sender1

00:00:46:000

[Sender_defs::packetSentOut: {2}, Sender_defs::ackReceivedOut: {},

Sender_defs::dataOut: {2 1}] generated by model sender1

…

Cadmium
A tool for DEVS Modeling and Simulation. User’s Guide

Page 54 of 85

In the next snippet, we can see some states of the atomic models. For example, at time 10s, after the

external transition of the sender1 atomic model is executed, the state of the model is packetNum: 1 &

totalPacketNum: 5 (i.e. the model is sending the first packet and it has to send 5 packets in total). At

time 23s, once the subnet model has transmitted the packet, the state of subnet1 is index: 1 &

transmitting: 0 (i.e. the subnet has received one packet so far and it does not need to transmit

anything). After the receiver sends the acknowledgement (i.e. at time 33s), the state of the receiver

is ackNum: 0 (i.e. the last alternate bit received is 0) and the state of subnet2 is index: 1 &

transmitting: 1 (i.e. it has received a packet so far and it has something to transmit). At time 36s,

once the sender receives the acknowledgment, it updates its state to packetNum: 2 &

totalPacketNum: 5 (i.e. the next packet it has to send is 2 and the total number is 5, which means the

full message is not sent yet).

...

00:00:10:000

State for model sender1 is packetNum: 1 & totalPacketNum: 5

...

00:00:23:000

State for model subnet1 is index: 1 & transmitting: 0

...

00:00:33:000

State for model receiver1 is ackNum: 0

State for model subnet2 is index: 1 & transmitting: 1

...

00:00:36:000

State for model sender1 is packetNum: 2 & totalPacketNum: 5

...

Defining the make file to compile all the test and the ABP

As per good programming practices, a project should have a single makefile. Therefore, we modify the

makefile we already create to include the generation of the executable for the unit tests of the receiver

and subnet and the ABP simulator.

We need to generate an object file as we did for message.cpp and main_subnet_test.cpp for the following

files: main_sender_test.cpp, main_receiver_test.cpp and main.cpp.

Once we have all the object files, we need to generate the executables. We generate the executables for the

tests under the make command tests. To generate the ABP simulator executable, we create a new

command, simulator, and we write the instructions to link the necessary object files.

Finally, we add simulator to the all command.

CC=g++

CFLAGS=-std=c++17

INCLUDECADMIUM=-I ../../cadmium/include

INCLUDEDESTIMES=-I ../../DESTimes/include

#CREATE BIN AND BUILD FOLDERS TO SAVE THE COMPILED FILES DURING RUNTIME

bin_folder := $(shell mkdir -p bin)

build_folder := $(shell mkdir -p build)

results_folder := $(shell mkdir -p simulation_results)

Cadmium
A tool for DEVS Modeling and Simulation. User’s Guide

Page 55 of 85

#TARGET TO COMPILE ALL TESTS

message.o: data_structures/message.cpp

 $(CC) -g -c $(CFLAGS) $(INCLUDECADMIUM) $(INCLUDEDESTIMES)

data_structures/message.cpp -o build/message.o

main_subnet_test.o: test/main_subnet_test.cpp

 $(CC) -g -c $(CFLAGS) $(INCLUDECADMIUM) $(INCLUDEDESTIMES)

test/main_subnet_test.cpp -o build/main_subnet_test.o

main_sender_test.o: test/main_sender_test.cpp

 $(CC) -g -c $(CFLAGS) $(INCLUDECADMIUM) $(INCLUDEDESTIMES)

test/main_sender_test.cpp -o build/main_sender_test.o

main_receiver_test.o: test/main_receiver_test.cpp

 $(CC) -g -c $(CFLAGS) $(INCLUDECADMIUM) $(INCLUDEDESTIMES)

test/main_receiver_test.cpp -o build/main_receiver_test.o

tests: main_subnet_test.o main_sender_test.o main_receiver_test.o message.o

 $(CC) -g -o bin/SUBNET_TEST build/main_subnet_test.o build/message.o

 $(CC) -g -o bin/SENDER_TEST build/main_sender_test.o build/message.o

 $(CC) -g -o bin/RECEIVER_TEST build/main_receiver_test.o build/message.o

#TARGET TO COMPILE ONLY ABP SIMULATOR

main_top.o: top_model/main.cpp

 $(CC) -g -c $(CFLAGS) $(INCLUDECADMIUM) $(INCLUDEDESTIMES)

top_model/main.cpp -o build/main_top.o

simulator: main_top.o message.o

 $(CC) -g -o bin/ABP build/main_top.o build/message.o

#TARGET TO COMPILE EVERYTHING (ABP SIMULATOR + TESTS TOGETHER)

all: simulator tests

#CLEAN COMMANDS

clean:

 rm -f bin/* build/*

Cadmium’s Services for Atomic Models
The atomic models are defined in an hpp file following the template provided in Appendix A.

Each atomic model implementation must include the following headers:

#ifndef ATOMIC_MODEL_NAME_HPP

#define ATOMIC_MODEL_NAME_HPP

//Include simulator headers

#include <cadmium/modeling/ports.hpp>

#include <cadmium/modeling/message_bag.hpp>

//Include other headers needed for the C++ implementation of the model

#include <limits>

#include <assert.h>

Cadmium
A tool for DEVS Modeling and Simulation. User’s Guide

Page 56 of 85

//Include the relative path to message types for not built-in C++ types such as

float, int, string, etc.

#include "../data_structures/message.hpp"

using namespace cadmium;

using namespace std;

//Here goes the port declaration

//Here goes the atomic model class implementation

#endif //ATOMIC_MODEL_NAME_HPP

First, we need to include the libraries of the simulator that provide the services to define new ports

(<cadmium/modeling/ports.hpp>) and to handle bags of messages

(<cadmium/modeling/message_bag.hpp>). Then, we need to include any C++ library that we

use in the model implementation. The library limits is used when we need to passivate a model (i.e. set

the time advance to infinity). The rest of the libraries are optional and the ones to be included depends on

the specific model implementation. Assert.h is useful to stop the simulation and generate an error if we

have non-desired behavior. For example, the model definition states that the inputs to the model are

integers between 0 and 9. When we implement our model, we can use a conditional statement and the

methods provided in assert.h to check that the condition is satisfied. If not, the simulation is stopped and

an error explaining the reason is displayed. Other libraries may be needed based on the model

implementation.

In Cadmium, we can use built-in C++ types as messages (integer, float, string, double, bool, etc.) or we can

define our own ones as C++ structures. In that case, we need to include the path to the hpp file where the

structure is defined (e.g. #include "../data_structures/message.hpp").

Finally, before starting with the model implementation (port and atomic model definition), we declare the

namespaces we are using, in this case: cadmium and std. If we do not declare them, every time we use a

method/service from the standard C++ library (std), we have to write std:: followed by the name of the

service. The same occurs with cadmium (cadmium::).

Declaring ports

We define the ports as a structure (in this general implementation, we called it

model_name_ports_defs) that contains all the input and output ports of the atomic/coupled model.

Two ports cannot have the same name. Different ports can handle the same message type.

In this general implementation, each port is defined as a structure that inherits from the template structures

out_port and in_port defined in the simulator, specifying the type of message handled by the port. In

this case, we define two output ports, the first one is called out_port_name1 and it handles messages of

type message_type_1; the second one is called out_port_name2 and it handles messages of type

message_type_2. We also define two input ports, the first one is called in_port_name1 and it

handles messages of type message_type_3; the second one is called in_port_name2 and it handles

messages of type message_type_4.

Cadmium
A tool for DEVS Modeling and Simulation. User’s Guide

Page 57 of 85

//Port definition

struct model_name_ports_defs {

 struct out_port_name1 : public out_port<message_type_1> {};

 struct out_port_name2 : public out_port<message_type_2> {};

 struct in_port_name1 : public in_port<message_type_3> {};

 struct in_port_name2 : public in_port<message_type_4> {};

};

Implementing atomic models: a C++ class

Atomic models are implemented as a templated C++ class (atomic_model_name) in the hpp file we

mentioned at the beginning of the section (//Here goes the atomic model class

implementation). The template parameter of the class represents the type of time (TIME)

Each class representing an atomic model MUST contains the following variables, methods, and constructors.

Everything inside the class is public as the simulator has to access the methods of the class to execute the

simulation.

Port definition
As discussed earlier, the ports were declared inside the structure model_name_ports_defs. To access

the input port 1, we would need to use model_name_ports_defs::in_port_name1 and to use the

output port 1 model_name_ports_defs::out_port_name1.

The ports are assigned to the corresponding atomic model as follows:

using input_ports=tuple<typename model_name_ports_defs::in_port_name1 , typename

model_name_ports_defs::in_port_name2>;

using output_ports=tuple< typename model_name_ports_defs::out_port_name1 ,

typename model_name_ports_defs::out_port_name2>;

The C++ keyword using allows us to rename a data type. Each atomic model must define their input and

output ports as a data type called “input_ports” and “output_ports” respectively. We need to use

these specific names because the simulator will use them to check that the atomic model has all the needed

components and that the ports are properly defined (e.g. there are not two input ports with the same

name). Both the input and out ports are defined as a tuple (tuple<>), a C++ object that packs elements of

possibly different types together in a single object. We can see it as a vector with elements of different

types. Because of this, we need to specify the type of each of the elements in the tuple. The typename

specifies that model_name_ports_defs::out_port_name1, etc. are data types that will overwrite

the template class in the simulator.

Model parameters
If we want to define a parameterized model, the parameters are defined as variables inside the class. The

value of these variables will be overwritten inside the constructor of the class. See Appendix C for an

example.

State definition

The state variables of the model are declared in a structure called state_type. All the state variables of

the model must be declared inside the structure, and a single state variable of type state_type name

state must be defined. We need to use these specific names because they are explicitly used by the

simulator to check that the model is implemented according to the DEVS formalism. The simulator verifies if

Cadmium
A tool for DEVS Modeling and Simulation. User’s Guide

Page 58 of 85

this structure (which represents the model’s state) is updated inside the output function or the time advance

function (remember that these two operations are not valid according to DEVS specifications).

struct state_type {

 //Declare the state variables here

};

state_type state;

Class Constructor

Each class must have at least one default constructor (i.e. without parameters): atomic_model_name().

Inside the constructor, both the parameters (if we defined a parameterized model) and the state of the

model are initialized. As in any C++ class, we can have more than one constructor as long as they take

different parameters.

Having a constructor that takes the model parameters as inputs is useful if we want to create instances of

the class with different parameters.

Internal Transition Function

The internal transition function is defined as a void method called internal_transition(), and it

takes no parameters (because the method can access the state variable of the class).

void internal_transition() {

 //Define internal transition here

}

External Transition Function

The external transition function is called when an external event arrives in one of the model’s output ports.

It is defined as a void method called external_transition. The method takes two parameters, the

elapsed time (e) and a bag of input messages (mbs). There is one bag of messages per input port.

void external_transition(TIME e, typename make_message_bags<input_ports>::type

mbs){

 //Define external transition here

}

There are some primitives devoted to handling the messages:

- typename make_message_bags<input_ports>::type mbs – It creates an input message

bag called mbs. As we already mentioned, typename indicates that the expression that follows is a

data type. make_message_bags<> is a template data type declared in

<cadmium/modeling/message_bag.hpp>, used to declare a bag of messages for input or output

ports. We need to instantiate the template with the word input_ports to define the input bag, using

::type. The parameter declaration, in this case, declares mbs as a tuple whose elements are the

message bags on the input ports. The messages inside the set of messages in the bag are stored in a C++

vector.

- get_messages<typename model_name_ports_defs::in_port_name1>(mbs) – It gets the

message bag from the input port in_port_name stored in the tuple mbs. The method

get_messages uses a template parameter for the port we want to access, in this case, the

in_port_name1 port, defined by typename model_name_ports_defs::in_port_name1.

Cadmium
A tool for DEVS Modeling and Simulation. User’s Guide

Page 59 of 85

The function parameter is the bag of messages we want to access, in this case mbs. The retrieved bag is

a C++ vector. The data type of the elements inside the vector is the one handled by the port.

Confluent Transition Function

The confluent transition function is called when an internal transition is scheduled at the same time as an
external event arrives. The method to define this void function, called confluence_transition, takes

two parameters: the elapsed time (e) and a bag of messages (mbs) The default implementation for the
confluent function is to execute the model’s internal transition first, and the external transition after that, with
an elapsed time equal to zero.

All the primitives useful for handling messages in the external transition can also be used here.

void confluence_transition(TIME e, typename make_message_bags<input_ports>::type

mbs){

 internal_transition();

 external_transition(TIME(), std::move(mbs));

 }

Output Function

The output function is called when a model is imminent, and before calling the internal transition function

(or the confluent function). It is defined as a constant method (i.e. we are not allowed to change the state of

the model) that returns a bag of messages in the output ports. It does not take any parameter because the

method can access the state variable of the class. It is called output ()

typename make_message_bags<output_ports>::type output() const {

 typename make_message_bags<output_ports>::type bags;

 //Define output function here

 return bags;

}

To handle messages, we use the same primitives as in the external transition function but instantiated for

the output ports instead of the input ports.

Time Advance Function

The time advance function is defined as a constant method (i.e. we are not allowed to modify the state of

the model) that returns the time of the next internal transition and takes no parameters. It is called
time_advance.

TIME time_advance() const {

 TIME next_internal;

 //Define time advance function here

 return next_internal;

}

There are two useful primitives to set the time advance of the model to zero and infinity

- numeric_limits<TIME>::infinity() (a method in the limits library). It is used to

passivate the model.

- TIME () – It sets the time advance to zero.

Cadmium
A tool for DEVS Modeling and Simulation. User’s Guide

Page 60 of 85

IMPORTANT: According to ST-DEVS, only the transition functions (i.e. external,

internal and confluence) can be stochastic. The time advance function and the

output function MUST be deterministic.

State the Logs

Once all the DEVS functions are defined, we specify how we want to output the state of the model in the state
log. To declare how to log the state of the model, we define the << operator for the structure state_type.

The following method shows how to do this.

friend ostringstream& operator << (ostringstream& os, const typename

atomic_model_name<TIME>::state_type& state) {

 //Define how to log the state here

 return os;

}

The operator takes a pointer to the stream where we want to log (i.e. os) and the memory address of the

state variable of the model (i.e. state)

We use a const type to ensure that it will not be modified inside the operator. It is important to notice that we

need to use typename atomic_model_name<TIME>::state_type to specify the type of the state. That

expression is used to access the structure state_type inside the template class

atomic_model_name<TIME>. We need to declare the operator using the keyword friend to specify that

the function can access the private members of the structure state_type.

Using Atomic Models: Creating Instances from the Class
To be able to use the atomic models we have defined or the ones available in the libraries, we need to

create an instance. To create instances of atomic models, Cadmium provides a data type and a method:

- model is an empty class defined in <cadmium/modeling/dynamic_model.hpp> under the

namespace dynamic::modeling. It allows pointer-based polymorphism between classes

derived from atomic and coupled models. It is an abstract class that encapsulates both atomic and

coupled models in such a way that they can be elements in a vector of models.

- make_dynamic_atomic_model<>() is a template method defined in

<cadmium/modeling/dynamic_model_translator.hpp>. It is used to create an instance

of an atomic model. It takes the class type of the atomic model, TIME (because all atomic models

are templated classes that need to be instantiated with a TIME data type), and all the types of the

parameters for the model constructor. The parameters of the method are the name of the atomic

model (a string) and the parameters we need to pass to the constructor. If a parameter in the

constructor is a pointer, we need to use the C++ method move() to pass the pointer to the

constructor.

The instances of the atomic models are created (along with the coupled models, the logger and the runner)

inside the main function defined in a cpp file. At the top of the cpp, we MUST include the headers of all the

atomic classes we are using.

An atomic instance is created as follows:

shared_ptr<dynamic::modeling::model> name_atomic_model_instance =

dynamic::translate::make_dynamic_atomic_model< atomic_model_name, TIME>

("instance_name");

Cadmium
A tool for DEVS Modeling and Simulation. User’s Guide

Page 61 of 85

To store the instances of atomic models, Cadmium uses one advanced C++ data type: shared_ptr<>,

defined in the standard library. shared_ptr<> is a smart pointer that allows shared ownership of an

object through a pointer.

Cadmium’s Services for Coupled Models
Coupled models are defined inside the main function in a cpp file (along with the instances of the atomic

models, the logger and the runner).

Coupled models are defined using C++ functions and data types defined in the simulator. The functions were

built following the formal definitions for DEVS coupled models. Therefore, each of the components defined

formally for DEVS coupled models can be included.

Declaring ports

Port declaration for coupled models is done using the same method as for atomic models.

//Port definition

struct model_name_ports_defs{

 struct out_port_name1 : public out_port<message_type_1> {};

 struct out_port_name2 : public out_port<message_type_2> {};

 struct in_port_name1 : public in_port<message_type_3> {};

 struct in_port_name2 : public in_port<message_type_4> {};

};

In coupled models, we can omit grouping all the ports in a single structure and declare them as follows:

struct out_port_name1 : public out_port<message_type_1> {};

struct out_port_name2 : public out_port<message_type_2> {};

struct in_port_name1 : public in_port<message_type_3> {};

struct in_port_name2 : public in_port<message_type_4> {};

If there are two different coupled models using the same port type (i.e., with the same name and message

type), we declare the port type once and we use it for both models. However, the same coupled model

cannot have two ports with the same name (i.e. in our C++ implementation, they cannot be the same type).

Defining coupled models

Coupled model ports

To assign the input and output ports we already declared to a coupled model, Cadmium use the data type

Ports. Ports is a data type used to define input and output ports. It is defined in

<cadmium/modeling/dynamic_model.hpp> under the namespace dynamic::modeling. It is a

vector that takes as elements the typeid of the port structure declaration. To provide the type of a port,

we use the method typeid() defined in the std C++ library (typeid() takes a data type as input).

Input ports

We need to create a variable of type Ports (in this generic example, iports_coupled_name) to store

all the input ports as follows:

Cadmium
A tool for DEVS Modeling and Simulation. User’s Guide

Page 62 of 85

dynamic::modeling::Ports iports_coupled_name = {

 typeid(model_name_ports_defs::in_port_name1),

 typeid(model_name_ports_defs::in_port_name2)

 };

Output ports

The output ports are also stored inside a variable of type Ports in the same way.

dynamic::modeling::Ports oports_coupled_name = {

 typeid(model_name_ports_defs::out_port_name1),

 typeid(model_name_ports_defs::out_port_name2)

 };

Submodels

Submodels are stored inside a variable of type Models. As already explained, Models is used to define

the components of a coupled model. It is defined in <cadmium/modeling/dynamic_model.hpp>

under the namespace dynamic::modeling. It is a vector that takes as elements pointers to models

(shared_ptr<dynamic::modeling::model>>)

In this generic case, the name of the variable is submodels_coupled_name. It contains the instances of

submodels inside the coupled model. In this generic case, name_component_instance1 and

name_component_instance2. It does not matter the order we use to specify the components of the

top model.

dynamic::modeling::Models submodels_coupled_name =

 { name_component_instance1,

 name_component_instance2};

name_ component _instance_x are the names given to the variables that store the instance of the

components of the coupled model. They can be instances of atomic models or coupled models.

External Input Couplings (EICs)

Cadmium provides a data type and a method to define EICs.

The EICs data type is used to define the set of external input couplings. The set is stored as a vector with

elements of type EIC, another data type to define each external input. It is implemented as a structure

with two elements: the name of the submodel connected to the external input (a string), and a link that

represents the external input (a shared_ptr<>). Both EICs and EIC are defined in

<cadmium/modeling/dynamic_model.hpp> under the namespace dynamic::modeling.

make_EIC<>() is used to create an EIC structure. It is defined in

<cadmium/modeling/dynamic_model_translator.hpp>, and it returns an element of type

EIC. It takes template parameters of the types of the input ports of the coupled model and the submodel

inside the coupled model, in this specific order (i.e. form – to). It uses as parameter a string with the name of

the submodel.

dynamic::modeling::EICs eics__coupled_name = {

 dynamic::translate::make_EIC<model_name_ports_defs::in_port_name1,

 component_port_name>("instance_name"),

 dynamic::translate::make_EIC< model_name_ports_defs::in_port_name2,

 component_port_name2>("instance_name2")

};

Cadmium
A tool for DEVS Modeling and Simulation. User’s Guide

Page 63 of 85

In this generic case, the name of the variable is eics_coupled_name. It contains two EICs: (1) the input

port “in_port_name1” of the coupled model is connected to the input port “component_port_name”

of the subcomponent “instance_name”; (2) the input port “in_port_name2” of the coupled model is

connected to the input port “component_port_name2” of the subcomponent “instance_name2”.

instance_name1(and 2) are unique names given to each instance of the components of the coupled

model. They can be instances of atomic models or coupled models.

External Output Couplings (EOCs)

Cadmium provides a data type and a method to define EOCs.

EOCs is a data type similar to EICs above, but for the External Output Couplings.

make_EOC<>() is a method similar to make_EIC<>() above, but for the External Output Couplings. It

returns an element of type EOC, using the types of the output port of the submodel in the coupled model,

and the output port of the coupled model, in this specific order (i.e. form – to). The parameter of the

method is a string with the name of the submodel.

dynamic::modeling::EOCs eocs__coupled_name = {

 dynamic::translate::make_EOC<component_port_name, model_name_ports_defs::

 out_port_name1>("instance_name"),

 dynamic::translate::make_EOC<component_port_name2, model_name_ports_defs::

 in_port_name2>("instance_name2")

};

In this generic case, the name of the variable is eocs_coupled_name. It contains two EOCs: (1) the

output port “component_port_name” of the subcomponent “instance_name” is connected to the

output port “out_port_name1” of the coupled model; (2) the output port “component_port_name2”

of the subcomponent “instance_name2” is connected to the output port “out_port_name2” of the

coupled model.

instance_name1(and 2) are unique names given to each instance of the components of the coupled

model. They can be instances of atomic models or coupled models.

Internal Couplings (ICs)

Cadmium provides a data type and a method to define the ICs.

ICs is a data type to define internal couplings. It is stored as a vector that takes elements of type IC, used

to define each internal connection. It is implemented as a structure with three elements: (1) the name of the

“from” component (i.e. a string), (2) the name of the “to” component (i.e. a string), and (3) a link to connect

the output port of one component with the input port of the other component. They are defined in

<cadmium/modeling/dynamic_model.hpp> under the namespace dynamic::modeling.

make_IC<>() is used to create the internal couplings, i.e., elements of type IC. It is defined in

<cadmium/modeling/dynamic_model_translator.hpp>. It uses the type of the output port of

the submodel “from” and the type of the input port of the submodel “to”, in this specific order (i.e. from

output port– to input port). The parameters of the method are two strings, the first one with the name of

the “from” submodel and the second one with the name of the “to” submodel (i.e. from submodel name –

to submodel name).

Cadmium
A tool for DEVS Modeling and Simulation. User’s Guide

Page 64 of 85

dynamic::modeling::ICs ics__coupled_name = {

 dynamic::translate::make_EIC<component_port_name_out1,

component_port_name_in1>("instance_name_out1","instance_name_in1"),

 dynamic::translate::make_EIC<component_port_name_out2,

component_port_name_in2>("instance_name_out2","instance_name_in2")

};

In this generic case, the name of the variable is ics_coupled_name. It contains two ICs: (1) the output

port “component_port_name_out1” of the subcomponent “instance_name_out1” is connected to

the input port “component_port_name_in1” of the subcomponent “instance_name_in1”; (2) the

output port “component_port_name_out2” of the subcomponent “instance_name_out2” is

connected to the input port “component_port_name_in2” of the subcomponent

“instance_name_in2”.

instance_name_in/out_1 (and 2) are unique names given to each instance of the components of the

coupled model. They can be instances of atomic models or coupled models.

Coupled model variable

Cadmium defines the class coupled<TIME> to define coupled models. We use it to create coupled models

instances. It is defined in <cadmium/modeling/dynamic_coupled.hpp> under the namespace

dynamic::modeling. The class uses seven variables: (1) a string with the model name, (2) a variable of

type Models representing the subcomponents, (3) a variable of type Ports for the input ports, (4) a

variable of type Ports for the output ports, (5) a variable of type EICs for external input couplings, (6)

a variable of type EOCs for external output couplings and (7) a variable of type ICs for internal

couplings. The constructor of this class takes all these parameters in this specific order.

To create the coupled model we need to define all the elements explained in this section (i.e. input ports,

output ports, submodels, EICs, EOCs, and ICs).

We declare the variable where the coupled model will be stored, in this generic case,

coupled_name_variable. The variable where the coupled model is stored is of the data type

shared_ptr<dynamic::modeling::coupled<TIME>> defined in the simulator.

To create an instance of the coupled model, we use the C++ method make_shared<>().

make_shared<>() is a method that allows creating a shared_ptr<>. It uses as a template

parameter the data type that will be stored in the pointer, and as function parameters the constructor

parameters for the data type. In Cadmium, to create coupled models, the function parameters are the ones

used in the constructor of the class coupled<TIME>: (1) model name, (2) components, (3) input ports,

(4) output ports, (5) EICs, (6) EOCs and (7) ICs in this specific order as in the following general example:

shared_ptr<dynamic::modeling::coupled<TIME>> coupled_name_variable =

make_shared<dynamic::modeling::coupled<TIME>>(

 "coupled_name", submodels_coupled_name, iports_coupled_name,

 oports_coupled_name, eics_coupled_name, eocs_coupled_name, ics_coupled_name

);

coupled_name is a unique name given to the coupled model.

The resulting coupled model can be used inside other coupled models.

Cadmium
A tool for DEVS Modeling and Simulation. User’s Guide

Page 65 of 85

Cadmium’s Services to create Logs
Cadmium also provides services for generating logs of the simulation. There are two basic logs: (1) messages

generated on the output ports and (2) state of the atomic model.

The logs are defined as follows:

/*************** Loggers *******************/

static ofstream out_messages("../simulation_results/messages_log.txt");

struct oss_sink_messages{

 static ostream& sink(){

 return out_messages;

 }

};

static ofstream out_state("../simulation_results/output_state_log.txt");

struct oss_sink_state{

 static ostream& sink(){

 return out_state;

 }

};

using state=logger::logger<logger::logger_state,

dynamic::logger::formatter<TIME>, oss_sink_state>;

using log_messages=logger::logger<logger::logger_messages,

dynamic::logger::formatter<TIME>, oss_sink_messages>;

using global_time_mes=logger::logger<logger::logger_global_time,

dynamic::logger::formatter<TIME>, oss_sink_messages>;

using global_time_sta=logger::logger<logger::logger_global_time,

dynamic::logger::formatter<TIME>, oss_sink_state>;

using logger_top=logger::multilogger<state, log_messages, global_time_mes,

global_time_sta>;

First, we need to define the file where we will output the message log. To do so, we create a variable

(out_messages) of type ofstream. We initialize out_messages with the path to the output file for

the message log ("../simulation_results/messages_log.txt").

We then define the structure oss_sink_messages to tell the simulator where we will save the output

log. The structure uses a method (sink) that returns a pointer to out_messages. We use

oss_sink_messages to declare the message logger.

We need to do the same for the state variable log. To do so, we define a variable (out_state) of type

ofstream. We initialize out_state with the path to the output file for the state log (
"../simulation_results/state_log.txt").

Finally, we define the structure (oss_sink_state) to tell the simulator where to save the state log. The

structure has a method (sink) that returns a pointer to out_state. We will use oss_sink_state to

declare the state logger.

To define the logger, we need to include the following declarations:

Cadmium
A tool for DEVS Modeling and Simulation. User’s Guide

Page 66 of 85

using state = logger::logger<logger::logger_state,

dynamic::logger::formatter<TIME>, oss_sink_state>;

It defines the state logger. We instantiate the logger with: (1) the logger we are using, in this case

logger_state (defined in <cadmium/logger/logger.hpp>), (2) the formatter (defined in

<cadmium/logger/ dynamic_common_loggers.hpp>), and (3) the sink we just defined (i.e.

oss_sink_state).

All logs are defined in the same way. Only the first and third template parameters changes because they are

the ones that specify which log we are using and where we generate the log.

using log_messages = logger::logger<logger::logger_messages,

dynamic::logger::formatter<TIME>, oss_sink_messages>;

It defines the message logger. As in the previous case, we instantiate (1) the logger we are using, in this case,

logger_messages (defined in <cadmium/logger/logger.hpp>), (2) the formatter (defined in

<cadmium/logger/ dynamic_common_loggers.hpp>), and (3) the sink just defined

(oss_sink_messages).

In order to include the global time of the simulation inside the state and message log, we need to declare a

new logger: global_time. In this specific case, we need two: one for the messages and one for the states

because the logs are generated on different files.

using global_time_mes = logger::logger<logger::logger_global_time,

dynamic::logger::formatter<TIME>, oss_sink_messages>;

It defines the global time for the message logger. As in the previous case, we instantiate with (1) the logger

we are using, in this case logger_global_time (defined in <cadmium/logger/logger.hpp>), (2) the

formatter (defined in <cadmium/logger/ dynamic_common_loggers.hpp>), and (3) the sink

(oss_sink_messages).

using global_time_sta = logger::logger<logger::logger_global_time,

dynamic::logger::formatter<TIME>, oss_sink_state>;

It defines the global time for the state logger as in the previous cases.

Once we have declared all the loggers we need, we have to combine them, so our simulation generates all

the logs at the same time. For this purpose, we use the multilogger structure defined in

<cadmium/logger/logger.hpp> instantiated with the above log definitions (i.e. state, log_messages,

global_time_mes, global_time_sta) as template parameters:

using logger_top = logger::multilogger<state, log_messages,

global_time_mes, global_time_sta>;

Cadmium’s Services to Run the Simulation
Cadmium provides a templated class to execute the model: runner. The runner class defined in

<cadmium/engine/pdevs_dynamic_runner.hpp> under the namespace dynamic::engine:: takes two

template parameters: the class used for the time (in this example, NDTime) and a logger (in this case,

logger_top). The parameters for the class constructor are the name of the top model (TOP in this generic

case) and the initial time for the simulation (usually 0).

dynamic::engine::runner<NDTime, logger_top> r(TOP, {0});

Cadmium
A tool for DEVS Modeling and Simulation. User’s Guide

Page 67 of 85

To define the end time of the simulation, we have two options: (1) run the simulation until a specific time or

(2) run the simulation until all models are passivated.

To run the simulation until a specific time we use the runner method run_until(). This method takes as

parameter the end time of the simulation.

r.run_until(TIME("04:00:00:000"));

To run the simulation until all models are passivated, we use the runner method run_until_passivate().

This method does not take any parameter.

r.run_until_passivate();

Cadmium
A tool for DEVS Modeling and Simulation. User’s Guide

Page 68 of 85

Appendix A
Template for the definition of an atomic model.

#ifndef ATOMIC_MODEL_NAME_HPP

#define ATOMIC_MODEL_NAME_HPP

//Include simulator headers

#include <cadmium/modeling/ports.hpp>

#include <cadmium/modeling/message_bag.hpp>

//Include other headers needed for the C++ implementation of the model

#include <limits>

#include <math.h>

#include <assert.h>

//Include the relative path to the message types

#include "../data_structures/message.hpp"

using namespace cadmium;

using namespace std;

//Port definition

 struct model_name_ports_defs{

 struct out_port_name1 : public out_port<message_type_1> {};

 struct out_port_name2 : public out_port<message_type_2> {};

 struct in_port_name1 : public in_port<message_type_3> {};

 struct in_port_name2 : public in_port<message_type_4> {};

 };

//Atomic model class

 template<typename TIME> class model_name {

 public:

 //Ports definition

 using input_ports = tuple<typename model_name_ports_defs:: in_port_name1,

 typename model_name_ports_defs:: in_port_name2>;

 using output_ports = tuple<typename model_name_ports_defs:: out_port_name1,

 typename model_name_ports_defs:: out_port_name2>;

 //Model parameters to be overwritten during instantiation

 struct state_type{

 //Declare the state variables here

 };

 state_type state;

 //Default constructor without parameters

 model_name () noexcept{

 //Define the default constructor here

 }

 //Constructor with parameters if needed

 void internal_transition() {

Cadmium
A tool for DEVS Modeling and Simulation. User’s Guide

Page 69 of 85

 //Define internal transition here

 }

 void external_transition(TIME e, typename make_message_bags<input_ports>::type mbs){

 //Define external transition here

 }

 void confluence_transition(TIME e,typename make_message_bags<input_ports>::type mbs){

 //Define confluence transition here

 //Default definition

 internal_transition();

 external_transition(TIME(), std::move(mbs));

 }

 typename make_message_bags<output_ports>::type output() const {

 typename make_message_bags<output_ports>::type bags;

 //Define output function here

 return bags;

 }

 TIME time_advance() const {

 TIME next_internal;

 //Define time advance function here

 return next_internal;

 }

 friend ostringstream& operator<<(ostringstream& os, const typename

Subnet<TIME>::state_type& state) {

 //Define how to log the state here

 return os;

 }

};

#endif //ATOMIC_MODEL_NAME_HPP

Cadmium
A tool for DEVS Modeling and Simulation. User’s Guide

Page 70 of 85

Appendix B

Implementation of the receiver atomic class

#ifndef __RECEIVER_HPP__

#define __RECEIVER_HPP__

#include <cadmium/modeling/ports.hpp>

#include <cadmium/modeling/message_bag.hpp>

#include <limits>

#include <assert.h>

#include <string>

#include "../data_structures/message.hpp"

using namespace cadmium;

using namespace std;

//Port definition

struct Receiver_defs{

 struct out : public out_port<Message_t> { };

 struct in : public in_port<Message_t> { };

};

template<typename TIME> class Receiver{

 public:

 //Parameters to be overwriten when instantiating the atomic model

 TIME preparationTime;

 // default constructor

 Receiver() noexcept{

 preparationTime = TIME("00:00:10");

 state.ackNum = 0;

 state.sending = false;

 }

 // state definition

 struct state_type{

 int ackNum;

 bool sending;

 };

 state_type state;

 // ports definition

 using input_ports=std::tuple<typename Receiver_defs::in>;

 using output_ports=std::tuple<typename Receiver_defs::out>;

 // internal transition

 void internal_transition() {

 state.sending = false;

 }

 // external transition

 void external_transition(TIME e, typename

make_message_bags<input_ports>::type mbs) {

Cadmium
A tool for DEVS Modeling and Simulation. User’s Guide

Page 71 of 85

 if(get_messages<typename Receiver_defs::in>(mbs).size()>1)

 assert(false && "one message per time uniti");

 vector<Message_t> message_port_in;

 message_port_in = get_messages<typename Receiver_defs::in>(mbs);

 state.ackNum = message_port_in[0].bit;

 state.sending = true;

 }

 // confluence transition

 void confluence_transition(TIME e, typename

make_message_bags<input_ports>::type mbs) {

 internal_transition();

 external_transition(TIME(), std::move(mbs));

 }

 // output function

 typename make_message_bags<output_ports>::type output() const {

 typename make_message_bags<output_ports>::type bags;

 Message_t out_aux;

 out_aux = Message_t(0, state.ackNum);

 get_messages<typename Receiver_defs::out>(bags).push_back(out_aux);

 return bags;

 }

 // time_advance function

 TIME time_advance() const {

 TIME next_internal;

 if (state.sending) {

 next_internal = preparationTime;

 }else {

 next_internal = std::numeric_limits<TIME>::infinity();

 }

 return next_internal;

 }

 friend std::ostringstream& operator<<(std::ostringstream& os, const

typename Receiver<TIME>::state_type& i) {

 os << "ackNum: " << i.ackNum;

 return os;

 }

};

#endif // __RECEIVER_HPP__

Cadmium
A tool for DEVS Modeling and Simulation. User’s Guide

Page 72 of 85

Appendix C

Implementation of the sender atomic class

#ifndef __SENDER_HPP__

#define __SENDER_HPP__

#include <cadmium/modeling/ports.hpp>

#include <cadmium/modeling/message_bag.hpp>

#include <limits>

#include <assert.h>

#include <string>

#include <random>

#include "../data_structures/message.hpp"

using namespace cadmium;

using namespace std;

//Port definition

struct Sender_defs{

 struct packetSentOut : public out_port<int> { };

 struct ackReceivedOut : public out_port<int> {};

 struct dataOut : public out_port<Message_t> { };

 struct controlIn : public in_port<int> { };

 struct ackIn : public in_port<Message_t> { };

};

template<typename TIME> class Sender{

 public:

 //Parameters to be overwriten when instantiating the atomic model

 TIME preparationTime;

 TIME timeout;

 // default constructor

 Sender() noexcept{

 preparationTime = TIME("00:00:10");

 timeout = TIME("00:00:20");

 state.alt_bit = 0;

 state.next_internal = std::numeric_limits<TIME>::infinity();

 state.model_active = false;

 }

 // state definition

 struct state_type{

 bool ack;

 int packetNum;

 int totalPacketNum;

 int alt_bit;

 bool sending;

 bool model_active;

 TIME next_internal;

 };

 state_type state;

Cadmium
A tool for DEVS Modeling and Simulation. User’s Guide

Page 73 of 85

 // ports definition

 using input_ports=std::tuple<typename Sender_defs::controlIn, typename

Sender_defs::ackIn>;

 using output_ports=std::tuple<typename Sender_defs::packetSentOut,

typename Sender_defs::ackReceivedOut, typename Sender_defs::dataOut>;

 // internal transition

 void internal_transition() {

 if (state.ack){

 if (state.packetNum < state.totalPacketNum){

 state.packetNum ++;

 state.ack = false;

 state.alt_bit = (state.alt_bit + 1) % 2;

 state.sending = true;

 state.model_active = true;

 state.next_internal = preparationTime;

 } else {

 state.model_active = false;

 state.next_internal = std::numeric_limits<TIME>::infinity();

 }

 } else{

 if (state.sending){

 state.sending = false;

 state.model_active = true;

 state.next_internal = timeout;

 } else {

 state.sending = true;

 state.model_active = true;

 state.next_internal = preparationTime;

 }

 }

 }

 // external transition

 void external_transition(TIME e, typename

make_message_bags<input_ports>::type mbs) {

 if((get_messages<typename

Sender_defs::controlIn>(mbs).size()+get_messages<typename

Sender_defs::ackIn>(mbs).size())>1)

 assert(false && "one message per time uniti");

 for(const auto &x : get_messages<typename

Sender_defs::controlIn>(mbs)){

 if(state.model_active == false){

 state.totalPacketNum = x;

 if (state.totalPacketNum > 0){

 state.packetNum = 1;

 state.ack = false;

 state.sending = true;

 state.alt_bit = 0; //set initial alt_bit

 state.model_active = true;

 state.next_internal = preparationTime;

 }else{

 if(state.next_internal !=

std::numeric_limits<TIME>::infinity()){

 state.next_internal = state.next_internal - e;

 }

 }

Cadmium
A tool for DEVS Modeling and Simulation. User’s Guide

Page 74 of 85

 }

 }

 for(const auto &x : get_messages<typename Sender_defs::ackIn>(mbs)){

 if(state.model_active == true) {

 if (state.alt_bit == x.bit) {

 state.ack = true;

 state.sending = false;

 state.next_internal = TIME("00:00:00");

 }else{

 if(state.next_internal !=

std::numeric_limits<TIME>::infinity()){

 state.next_internal = state.next_internal - e;

 }

 }

 }

 }

 }

 // confluence transition

 void confluence_transition(TIME e, typename

make_message_bags<input_ports>::type mbs) {

 internal_transition();

 external_transition(TIME(), std::move(mbs));

 }

 // output function

 typename make_message_bags<output_ports>::type output() const {

 typename make_message_bags<output_ports>::type bags;

 Message_t out;

 if (state.sending){

 out.packet = state.packetNum;

 out.bit = state.alt_bit;

 get_messages<typename Sender_defs::dataOut>(bags).push_back(out);

 get_messages<typename

Sender_defs::packetSentOut>(bags).push_back(state.packetNum);

 }else{

 if (state.ack){

 get_messages<typename

Sender_defs::ackReceivedOut>(bags).push_back(state.alt_bit);

 }

 }

 return bags;

 }

 // time_advance function

 TIME time_advance() const {

 return state.next_internal;

 }

 friend std::ostringstream& operator<<(std::ostringstream& os, const

typename Sender<TIME>::state_type& i) {

 os << "packetNum: " << i.packetNum << " & totalPacketNum: " <<

i.totalPacketNum;

 return os;

 }

};

#endif // __SENDER_HPP__

Cadmium
A tool for DEVS Modeling and Simulation. User’s Guide

Page 75 of 85

Appendix D

Implementation of the ABP coupled model

//Cadmium Simulator headers

#include <cadmium/modeling/ports.hpp>

#include <cadmium/modeling/dynamic_model.hpp>

#include <cadmium/modeling/dynamic_model_translator.hpp>

#include <cadmium/engine/pdevs_dynamic_runner.hpp>

#include <cadmium/logger/common_loggers.hpp>

//Time class header

#include <NDTime.hpp>

//Messages structures

#include "../data_structures/message.hpp"

//Atomic model headers

#include <cadmium/basic_model/pdevs/iestream.hpp> //Atomic model for inputs

#include "../atomics/subnet.hpp"

#include "../atomics/sender.hpp"

#include "../atomics/receiver.hpp"

//C++ headers

#include <iostream>

#include <chrono>

#include <algorithm>

#include <string>

using namespace std;

using namespace cadmium;

using namespace cadmium:: and cadmium::basic_models::pdevs;

using TIME = NDTime;

/***** Define input port for coupled models *****/

struct inp_control : public in_port<int>{};

struct inp_1 : public in_port<Message_t>{};

struct inp_2 : public in_port<Message_t>{};

/***** Define output ports for coupled model *****/

struct outp_ack : public out_port<int>{};

struct outp_1 : public out_port<Message_t>{};

struct outp_2 : public out_port<Message_t>{};

struct outp_pack : public out_port<int>{};

/****** Input Reader atomic model declaration *******************/

template<typename T>

class InputReader_Int : public iestream_input<int,T> {

public:

 InputReader_Int() = default;

 InputReader_Int(const char* file_path) : iestream_input<int,T>(file_path) {}

};

Cadmium
A tool for DEVS Modeling and Simulation. User’s Guide

Page 76 of 85

int main(int argc, char ** argv) {

 if (argc < 2) {

 cout << "Program used with wrong parameters. The program must be invoked

as follow:";

 cout << argv[0] << " path to the input file " << endl;

 return 1;

 }

 /****** Input Reader atomic model instantiation *******************/

 string input = argv[1];

 const char * i_input = input.c_str();

 shared_ptr<dynamic::modeling::model> input_reader =

dynamic::translate::make_dynamic_atomic_model<InputReader_Int, TIME, const char*

>("input_reader" , move(i_input));

 /****** Sender atomic model instantiation *******************/

 shared_ptr<dynamic::modeling::model> sender1 =

dynamic::translate::make_dynamic_atomic_model<Sender, TIME>("sender1");

 /****** Receiver atomic model instantiation *******************/

 shared_ptr<dynamic::modeling::model> receiver1 =

dynamic::translate::make_dynamic_atomic_model<Receiver, TIME>("receiver1");

 /****** Subnet atomic models instantiation *******************/

 shared_ptr<dynamic::modeling::model> subnet1 =

dynamic::translate::make_dynamic_atomic_model<Subnet, TIME>("subnet1");

 shared_ptr<dynamic::modeling::model> subnet2 =

dynamic::translate::make_dynamic_atomic_model<Subnet, TIME>("subnet2");

 /*******NETWORKS COUPLED MODEL********/

 dynamic::modeling::Ports iports_Network = {typeid(inp_1),typeid(inp_2)};

 dynamic::modeling::Ports oports_Network = {typeid(outp_1),typeid(outp_2)};

 dynamic::modeling::Models submodels_Network = {subnet1, subnet2};

 dynamic::modeling::EICs eics_Network = {

 dynamic::translate::make_EIC<inp_1, Subnet_defs::in>("subnet1"),

 dynamic::translate::make_EIC<inp_2, Subnet_defs::in>("subnet2")

 };

 dynamic::modeling::EOCs eocs_Network = {

 dynamic::translate::make_EOC<Subnet_defs::out,outp_1>("subnet1"),

 dynamic::translate::make_EOC<Subnet_defs::out,outp_2>("subnet2")

 };

 dynamic::modeling::ICs ics_Network = {};

 shared_ptr<dynamic::modeling::coupled<TIME>> NETWORK;

 NETWORK = make_shared<dynamic::modeling::coupled<TIME>>(

 "Network", submodels_Network, iports_Network, oports_Network,

eics_Network, eocs_Network, ics_Network

);

 /*******ABP SIMULATOR COUPLED MODEL********/

 dynamic::modeling::Ports iports_ABP = {typeid(inp_control)};

 dynamic::modeling::Ports oports_ABP = {typeid(outp_ack),typeid(outp_pack)};

 dynamic::modeling::Models submodels_ABP = {sender1, receiver1, NETWORK};

 dynamic::modeling::EICs eics_ABP = {

 cadmium::dynamic::translate::make_EIC<inp_control, Sender_defs::controlIn>

("sender1")

 };

 dynamic::modeling::EOCs eocs_ABP = {

Cadmium
A tool for DEVS Modeling and Simulation. User’s Guide

Page 77 of 85

dynamic::translate::make_EOC<Sender_defs::packetSentOut,outp_pack>("sender1"),

dynamic::translate::make_EOC<Sender_defs::ackReceivedOut,outp_ack>("sender1")

 };

 dynamic::modeling::ICs ics_ABP = {

 dynamic::translate::make_IC<Sender_defs::dataOut, inp_1>

("sender1","Network"),

 dynamic::translate::make_IC<outp_2, Sender_defs::ackIn>

("Network","sender1"),

 dynamic::translate::make_IC<Receiver_defs::out, inp_2>

("receiver1","Network"),

 dynamic::translate::make_IC<outp_1, Receiver_defs::in>

("Network","receiver1")

 };

 shared_ptr<dynamic::modeling::coupled<TIME>> ABP;

 ABP = make_shared<dynamic::modeling::coupled<TIME>>(

 "ABP", submodels_ABP, iports_ABP, oports_ABP, eics_ABP, eocs_ABP, ics_ABP

);

 /*******TOP COUPLED MODEL********/

 dynamic::modeling::Ports iports_TOP = {};

 dynamic::modeling::Ports oports_TOP = {typeid(outp_pack),typeid(outp_ack)};

 dynamic::modeling::Models submodels_TOP = {input_reader, ABP};

 dynamic::modeling::EICs eics_TOP = {};

 dynamic::modeling::EOCs eocs_TOP = {

 dynamic::translate::make_EOC<outp_pack,outp_pack>("ABP"),

 dynamic::translate::make_EOC<outp_ack,outp_ack>("ABP")

 };

 dynamic::modeling::ICs ics_TOP = {

 dynamic::translate::make_IC<iestream_input_defs<int>::out, inp_control>

("input_reader","ABP")

 };

 shared_ptr<cadmium::dynamic::modeling::coupled<TIME>> TOP;

 TOP = make_shared<dynamic::modeling::coupled<TIME>>(

 "TOP", submodels_TOP, iports_TOP, oports_TOP, eics_TOP, eocs_TOP, ics_TOP

);

 /*************** Loggers *******************/

 static ofstream

out_messages("../simulation_results/ABP_output_messages.txt");

 struct oss_sink_messages{

 static ostream& sink(){

 return out_messages;

 }

 };

 static ofstream out_state("../simulation_results/ABP_output_state.txt");

 struct oss_sink_state{

 static ostream& sink(){

 return out_state;

 }

 };

 using state=logger::logger<logger::logger_state,

dynamic::logger::formatter<TIME>, oss_sink_state>;

Cadmium
A tool for DEVS Modeling and Simulation. User’s Guide

Page 78 of 85

 using log_messages=logger::logger<logger::logger_messages,

dynamic::logger::formatter<TIME>, oss_sink_messages>;

 using global_time_mes=logger::logger<logger::logger_global_time,

dynamic::logger::formatter<TIME>, oss_sink_messages>;

 using global_time_sta=logger::logger<logger::logger_global_time,

dynamic::logger::formatter<TIME>, oss_sink_state>;

 using logger_top=logger::multilogger<state, log_messages, global_time_mes,

global_time_sta>;

 /************** Runner call ************************/

 dynamic::engine::runner<NDTime, logger_top> r(TOP, {0});

 r.run_until_passivate();

 return 0;

}

Cadmium
A tool for DEVS Modeling and Simulation. User’s Guide

Page 79 of 85

Appendix E

Message log for the ABP simulation

00:00:00:000

[iestream_input_defs<int>::out: {}] generated by model input_reader

00:00:10:000

[iestream_input_defs<int>::out: {5}] generated by model input_reader

00:00:20:000

[Sender_defs::packetSentOut: {1}, Sender_defs::ackReceivedOut: {},

Sender_defs::dataOut: {1 0}] generated by model sender1

00:00:23:000

[Subnet_defs::out: {1 0}] generated by model subnet1

00:00:33:000

[Receiver_defs::out: {0 0}] generated by model receiver1

00:00:36:000

[Subnet_defs::out: {0 0}] generated by model subnet2

00:00:36:000

[Sender_defs::packetSentOut: {}, Sender_defs::ackReceivedOut: {0},

Sender_defs::dataOut: {}] generated by model sender1

00:00:46:000

[Sender_defs::packetSentOut: {2}, Sender_defs::ackReceivedOut: {},

Sender_defs::dataOut: {2 1}] generated by model sender1

00:00:49:000

[Subnet_defs::out: {2 1}] generated by model subnet1

00:00:59:000

[Receiver_defs::out: {0 1}] generated by model receiver1

00:01:02:000

[Subnet_defs::out: {0 1}] generated by model subnet2

00:01:02:000

[Sender_defs::packetSentOut: {}, Sender_defs::ackReceivedOut: {1},

Sender_defs::dataOut: {}] generated by model sender1

00:01:12:000

[Sender_defs::packetSentOut: {3}, Sender_defs::ackReceivedOut: {},

Sender_defs::dataOut: {3 0}] generated by model sender1

00:01:15:000

[Subnet_defs::out: {3 0}] generated by model subnet1

00:01:25:000

[Receiver_defs::out: {0 0}] generated by model receiver1

00:01:28:000

[Subnet_defs::out: {0 0}] generated by model subnet2

00:01:28:000

[Sender_defs::packetSentOut: {}, Sender_defs::ackReceivedOut: {0},

Sender_defs::dataOut: {}] generated by model sender1

00:01:38:000

[Sender_defs::packetSentOut: {4}, Sender_defs::ackReceivedOut: {},

Sender_defs::dataOut: {4 1}] generated by model sender1

00:01:41:000

[Subnet_defs::out: {4 1}] generated by model subnet1

00:01:51:000

[Receiver_defs::out: {0 1}] generated by model receiver1

00:01:54:000

[Subnet_defs::out: {0 1}] generated by model subnet2

00:01:54:000

[Sender_defs::packetSentOut: {}, Sender_defs::ackReceivedOut: {1},

Sender_defs::dataOut: {}] generated by model sender1

00:02:04:000

Cadmium
A tool for DEVS Modeling and Simulation. User’s Guide

Page 80 of 85

[Sender_defs::packetSentOut: {5}, Sender_defs::ackReceivedOut: {},

Sender_defs::dataOut: {5 0}] generated by model sender1

00:02:07:000

[Subnet_defs::out: {5 0}] generated by model subnet1

00:02:17:000

[Receiver_defs::out: {0 0}] generated by model receiver1

00:02:20:000

[Subnet_defs::out: {0 0}] generated by model subnet2

00:02:20:000

[Sender_defs::packetSentOut: {}, Sender_defs::ackReceivedOut: {0},

Sender_defs::dataOut: {}] generated by model sender1

00:15:00:000

[iestream_input_defs<int>::out: {3}] generated by model input_reader

00:15:10:000

[Sender_defs::packetSentOut: {1}, Sender_defs::ackReceivedOut: {},

Sender_defs::dataOut: {1 0}] generated by model sender1

00:15:13:000

[Subnet_defs::out: {1 0}] generated by model subnet1

00:15:23:000

[Receiver_defs::out: {0 0}] generated by model receiver1

00:15:26:000

[Subnet_defs::out: {0 0}] generated by model subnet2

00:15:26:000

[Sender_defs::packetSentOut: {}, Sender_defs::ackReceivedOut: {0},

Sender_defs::dataOut: {}] generated by model sender1

00:15:36:000

[Sender_defs::packetSentOut: {2}, Sender_defs::ackReceivedOut: {},

Sender_defs::dataOut: {2 1}] generated by model sender1

00:15:39:000

[Subnet_defs::out: {2 1}] generated by model subnet1

00:15:49:000

[Receiver_defs::out: {0 1}] generated by model receiver1

00:15:52:000

[Subnet_defs::out: {0 1}] generated by model subnet2

00:15:52:000

[Sender_defs::packetSentOut: {}, Sender_defs::ackReceivedOut: {1},

Sender_defs::dataOut: {}] generated by model sender1

00:16:02:000

[Sender_defs::packetSentOut: {3}, Sender_defs::ackReceivedOut: {},

Sender_defs::dataOut: {3 0}] generated by model sender1

00:16:22:000

[Sender_defs::packetSentOut: {}, Sender_defs::ackReceivedOut: {},

Sender_defs::dataOut: {}] generated by model sender1

00:16:32:000

[Sender_defs::packetSentOut: {3}, Sender_defs::ackReceivedOut: {},

Sender_defs::dataOut: {3 0}] generated by model sender1

00:16:35:000

[Subnet_defs::out: {3 0}] generated by model subnet1

00:16:45:000

[Receiver_defs::out: {0 0}] generated by model receiver1

00:16:48:000

[Subnet_defs::out: {0 0}] generated by model subnet2

00:16:48:000

[Sender_defs::packetSentOut: {}, Sender_defs::ackReceivedOut: {0},

Sender_defs::dataOut: {}] generated by model sender1

Cadmium
A tool for DEVS Modeling and Simulation. User’s Guide

Page 81 of 85

Appendix F

State log for the ABP simulation

00:00:00:000

State for model input_reader is next time: 00:00:00:000

State for model sender1 is packetNum: 0 & totalPacketNum: 0

State for model receiver1 is ackNum: 0

State for model subnet1 is index: 0 & transmitting: 0

State for model subnet2 is index: 0 & transmitting: 0

00:00:00:000

State for model input_reader is next time: 00:00:10:000

State for model sender1 is packetNum: 0 & totalPacketNum: 0

State for model receiver1 is ackNum: 0

State for model subnet1 is index: 0 & transmitting: 0

State for model subnet2 is index: 0 & transmitting: 0

00:00:10:000

State for model input_reader is next time: 00:14:50:000

State for model sender1 is packetNum: 1 & totalPacketNum: 5

State for model receiver1 is ackNum: 0

State for model subnet1 is index: 0 & transmitting: 0

State for model subnet2 is index: 0 & transmitting: 0

00:00:20:000

State for model input_reader is next time: 00:14:50:000

State for model sender1 is packetNum: 1 & totalPacketNum: 5

State for model receiver1 is ackNum: 0

State for model subnet1 is index: 1 & transmitting: 1

State for model subnet2 is index: 0 & transmitting: 0

00:00:23:000

State for model input_reader is next time: 00:14:50:000

State for model sender1 is packetNum: 1 & totalPacketNum: 5

State for model receiver1 is ackNum: 0

State for model subnet1 is index: 1 & transmitting: 0

State for model subnet2 is index: 0 & transmitting: 0

00:00:33:000

State for model input_reader is next time: 00:14:50:000

State for model sender1 is packetNum: 1 & totalPacketNum: 5

State for model receiver1 is ackNum: 0

State for model subnet1 is index: 1 & transmitting: 0

State for model subnet2 is index: 1 & transmitting: 1

00:00:36:000

State for model input_reader is next time: 00:14:50:000

State for model sender1 is packetNum: 1 & totalPacketNum: 5

State for model receiver1 is ackNum: 0

State for model subnet1 is index: 1 & transmitting: 0

State for model subnet2 is index: 1 & transmitting: 0

00:00:36:000

State for model input_reader is next time: 00:14:50:000

State for model sender1 is packetNum: 2 & totalPacketNum: 5

State for model receiver1 is ackNum: 0

State for model subnet1 is index: 1 & transmitting: 0

State for model subnet2 is index: 1 & transmitting: 0

00:00:46:000

State for model input_reader is next time: 00:14:50:000

Cadmium
A tool for DEVS Modeling and Simulation. User’s Guide

Page 82 of 85

State for model sender1 is packetNum: 2 & totalPacketNum: 5

State for model receiver1 is ackNum: 0

State for model subnet1 is index: 2 & transmitting: 1

State for model subnet2 is index: 1 & transmitting: 0

00:00:49:000

State for model input_reader is next time: 00:14:50:000

State for model sender1 is packetNum: 2 & totalPacketNum: 5

State for model receiver1 is ackNum: 1

State for model subnet1 is index: 2 & transmitting: 0

State for model subnet2 is index: 1 & transmitting: 0

00:00:59:000

State for model input_reader is next time: 00:14:50:000

State for model sender1 is packetNum: 2 & totalPacketNum: 5

State for model receiver1 is ackNum: 1

State for model subnet1 is index: 2 & transmitting: 0

State for model subnet2 is index: 2 & transmitting: 1

00:01:02:000

State for model input_reader is next time: 00:14:50:000

State for model sender1 is packetNum: 2 & totalPacketNum: 5

State for model receiver1 is ackNum: 1

State for model subnet1 is index: 2 & transmitting: 0

State for model subnet2 is index: 2 & transmitting: 0

00:01:02:000

State for model input_reader is next time: 00:14:50:000

State for model sender1 is packetNum: 3 & totalPacketNum: 5

State for model receiver1 is ackNum: 1

State for model subnet1 is index: 2 & transmitting: 0

State for model subnet2 is index: 2 & transmitting: 0

00:01:12:000

State for model input_reader is next time: 00:14:50:000

State for model sender1 is packetNum: 3 & totalPacketNum: 5

State for model receiver1 is ackNum: 1

State for model subnet1 is index: 3 & transmitting: 1

State for model subnet2 is index: 2 & transmitting: 0

00:01:15:000

State for model input_reader is next time: 00:14:50:000

State for model sender1 is packetNum: 3 & totalPacketNum: 5

State for model receiver1 is ackNum: 0

State for model subnet1 is index: 3 & transmitting: 0

State for model subnet2 is index: 2 & transmitting: 0

00:01:25:000

State for model input_reader is next time: 00:14:50:000

State for model sender1 is packetNum: 3 & totalPacketNum: 5

State for model receiver1 is ackNum: 0

State for model subnet1 is index: 3 & transmitting: 0

State for model subnet2 is index: 3 & transmitting: 1

00:01:28:000

State for model input_reader is next time: 00:14:50:000

State for model sender1 is packetNum: 3 & totalPacketNum: 5

State for model receiver1 is ackNum: 0

State for model subnet1 is index: 3 & transmitting: 0

State for model subnet2 is index: 3 & transmitting: 0

00:01:28:000

State for model input_reader is next time: 00:14:50:000

State for model sender1 is packetNum: 4 & totalPacketNum: 5

State for model receiver1 is ackNum: 0

State for model subnet1 is index: 3 & transmitting: 0

Cadmium
A tool for DEVS Modeling and Simulation. User’s Guide

Page 83 of 85

State for model subnet2 is index: 3 & transmitting: 0

00:01:38:000

State for model input_reader is next time: 00:14:50:000

State for model sender1 is packetNum: 4 & totalPacketNum: 5

State for model receiver1 is ackNum: 0

State for model subnet1 is index: 4 & transmitting: 1

State for model subnet2 is index: 3 & transmitting: 0

00:01:41:000

State for model input_reader is next time: 00:14:50:000

State for model sender1 is packetNum: 4 & totalPacketNum: 5

State for model receiver1 is ackNum: 1

State for model subnet1 is index: 4 & transmitting: 0

State for model subnet2 is index: 3 & transmitting: 0

00:01:51:000

State for model input_reader is next time: 00:14:50:000

State for model sender1 is packetNum: 4 & totalPacketNum: 5

State for model receiver1 is ackNum: 1

State for model subnet1 is index: 4 & transmitting: 0

State for model subnet2 is index: 4 & transmitting: 1

00:01:54:000

State for model input_reader is next time: 00:14:50:000

State for model sender1 is packetNum: 4 & totalPacketNum: 5

State for model receiver1 is ackNum: 1

State for model subnet1 is index: 4 & transmitting: 0

State for model subnet2 is index: 4 & transmitting: 0

00:01:54:000

State for model input_reader is next time: 00:14:50:000

State for model sender1 is packetNum: 5 & totalPacketNum: 5

State for model receiver1 is ackNum: 1

State for model subnet1 is index: 4 & transmitting: 0

State for model subnet2 is index: 4 & transmitting: 0

00:02:04:000

State for model input_reader is next time: 00:14:50:000

State for model sender1 is packetNum: 5 & totalPacketNum: 5

State for model receiver1 is ackNum: 1

State for model subnet1 is index: 5 & transmitting: 1

State for model subnet2 is index: 4 & transmitting: 0

00:02:07:000

State for model input_reader is next time: 00:14:50:000

State for model sender1 is packetNum: 5 & totalPacketNum: 5

State for model receiver1 is ackNum: 0

State for model subnet1 is index: 5 & transmitting: 0

State for model subnet2 is index: 4 & transmitting: 0

00:02:17:000

State for model input_reader is next time: 00:14:50:000

State for model sender1 is packetNum: 5 & totalPacketNum: 5

State for model receiver1 is ackNum: 0

State for model subnet1 is index: 5 & transmitting: 0

State for model subnet2 is index: 5 & transmitting: 1

00:02:20:000

State for model input_reader is next time: 00:14:50:000

State for model sender1 is packetNum: 5 & totalPacketNum: 5

State for model receiver1 is ackNum: 0

State for model subnet1 is index: 5 & transmitting: 0

State for model subnet2 is index: 5 & transmitting: 0

00:02:20:000

State for model input_reader is next time: 00:14:50:000

Cadmium
A tool for DEVS Modeling and Simulation. User’s Guide

Page 84 of 85

State for model sender1 is packetNum: 5 & totalPacketNum: 5

State for model receiver1 is ackNum: 0

State for model subnet1 is index: 5 & transmitting: 0

State for model subnet2 is index: 5 & transmitting: 0

00:15:00:000

State for model input_reader is next time: inf

State for model sender1 is packetNum: 1 & totalPacketNum: 3

State for model receiver1 is ackNum: 0

State for model subnet1 is index: 5 & transmitting: 0

State for model subnet2 is index: 5 & transmitting: 0

00:15:10:000

State for model input_reader is next time: inf

State for model sender1 is packetNum: 1 & totalPacketNum: 3

State for model receiver1 is ackNum: 0

State for model subnet1 is index: 6 & transmitting: 1

State for model subnet2 is index: 5 & transmitting: 0

00:15:13:000

State for model input_reader is next time: inf

State for model sender1 is packetNum: 1 & totalPacketNum: 3

State for model receiver1 is ackNum: 0

State for model subnet1 is index: 6 & transmitting: 0

State for model subnet2 is index: 5 & transmitting: 0

00:15:23:000

State for model input_reader is next time: inf

State for model sender1 is packetNum: 1 & totalPacketNum: 3

State for model receiver1 is ackNum: 0

State for model subnet1 is index: 6 & transmitting: 0

State for model subnet2 is index: 6 & transmitting: 1

00:15:26:000

State for model input_reader is next time: inf

State for model sender1 is packetNum: 1 & totalPacketNum: 3

State for model receiver1 is ackNum: 0

State for model subnet1 is index: 6 & transmitting: 0

State for model subnet2 is index: 6 & transmitting: 0

00:15:26:000

State for model input_reader is next time: inf

State for model sender1 is packetNum: 2 & totalPacketNum: 3

State for model receiver1 is ackNum: 0

State for model subnet1 is index: 6 & transmitting: 0

State for model subnet2 is index: 6 & transmitting: 0

00:15:36:000

State for model input_reader is next time: inf

State for model sender1 is packetNum: 2 & totalPacketNum: 3

State for model receiver1 is ackNum: 0

State for model subnet1 is index: 7 & transmitting: 1

State for model subnet2 is index: 6 & transmitting: 0

00:15:39:000

State for model input_reader is next time: inf

State for model sender1 is packetNum: 2 & totalPacketNum: 3

State for model receiver1 is ackNum: 1

State for model subnet1 is index: 7 & transmitting: 0

State for model subnet2 is index: 6 & transmitting: 0

00:15:49:000

State for model input_reader is next time: inf

State for model sender1 is packetNum: 2 & totalPacketNum: 3

State for model receiver1 is ackNum: 1

State for model subnet1 is index: 7 & transmitting: 0

Cadmium
A tool for DEVS Modeling and Simulation. User’s Guide

Page 85 of 85

State for model subnet2 is index: 7 & transmitting: 1

00:15:52:000

State for model input_reader is next time: inf

State for model sender1 is packetNum: 2 & totalPacketNum: 3

State for model receiver1 is ackNum: 1

State for model subnet1 is index: 7 & transmitting: 0

State for model subnet2 is index: 7 & transmitting: 0

00:15:52:000

State for model input_reader is next time: inf

State for model sender1 is packetNum: 3 & totalPacketNum: 3

State for model receiver1 is ackNum: 1

State for model subnet1 is index: 7 & transmitting: 0

State for model subnet2 is index: 7 & transmitting: 0

00:16:02:000

State for model input_reader is next time: inf

State for model sender1 is packetNum: 3 & totalPacketNum: 3

State for model receiver1 is ackNum: 1

State for model subnet1 is index: 8 & transmitting: 0

State for model subnet2 is index: 7 & transmitting: 0

00:16:22:000

State for model input_reader is next time: inf

State for model sender1 is packetNum: 3 & totalPacketNum: 3

State for model receiver1 is ackNum: 1

State for model subnet1 is index: 8 & transmitting: 0

State for model subnet2 is index: 7 & transmitting: 0

00:16:32:000

State for model input_reader is next time: inf

State for model sender1 is packetNum: 3 & totalPacketNum: 3

State for model receiver1 is ackNum: 1

State for model subnet1 is index: 9 & transmitting: 1

State for model subnet2 is index: 7 & transmitting: 0

00:16:35:000

State for model input_reader is next time: inf

State for model sender1 is packetNum: 3 & totalPacketNum: 3

State for model receiver1 is ackNum: 0

State for model subnet1 is index: 9 & transmitting: 0

State for model subnet2 is index: 7 & transmitting: 0

00:16:45:000

State for model input_reader is next time: inf

State for model sender1 is packetNum: 3 & totalPacketNum: 3

State for model receiver1 is ackNum: 0

State for model subnet1 is index: 9 & transmitting: 0

State for model subnet2 is index: 8 & transmitting: 1

00:16:48:000

State for model input_reader is next time: inf

State for model sender1 is packetNum: 3 & totalPacketNum: 3

State for model receiver1 is ackNum: 0

State for model subnet1 is index: 9 & transmitting: 0

State for model subnet2 is index: 8 & transmitting: 0

00:16:48:000

State for model input_reader is next time: inf

State for model sender1 is packetNum: 3 & totalPacketNum: 3

State for model receiver1 is ackNum: 0

State for model subnet1 is index: 9 & transmitting: 0

State for model subnet2 is index: 8 & transmitting: 0

