

Shaping the future of automotive

- Connecting vehicles to everything
- Transforming the in-vehicle experience
- Paving the road to autonomous driving

Paving the road to tomorrow's autonomous vehicles

Offering essential technologies for the connected car platform

Autonomous car

Power optimized processing for the vehicle

Fusion of information from multiple sensors/sources

3D mapping and

precise positioning

Unified connectivity

with C-V2X

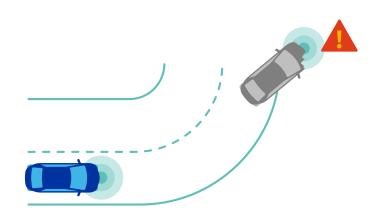
5G

On-board intelligence

Continuous V2X technology evolution required

And careful spectrum planning to support this evolution

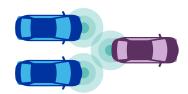
Evolution to 5G, while maintaining backward compatibility


Enhanced safety
C-V2X R14/15

Enhanced range and reliability

Basic safety 802.11p or C-V2X R14

Established foundation for V2X


Advanced safety
C-V2X R16 (building upon R14)

Higher throughput

Higher reliability

Wideband ranging and positioning

Lower latency

Evolving C-V2X towards 5G for autonomous driving

D2D communications

Enhanced safety

driving

Autonomous

R12/13

C-V2X R14 (Ph. I) C-V2X R15 (Ph. II)

C-V2X R16 5G NR support (Ph. III) (Advanced safety applications)

Established foundation for basic D2D comm.

Enhanced communication's range and reliability for V2X safety

Ultra-reliable, low latency, high throughput communication for autonomous driving

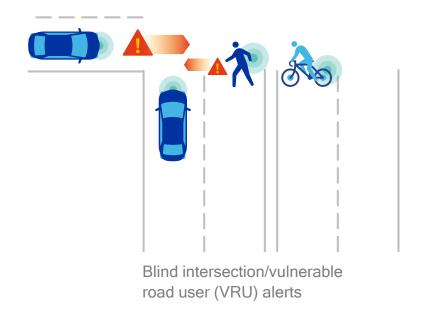
Network independent	No	Yes	Yes
Communications ¹	Broadcast only	Broadcast only	Broadcast + Unicast/Multicast
High speed support	No	Yes	Yes
High density support	No	Yes	Yes
Throughput		High throughput for enhanced safety	Ultra-high throughput
Latency		Low latency for enhanced safety applications	Ultra-low latency
Reliability		Reliability for enhanced safety application	Ultra-high reliability
Positioning	No	Share positioning information	Wideband ranging and positioning

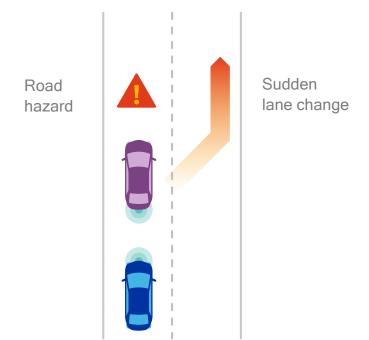
1. PHY/MAC communications; R16 is still under development

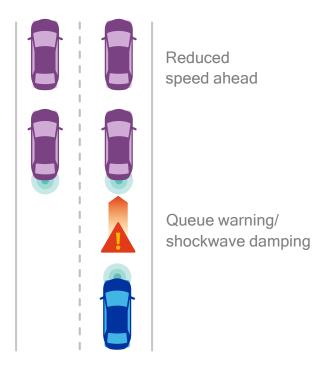
C-V2X is a critical component for safer autonomous driving

Communicating intent and sensor data even in challenging real world conditions

Non line-of-sight sensing


Provides 360° NLOS awareness, works at night and in bad weather conditions


Conveying intent


Shares intent, sensor data, and path planning info for higher level of predictability

Situational awareness

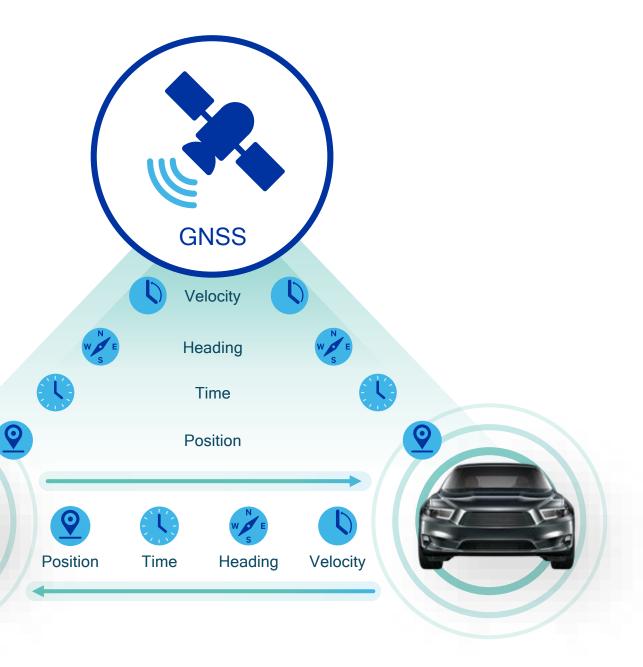
Offers increased electronic horizon to support soft safety alerts and graduated warning

High precision positioning is key for V2X operation

Precise positioning

Use GNSS along with precise positioning services to get <1 meter accuracy

Velocity


Accurate speed derived directly from GNSS positioning calculation

Accurate time info

Using GNSS as a primary source of time synchronization

Heading

Accurate heading derived directly from GNSS positioning calculation

Enhancing positioning on multiple fronts

More accurate

Sub-meter level accuracy (e.g. lanelevel accuracy) with high integrity for V2X and autonomous driving applications

Anywhere, anytime

Combined precise GNSS positioning with sensor inputs to provide accurate positioning everywhere, including dense urban environments, parking garages and multi-level interchanges

More frequently updated

Updated very frequently to provide fresh, accurate positioning information (e.g. vehicles send their most recent location at least every 100ms for V2X applications)

Evolving positioning technologies for V2X and autonomy

To offer more precise positioning, anywhere, anytime

Positioning

Precise positioning <2m

Ultra-precise positioning <<1m

Navigation / emergency service / regulatory

service / regulatory

Satellite-based navigation

More satellites for improved accuracy and availability

Extend accuracy and availability in more places w/ better sensors

V2X enhanced safety

More precise positioning at higher update rates

Autonomous driving

Ultra-precise positioning anywhere, anytime for autonomy

- GPS
- 2D Dead Reckoning (DR) using single axis sensors
- Glonass
- BDS
- Galileo
- QZSS
- Satellite-based augmentation system
- (SBAS)

- 6DOF MEMS sensors
- 3D Dead Reckoning (3D DR)

- Higher frequency => 10Hz
- L1 Correction services
- Camera VIO

- Multi-frequency GNSS
 - RF and Baseband
 - Software
 - Correction Services
- 5G NR V2X

On-board intelligence: C-V2X complements other sensors

Providing higher level of predictability and autonomy

Radar

Bad weather conditions Long range Low light situations

Camera

Interprets objects/signs
Practical cost and FOV

Lidar

Depth perception Medium range

Ultrasonic

Low cost Short range

ADAS Advanced Driver Assistance Systems

Brain of the car to help automate the driving process by using:

Immense compute resources
Sensor fusion
Machine learning
Path planning

V2X wireless sensor

See-through, 360° non-line of sight sensing, extended range sensing

3D HD maps

HD live map update Sub-meter level accuracy of landmarks

Precise positioning

GNSS positioning
Dead reckoning
VIO

C-V2X Release 14 enhances range and reliability

Paving the path to autonomous driving

C-V2X offers key advantages in multiple dimensions

Enhanced range and reliability

Reuse of DSRC/C-ITS higher layers

High density support

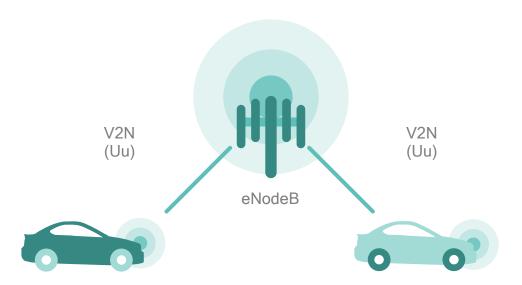
High speed support

Self managed for reduced cost and complexity

Leverage of cellular ecosystem

Synergistic with telematics platform

Strong evolution path towards 5G

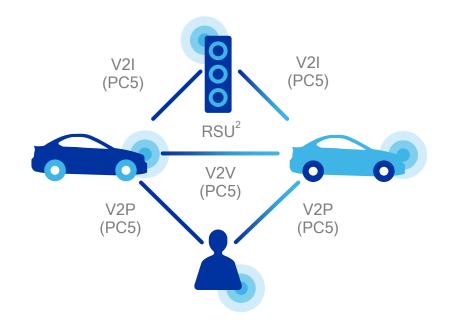

C-V2X defines two complementary transmission modes

Network communications

V2N on "Uu" interface operates in traditional mobile broadband licensed spectrum

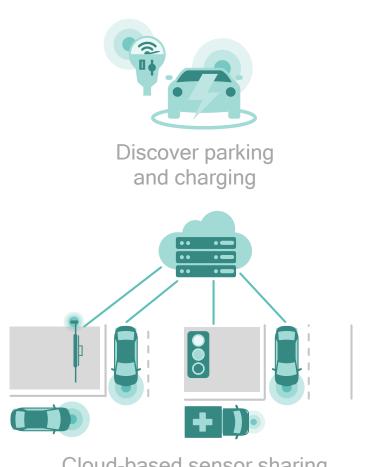
Uu interface

e.g. accident 2 kilometer ahead

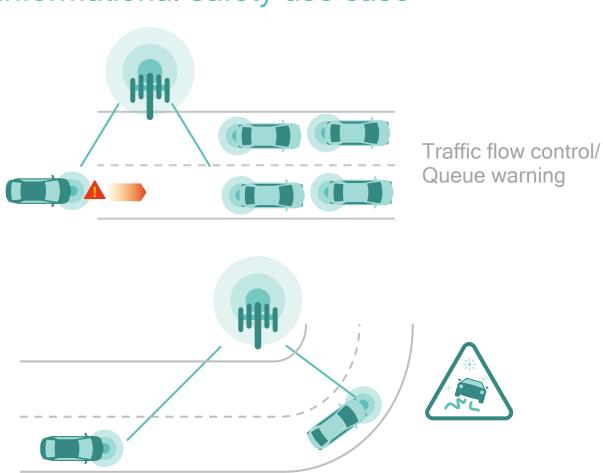


Direct communications

V2V, V2I, and V2P on "PC5" interface¹, operating in ITS bands (e.g. ITS 5.9 GHz) independent of cellular network

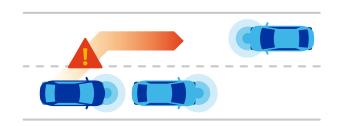

PC5 interface

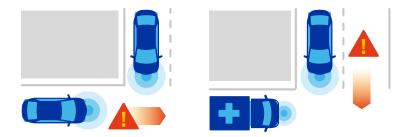
e.g. location, speed



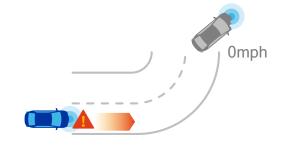
Network communications for latency tolerant use cases

Suitable for telematics, infotainment and informational safety use case



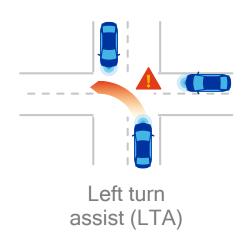

Road hazard warning 1 km ahead

Direct communications for active safety use cases


Low latency communication with enhanced range, reliability, and NLOS performance

Do not pass warning (DNPW)

Intersection movement assist (IMA) at a blind intersection



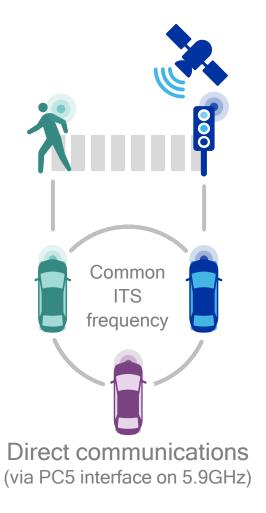
Blind curve/ Local hazard warning

Vulnerable road user (VRU) alerts at a blind intersection

C-V2X can work without network assistance

V2V/V2I/V2P direct communications can be self managed

USIM-less operation


C-V2X direct communications doesn't require USIM

Autonomous resource selection

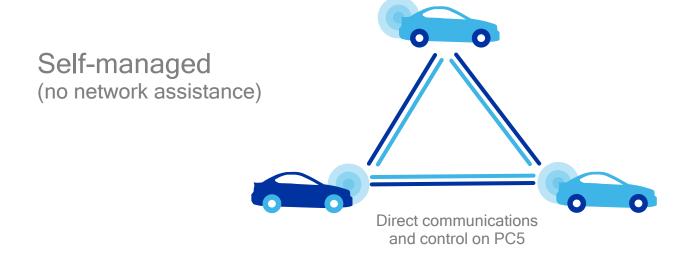
Distributed scheduling, where the car selects resources from resource pools without network assistance

GNSS time synchronization

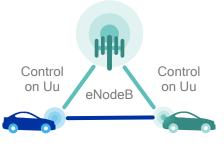
Besides positioning², C-V2X also uses GNSS for time synchronization without relying on cellular networks

Advantages of self-managed over network-assisted

Reduced cost


Doesn't use prime licensed spectrum for control, no additional network investment

Increased reliability


Doesn't rely on network coverage, doesn't suffer from service interruption during handover

Reduced complexity

Doesn't rely on coordination between operators for resource assignment, doesn't require subscription

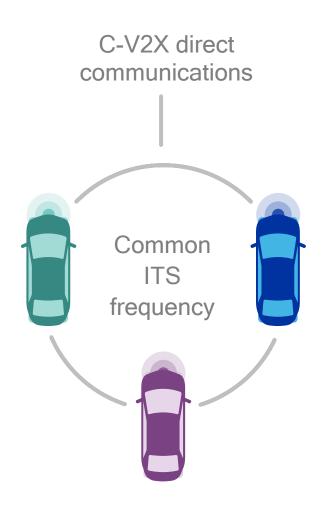
Network-assisted

Direct Communications on PC5

C-V2X is designed to work in ITS 5.9 GHz spectrum

For vehicles to talk to each other on harmonized, dedicated spectrum

3GPP support of ITS 5.9 GHz band


C-V2X support in ITS band was added in 3GPP Release 14

Harmonized spectrum for safety

C-V2X uses harmonized/common, dedicated spectrum for vehicles to talk to each other

Coexistence with 802.11p

C-V2X and 802.11p can co-exist by being placed on different channels in the ITS band

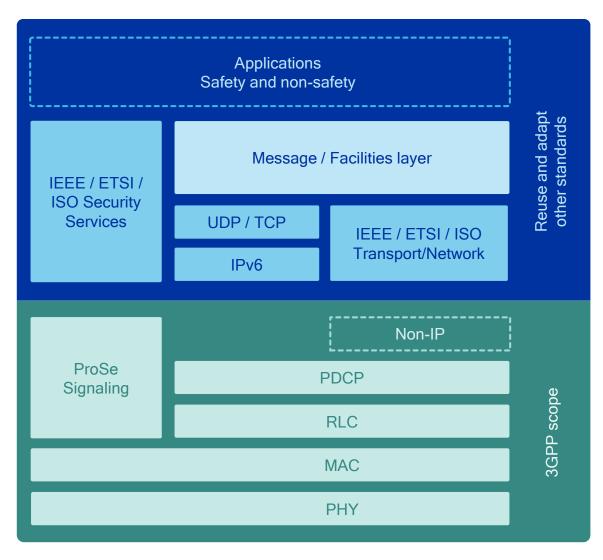
Fully leveraging ITS 5.9 GHz band for 5G V2X services

Supporting today's basic safety, and tomorrow's advanced use cases

Example 5.9 GHz

10MHz

Support today's safety use cases on small subset of the band (using 802.11p or C-V2X)



C-V2X Rel-15+ can operate in the same Rel-14 spectrum

70MHz

In addition to basic safety, support advanced safety services (e.g. higher bandwidth sensor sharing and wideband ranging/positioning)

C-V2X reuses upper layers defined by automotive industry

Reuse of DSRC/C-ITS established service and app layers

- Already defined by automotive and standards communities, e.g. ETSI, SAE
- Developing abstraction layer to interface with 3GPP lower layers (in conjunction with 5GAA)

Reuse of existing security and transport layers

Defined by ISO, ETSI, and IEEE 1609 family

Continuous enhancements to the radio/lower layers

Supports the ever-evolving V2X use cases

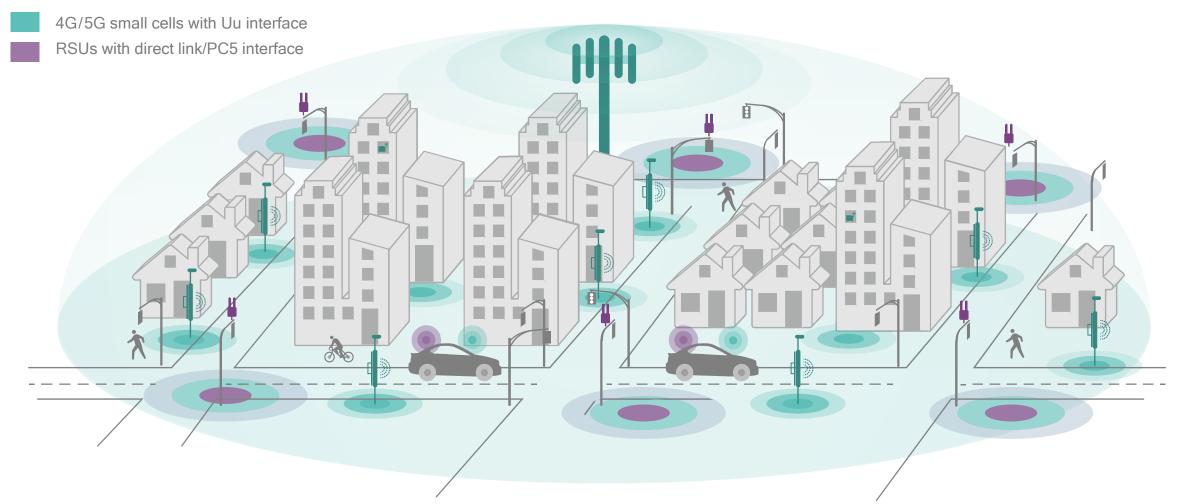
C-V2X reduces vehicle communications complexity and cost

Most optimal platform

Takes advantage of already planned embedded modem installation in vast majority of new vehicles

Cost efficient solution

Leverages mobile ecosystem and existing engineering know-how, resources and solutions


Strong evolution path

Keeps technology relevant to new use cases by avoiding one-off technology lifecycle obsolescence

C-V2X reduces cost of infrastructure deployment

Combined RSUs and 4G/5G small cell, benefiting from cellular network densification

C-V2X offers new business models and economic benefits

Leveraging existing, ubiquitous cellular networks and mobile ecosystem support

More integrated solution

C-V2X functionality can be integrated in vehicle's modem to enable most optimal platform

Reduced deployment cost

Combined RSU and eNodeB infrastructure synergies provide economic benefits

Mobile ecosystem expertise

Benefits from cellular player's extensive experience in deploying, managing, and maintaining complex communication systems

New services and business opportunities

Leverages unified C-V2X / telematics offerings and addresses new services for shared mobility and autonomous driving

C-V2X Performance Advantage

C-V2X Rel-14 has significantly better link budget than 802.11p1

Leading to longer range (~2X range)—or more reliable performance at the same range

Transmission time

Longer transmit time leads to better energy per bit

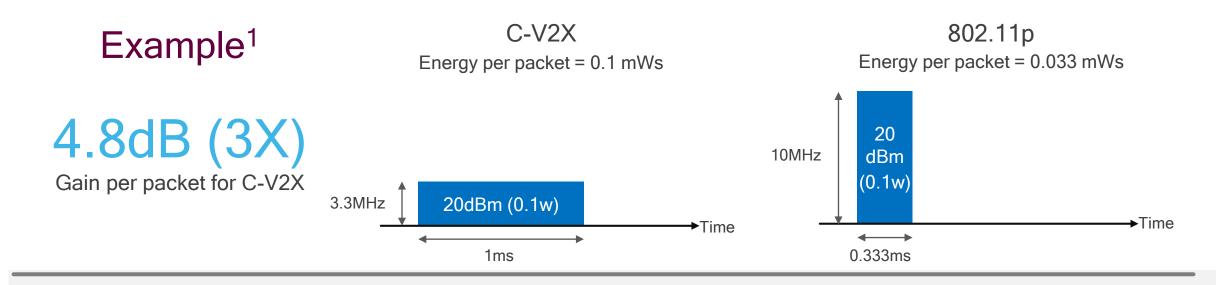
Waveform

SC-FDM has better transmission efficiency

Channel coding

Gains from turbo coding and retransmission

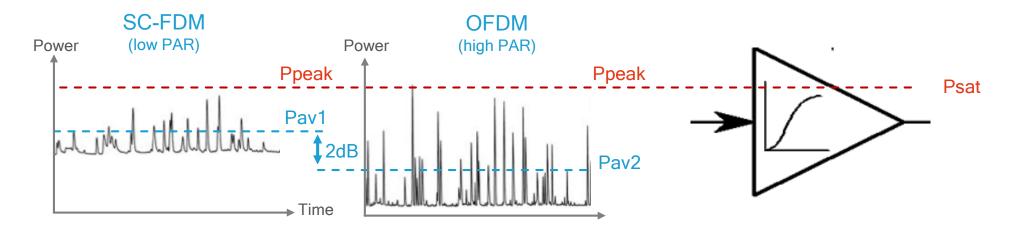
Energy per bit is accumulated over a longer period of time for C-V2X


SC-FDM allows for more transmit power than OFDM for the same power amplifier

Coding gain from turbo codes and HARQ retransmission lead to longer range

Longer transmission time: leads to link budget gain

Usage of FDM in C-V2X provides an advantage compared to TDM in 802.11p

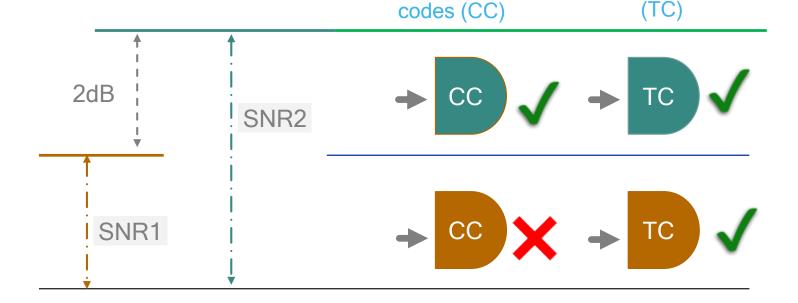

- C-V2X has longer transmission time for the same number of transmitted bits, leading to better energy per bit (as energy is accumulated over a longer period of time)
- FDM transmission has been adopted as an efficient mode of packet transmission in 4G cellular systems

^{1.} Assumptions: 190 bytes packet size, ½ rate coding for 802.11p, 0.444 rate coding for C-V2X, QPSK modulation used for both 802.11p and C-V2X,

SC-FDM Waveform: better transmission efficiency

Providing 2dB better transmission efficiency than OFDM, with the same PA¹

SC-FDM's higher average power due to its lower PAPR²

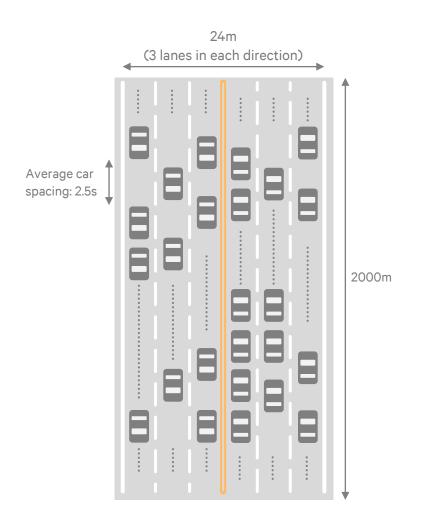

- SC-FDM groups resource blocks together in a way that reduces peak-to-average power ratio (PAPR), hence support driving power amplifier closer to saturation, leading to better transmit power efficiency
- Used for LTE uplink and 5G macro deployments, where transmit power efficiency is particularly important

¹ At 0.1% peak-to-average-ratio Complementary Cumulative Distribution Function (CCDF) operating point; 2. Power graphs used to illustrate the point and are not based on real data nor drawn to scale

Channel Coding: TC provides ~2dB coding gain over CC

Providing 2dB better transmission efficiency at the same PA

The required SNR for receiving a specific packet size with 1% block error rate is 2dB lower with TC than CC

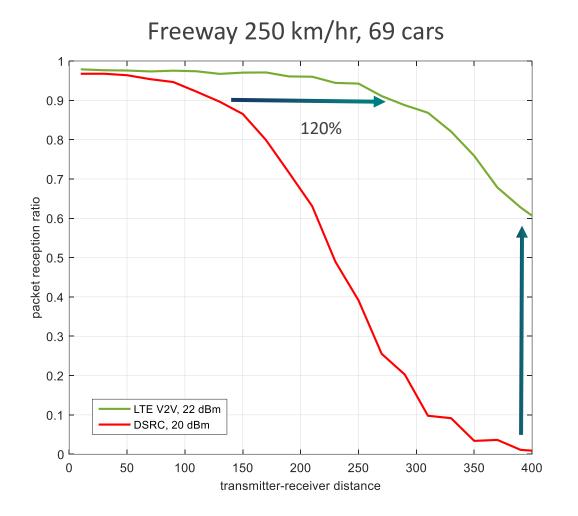


- C-V2X uses the more modern turbo codes (TC), while 802.11p uses K=7 convolutional codes (CC)
- TC used for Wi-Fi evolution (11.ac) and in 3G/4G to reduce bit error rate

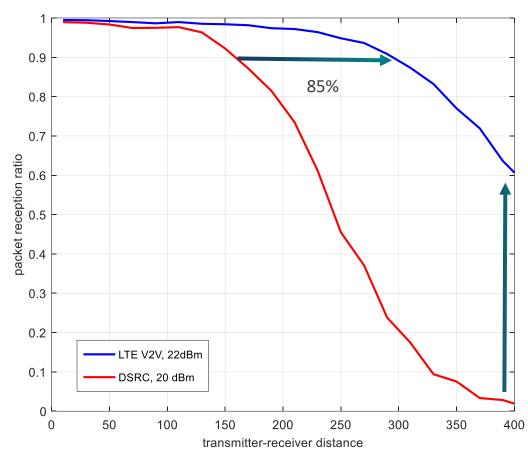
Turbo codes

Freeway scenarios: Simulation assumptions

Freeway drop is used to simulate high speed performance

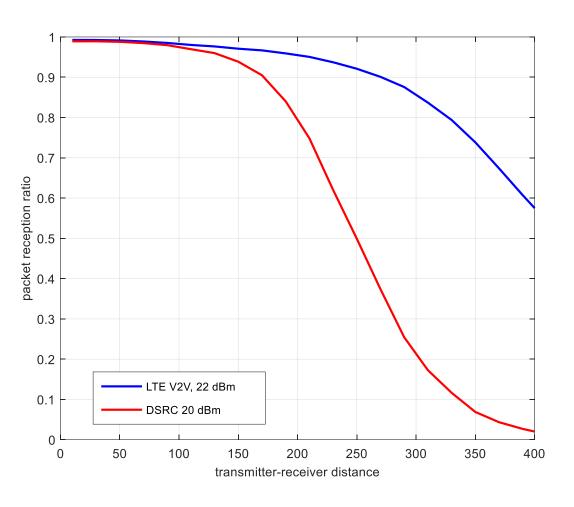

Simulation assumptions:

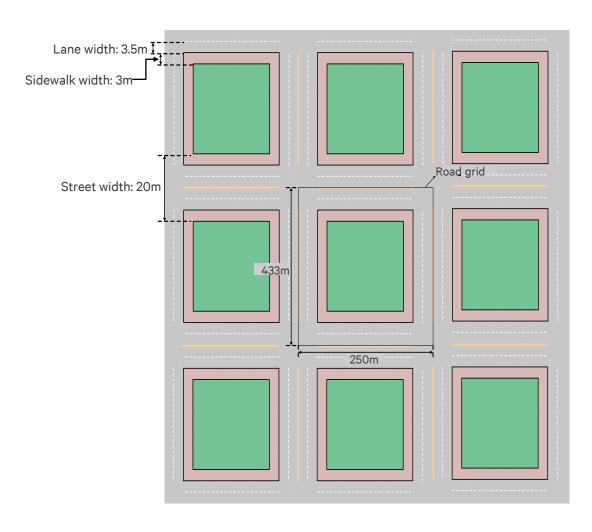
- 6 lanes for 4m each, 3 lanes in each direction
- Three speeds => 250 km/hr, 140 km/hr, 70 km/hr
- Cars dropped according to Poisson process, avg. car spacing is 2.5s 69, 123, 246 cars
- All cars are LOS
- Actual mobility simulated: correlated shadowing, independent fading
- Packet transmission periodicity:


140, 250 km/hr => 100ms; 70 km/hr => 200ms

Enhanced range and reliability in free way scenarios

~100% gain in distance at 0.9 PRR; @400m PRR changed from 0.02 to 0.6




Enhanced range and reliability: Free way 70 km/hr speed

~60% gain in distance at 0.9 PRR; @400m PRR changed from 0.02 to 0.58

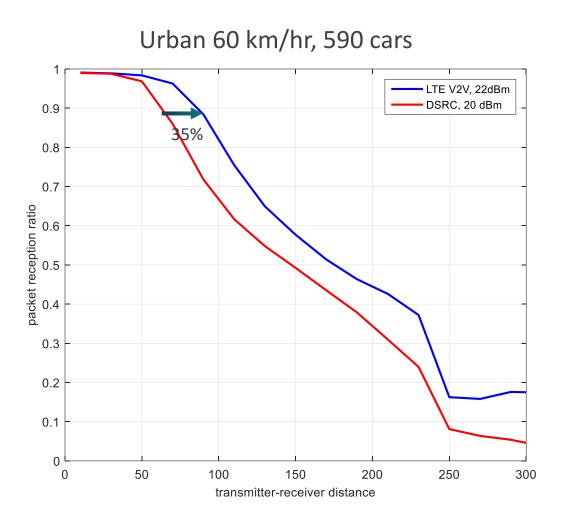
Urban Scenarios: Simulation assumptions

Urban drop is used to simulate high density drops

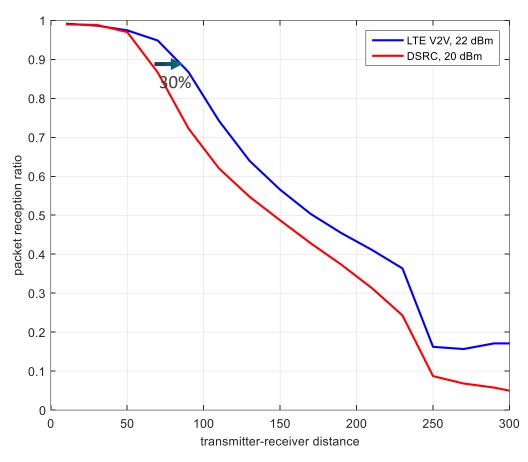
Simulation assumptions:

- 4 lanes for 3.5m each, 2 lanes in each direction
- Speeds: 15km/hr, 60 km/hr
- Cars dropped according to Poisson process, avg. car spacing is 2.5s

590, 2360 cars

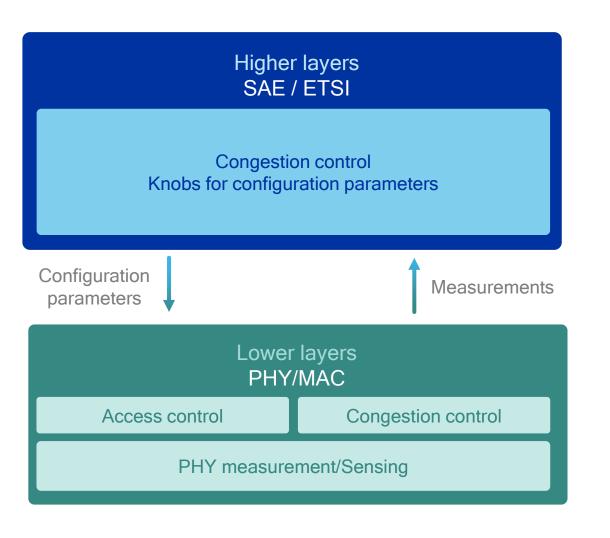

Packet transmission periodicity:

60 km/hr => 250ms; 15 km/hr => 1000ms


- LOS on same road, NLOS on cross roads
- Actual mobility simulated:
 - Correlated shadowing, independent fading
 - Turn left/right with probability 0.25
- Other parameters same as freeway drop

Enhanced range and reliability: Urban 60 km/hr, 15 km/hr

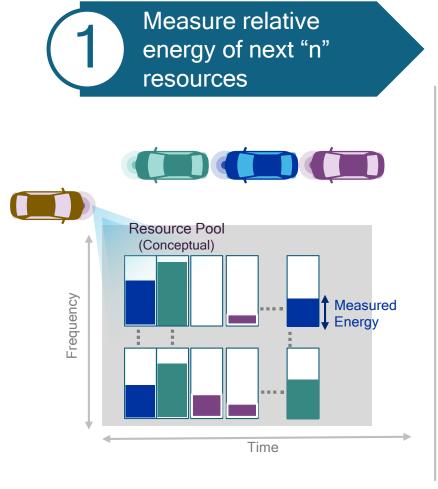
~ 30% gains at 0.9 PRR; Gains muted due to challenging pathloss model

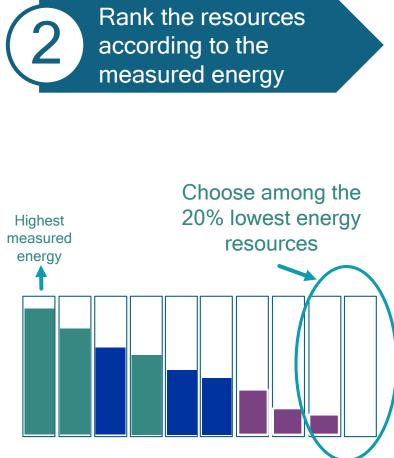


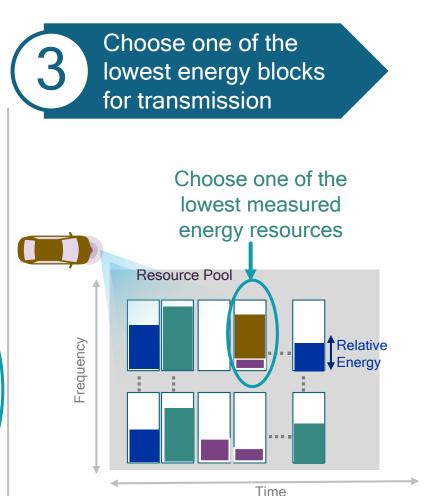
Urban 15 km/hr, 2360 cars

C-V2X is designed for high density vehicle deployments

Guaranteeing low latency access for safety critical messages even at high density


Leveraging higher layers to tune congestion control parameters


Enhanced performance with MAC/PHY congestion control


Deterministic access control and resource scheduling in PHY/MAC

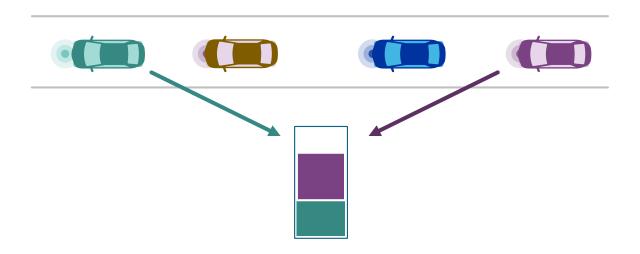
Deterministic access control and resource scheduling

Chooses blocks with lowest energy levels to meet latency requirements

C-V2X access control advantages over 802.11p

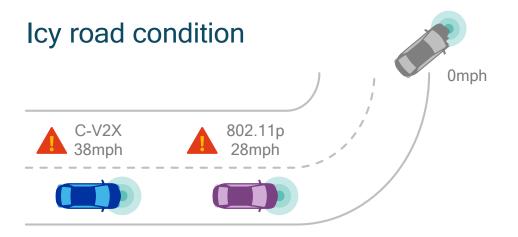
System keeps on scaling

Optimized resource scheduling

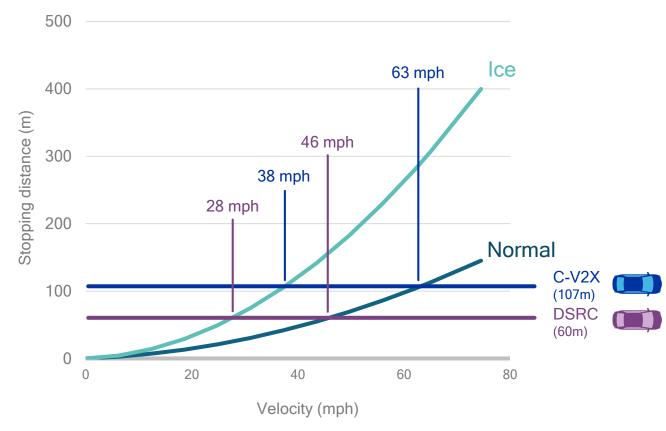

By choosing the lowest relative energy blocks

Does no get denied access

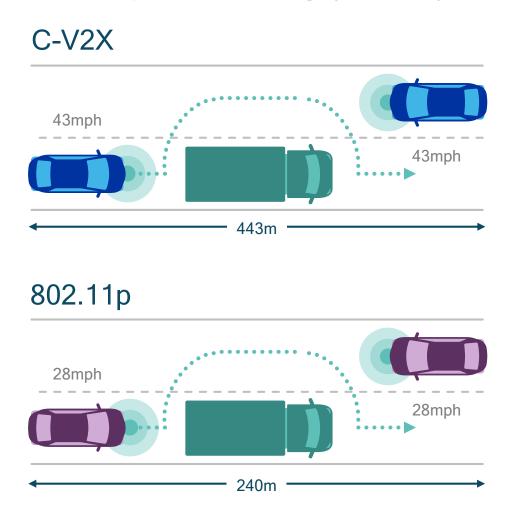
Two cars far apart from each other can use same resources


Designed to meet latency requirements

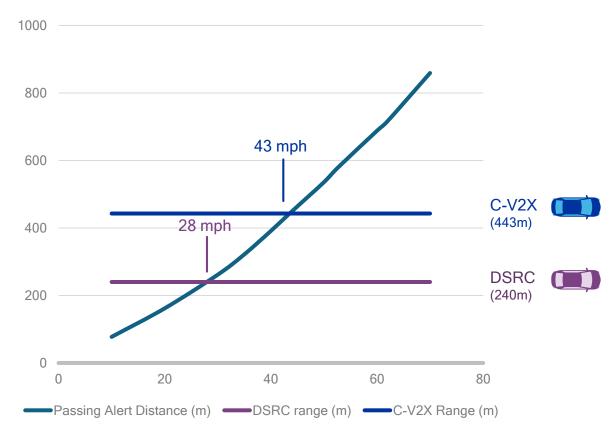
By scheduling and obtaining access to resources in timely manner


Improved reliability at higher vehicle speeds

Disabled vehicle after blind curve use case example



Stopping distance estimation¹ (Driver reaction time + braking distance)



Improved reliability at higher speeds and longer ranges

Do not pass warning (DNPW) use case example

Required passing alert distance (m) vs. speed (mph)¹

1. Calculations based on AASHTO "green book" 39

Comparison: Technology operation

		•	
Technology operation	802.11p	C-V2X Rel-14/15	C-V2X Rel-16 (expected design)
Specification completed	Completed	Rel-14 completed in 2016.	2019
		Rel-15 to be completed in	
		2018	
Support for low latency	✓	✓	✓
direct communications		(Rel-14 – 4ms)	(≤ 1ms)
Support for network	Limited	1	_
communications	(via APs only)	Y	Y
Can operate without	✓	✓	✓
network assistance			
Can operate in ITS 5.9	✓	✓	✓
GHz spectrum			
SIM-less operation	✓	✓	✓
Security and privacy on	✓	✓	✓
V2V/V2I/V2P	(as per IEEE WAVE and ETSI-	(as per IEEE WAVE and ETSI-	(as per IEEE WAVE and ETSI-ITS
	ITS security services)	ITS security services)	security services)
Security/Privacy on V2N	N/A	✓	✓
Coexistence in 5.9GHz	✓	✓	✓
	(Adjacent channel with 3GPP	(Adjacent channel with 11p;	(Adjacent channel with 11p; co-
	tech)	co-channel coexistence from	channel coexistence from R14
		R14 onwards)	onwards & WiFi)
Evolution path	×	✓	Compatible with Rel-14/15

Comparison: Radio design

Radio design	802.11p	C-V2X Rel-14/15	C-V2X Rel-16(expected design)
Synchronization	Asynchronous	Synchronous	Synchronous
Channel size	10/20Mhz	Rel-14 – 10/20Mhz Rel-15 – 10/20/Nx20 MHz ¹	10/20 MHz and wideband (e.g. 40/60/80/100/MHz
Resource multiplexing across vehicles	TDM only	TDM and FDM	TDM and FDM possible
Data channel coding	Convolutional	Turbo	LDPC
HARQ Retransmission	No	Rel-14/15 – yes Rel-15 – ultra-reliable communication possible ²	Yes, along with ultra-reliable communication
Waveform	OFDM	SC-FDM	Likely OFDMA but many options available
Resource Selection	CSMA-CA	Semi-persistent transmission with frequency domain listen-before-talk	Many options available
MIMO support	No support standardized	Rx diversity for 2 antennas mandatory Tx diversity for 2 antennas supported	Support up to 8 tx/rx antennas Mandatory support for 2tx/rx antennas Both diversity and spatial multiplexing supported
Modulation support	Up to 64QAM	Up to 64 QAM	Up to 256QAM

Comparison: Use cases and performance

Use Cases	802.11p	C-V2X Rel-14/15	C-V2X Rel-16(expected design)
Target Use Cases	Day 1 safety only	Day 1 safety & enhanced safety use cases	Advanced use cases to assist in autonomous driving including, ranging assisted positioning, high throughput sensor sharing & local 3D HD map updates
Performance			
High density support	Packet loss at high densities	Can guarantee no packet loss at high densities	✓ Can guarantee no packet loss at high densities
High mobility	✓	✓	✓
support	Up to relative speeds of 500 km/hr with advanced receiver implementation	Up to relative speed of 500 km/hr as a minimum requirement.	Up to relative speed of 500 km/hr as a minimum requirement
Transmission range @ 90% error, 280 km/hr relative speed	Up to ~225m	-Over 450m using direct mode -Very large via cellular infrastructure	-Over 450m using direct mode -Very large via cellular infrastructure
Typical transmission frequency for periodic traffic	Once every 100msec (50ms is also possible)	Once every 100ms (20ms is also possible)	Supports packet periodicities of a few ms.

C-V2X ecosystem and momentum

C-V2X gaining support from automotive and telecom leaders

5GAA is a cross-industry consortia helps define 5G V2X communications

Automotive industry

Vehicle platform, hardware, and software solutions

Telecommunications

Connectivity and networking systems, devices, and technologies

End-to-end solutions for intelligent transportation mobility systems and smart cities

CETECOM CAICT **Analog Devices** AT&T Audi BAIC **BMW** Bosch China Mobile Continental Daimler Danlaw Fricsson **FEV** Ficosa Ford Gemalto Hirschmann Car Communication Huawei Infineon Denso Keysight Technologies MINI Intel Interdigital Jaguar KDDI Laird Land Rover muRata Nokia Rohde & Schwarz NTT DoCoMo Panasonic Qualcomm ROHM Rolls-Royce SAIC Motor Samsung Savari TÜV Rheinland SK Telecom SoftBank Telefonica Verizon Vodafone ZTE T-Mobile Telstra Valeo VLAVI

Source: http://5gaa.org/; accurate as of August 31st, 2017

Building a comprehensive ecosystem with diverse expertise

Necessary for C-V2X's successful commercialization and deployment

Testing and certifications

Certification and compliance organizations

Test equipment vendors

ITS stack providers

Chipset manufacturers

Traffic industry suppliers

Telecom suppliers

Auto suppliers

Road operators

MNOs

Vehicle OEMs

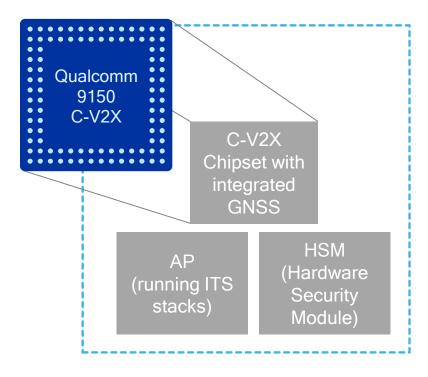
Standards

Qualcomm is driving C-V2X towards commercialization

Chipset anticipated to be available for commercial sampling in the second half of 2018

- Supports C-V2X Direct Communications (V2V, V2I and V2P) for automakers and roadside infra providers
- Integrated GNSS support
- Pre-integrated with telematics unit for V2N operation
- Supports SIM-less operation
- Designed to work in ITS 5.9 GHz spectrum
- Designed for extended communication range and enhanced reliability
- Optimized for high vehicle density deployments
- Designed to empower vehicles, VRUs and RSUs

Qualcomm[®] 9150 C-V2X Chipset


Qualcomm Technologies' first-announced C-V2X commercial solution based on 3GPP R-14 for PC5-based direct communications

Delivering complete C-V2X solution for automotive road safety

Leveraging Qualcomm's unique capabilities in precise positioning, efficient processing and security

- C-V2X chipset with integrated GNSS
- An application processor running the Intelligent Transportation Systems (ITS) V2X stack
- A Hardware Security Module (HSM).

Qualcomm[®] C-V2X Reference Design

The Qualcomm 9150 C-V2X chipset will be featured as a part of the Qualcomm® C-V2X Reference Design

Supported by global car OEMs - Europe examples

""Qualcomm Technologies' anticipated 9150 C-V2X chipset serves as a major milestone in paving the road for 5G and safer autonomous driving," said Dr. Thomas Müller, Head Electrics/Electronics, Audi. "As C-V2X continues to serve as an ingredient essential for enhanced safety for nextgeneration vehicles, Qualcomm Technologies' 9150 C-V2X chipset will certainly help accelerate the adoption and $\circ f$ C-V2X deployment technologies."

-Audi

"We are pleased to see C-V2X gaining momentum and broad ecosystem support, and how Qualcomm Technologies has helped the automotive industry make great strides in bringing this to fruition, including the announcement of the 9150 C-V2X chipset," said Carla Gohin, Senior Vice President, Head of Innovation at Groupe PSA. "Groupe PSA is strongly involved in the 5G standardization and trials and has great expectations on 5G as an enabler for the connected and autonomous vehicles. C-V2X and its strong evolution path to 5G will serve as a key enabler for new mobility services. Groupe PSA will evaluate this technology, with Qualcomm Technologies' support, to adopt for our cars."

-Groupe PSA

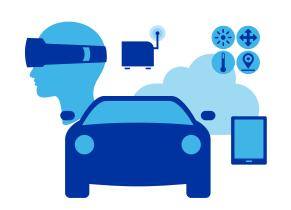
Supported by global car OEMs - US and China examples

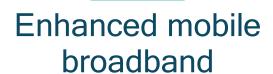
"Ford is committed to V2X communications and sees it as a critical technology to improve vehicle safety and efficiency," said Don Butler, executive director. Connected Vehicle and Services at Ford Motor Company. "We welcome Technologies' Qualcomm cellular-V2X product the announcement. as automotive industry and ecosystem work towards C-V2X implementation, and pave the path to 5G broadband and future operating services."

–Ford Motor Co.

"SAIC has always attached great importance to the development and application of new technologies. It is actively promoting the commercialization of new energy vehicles and internet-connected vehicles, and the development of autonomous vehicles. As vehicles become increasingly intelligent, it's critical that our vehicles are equipped with premium-tier technologies to provide seamless communication between the vehicle and the roadway and beyond," said Dr. Liu Fen, Director of Intelligent Driving, Research & Advanced Technology Department of SAIC. "We deem C-V2X technologies as the best choice, and look forward to utilizing these technologies in V2X. We admire the efforts Qualcomm Technologies has made and believe that the planned commercialization of their 9150 C-V2X chipset will accelerate the development of next-generation intelligent and connected vehicles."

-SAIC


5G will bring new capabilities for autonomous vehicles



While maintaining backward compatibility

5G is important for our automotive vision

Providing a unifying connectivity fabric for the autonomous vehicle of the future

Mission-critical services

Massive Internet of Things

Unifying connectivity platform for future innovation

Starting today with Gigabit LTE, C-V2X Rel-14, and massive IoT deeper coverage

5G NR brings new capabilities to V2X communications

Bringing complementary capabilities

Scalable OFDM numerology

Wideband transmissions for positioning

Advanced LDPC/polar channel coding

Self-contained sub-frame

Low-latency slot structure design

Massive MIMO

Direct communications

V2V, V2I, and V2P on "PC5" Interface, operating in ITS bands (e.g. ITS 5.9 GHz) independent of cellular network

- Higher throughput
- URLLC capabilities
- Designed to work without network assistance in ITS spectrum

Network communications

V2N on "Uu" interface operates in traditional mobile broadband licensed spectrum

- Higher throughput
- URLLC capabilities

5G V2X brings new capabilities for the connected vehicle

While maintaining backward compatibility

High throughput sensor sharing

High throughput and lowlatency to enable the exchange of raw or processed data gathered

Intention/ Trajectory sharing

High throughput and lowlatency to enable planned trajectory sharing

Wideband ranging and positioning

Wideband carrier support to obtain accurate positioning and ranging for cooperated and automated use cases

Local high definition maps / "Bird's eye view"

High throughput to build local, dynamic maps based on camera and sensor data; and distribute them at street intersections

We are accelerating the future of autonomous vehicles

V2X wireless sensor 802.11p (DSRC/ITS-G5) C-V2X

3D HD maps

Semantic lane information Landmark and lane coordinates for positioning

Precise positioning

GNSS positioning Dead reckoning VIO

Heterogeneous connectivity

Cellular 3G / 4G / 5G Wi-Fi / BT CAN / Ethernet / Powerline

On-board intelligence

Heterogeneous computing
On-board machine learning
Computer vision
Sensor fusion
Intuitive security

Autonomous vehicle

Power optimized processing for the vehicle

Fusion of information from

multiple sensors/sources

Path prediction, route planning, control feedback

Thank you

Follow us on: **f in**For more information, visit us at:

www.qualcomm.com & www.qualcomm.com/blog

Nothing in these materials is an offer to sell any of the components or devices referenced herein.

©2017 Qualcomm Technologies, Inc. and/or its affiliated companies. All Rights Reserved.

Qualcomm is a trademark of Qualcomm Incorporated, registered in the United States and other countries. Other products and brand names may be trademarks or registered trademarks of their respective owners.

References in this presentation to "Qualcomm" may mean Qualcomm Incorporated, Qualcomm Technologies, Inc., and/or other subsidiaries or business units within the Qualcomm corporate structure, as applicable. Qualcomm Incorporated includes Qualcomm's licensing business, QTL, and the vast majority of its patent portfolio. Qualcomm Technologies, Inc., a wholly-owned subsidiary of Qualcomm Incorporated, operates, along with its subsidiaries, substantially all of Qualcomm's engineering, research and development functions, and substantially all of its product and services businesses, including its semiconductor business, QCT.