CARLETON UNIVERSITY Department of Systems and Computer Engineering

SYSC 4600 – Digital Communications – Fall 2016

Professor H. Yanikomeroglu	TERM EXAM	20 October 2016
Full mark: 100 points – closed-book	, one-page aid-sheet and calcu	ulators are allowed – 80 mins

Nama	Student #•	F-mail.
maine:	Student #:	E-mail:

Q1 [20 pts] – BER Sketching

It is shown in the lectures that the bit error probability (P_e) in an antipodal binary transmission system with a properly designed matched filter receiver in an AWGN channel is given as $P_e = \frac{1}{2} erfc \left(\sqrt{\frac{E_b}{N_0}} \right)$. Using the erfc(.) table given in the attached sheet, sketch P_e in the log-log scale. The vertical axis (P_e) ticks should be at 10^{-1} , 10^{-2} , 10^{-3} , and so on, and the horizontal axis (E_b/N₀) ticks should be at -3 dB, 0 dB, 3 dB, 6 dB, and 9 dB.

Q2 [15 pts] - Two-Path Wireless Channel

The impulse response of a two-path wireless channel is given as $h_{ch}(t) = \alpha \, \delta(t) - \alpha \, \delta(t-t_d)$. The distance between the direct path and the reflected path is denoted as *d*, and the corresponding time difference in arrival times is denoted by t_d . This system uses binary signalling with rectangular pulses and a bit-duration of *T* seconds.

- a) We have two applications with transmission rates R = 100 Kbps (VoIP) and 10 Mbps (high-definition video streaming). For each application, for what *d* value, we will have $t_d = T$. For each case, comment whether this situation (i.e., $t_d = T$) will occur in indoors or outdoors.
- b) In the class, we computed the P_e (probability of error) value for the case when $h_{ch}(t) = \alpha \,\delta(t) + \alpha \,\delta(t-T)$. Compute P_e when $h_{ch}(t) = \alpha \,\delta(t) - \alpha \,\delta(t-T)$. Substantiate your answer with detailed reasoning (omit the effect of the background noise).

Q3 [15 pts] – Noise Power Calculations

- a) It is often assumed that the white noise power spectral density is $N_0 = -174 \text{ dBm/Hz}$. Show how this value is calculated? [Note that $P_{noise} = kTBF$ Watts, where $k = 1.38 \times 10^{-23} \text{ joule}/^{\circ} \text{K}$]
- **b**) The PSD (power spectral density) of filtered noise n(t) is given as

 $S_{N}(f) = \begin{cases} N_{0}/2, & -300MHz \le f \le -280MHz \\ N_{0}/2, & 280MHz \le f \le 300MHz \\ 0, & elsewhere \end{cases}$

- Find the bandwidth of *n*(*t*).
- Find the total power of n(t) if $N_0 = -174 \text{ dBm/Hz}$ (assume F = 1 = 0 dB).

Q4 [50 pts] – Binary Signalling with Non-Antipodal Pulses

A baseband binary signalling scheme is used in a zero-mean AWGN channel (with PSD $N_0/2$) as shown in the below figure. Obviously, this is not an "antipodal" signalling scheme since the pulses that represent "1" and "0", $s_1(t)$ and $s_0(t)$, do not have opposite polarity. At the receiver, the decision variable at the output of the sampler is y=s+n, where s and n denote the signal noise components, respectively.

- (a) (5 pts) Is there ISI in this system (explain)?
- (b) (10 pts) Find s|0, s|1, and n.
- (c)

(d) (5 pts) Assuming that 0's and 1's are equally likely, find the threshold level, λ , for the threshold detector.

(e) (10 pts) Find the probability of error, P_e , in term of the erfc(.) function given below:

$$\operatorname{erfc}(x) = \frac{2}{\sqrt{\pi}} \int_x^\infty e^{-u^2} du.$$

(f) (10 pts) Is the receiver filter given above a matched filter (explain)? Can you design a better receiver filter (i.e., which will yield a smaller P_e)?

(g) (10 pts) Consider a binary NRZ signalling scheme, which is antipodal where a "1" and a "0" are represented by rectangular pulses of amplitude B and -B, respectively. Assume that a matched filter is used at the receiver (all other assumptions are the same). For what value of B (found in terms of A), this scheme will have the same P_e as the one described above?