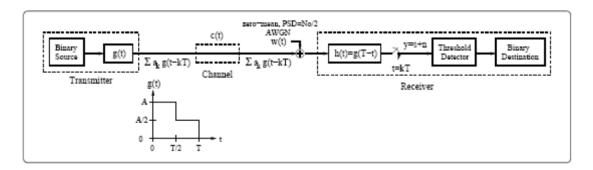
CARLETON UNIVERSITY

Department of Systems and Computer Engineering Digital Communications

Assignment 7 H. Yanikomeroglu

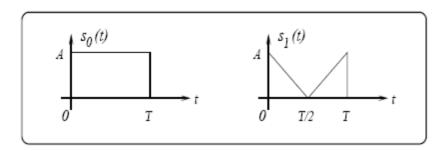

Fall 2016

Posted on: Tuesday, 29 November 2016

SYSC 4600

Due on: Will not be collected (for studying purposes only)

Question 2 (60 points) Bit Error Rate (BER) Calculation

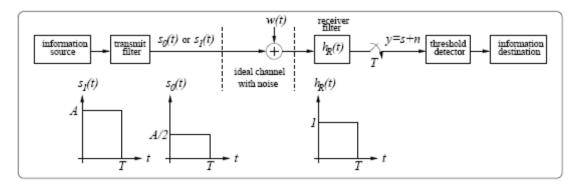


A baseband binary signalling scheme is shown in the above figure.

- The information bits are equally-likely.
- Signalling is antipodal: a_k = {−1, 1}.
- The source produces one bit every T seconds.
- The channel is ideal with AWGN.
- The receiver is a matched filter with h(t) = g(T t).
- (a) (5 pts) Give the expression for c(t), the channel impulse response. Show mathematically that $(\sum a_k g(t kT)) * c(t) = \sum a_k g(t kT)$, where * denotes convolution.
- (b) (5 pts) Find E_b, the received bit energy, in terms of A and T.
- (c) (5 pts) Sketch h(t) = g(T − t).
- (d) (5 pts) The decision variable at the output of the sampler has a deterministic component s due to the signal and a random component n due to noise; that is y = s + n. Find s given that a "1" is transmitted.
- (e) (10 pts) Find the expression for n in the form of an integral equation (simplify as much as you can). [Hint: n can be written as the sum of two integrals.]
- (f) (10 pts) Find the mean and variance of n in terms of A, T, and N_o . Show that $\sigma_n^2 = E[n^2]$ can be written as $E_b N_o/2$. [Hint: in the evaluation of $E[n^2]$, the cross terms will disappear why?]
- (g) (5 pts) Find f_Y(y|0) and f_Y(y|1).
- (h) (5 pts) Sketch f_Y(y|0) and f_Y(y|1) together. Indicate the decision threshold.
- (i) (10 pts) The probability of error is $P_e = \frac{1}{2}P(0|1) + \frac{1}{2}P(1|0)$, and due to symmetry it reduces to $P_e = P(1|0)$. Find P_e in terms of the erfc function (show the intermediate steps). [Hint: erfc $(u) = \frac{2}{\sqrt{\pi}} \int_u^{\infty} e^{-z^2} dz$]

Question 3 (44 points) Signal Space Representation

Two signals, $s_0(t)$ and $s_1(t)$, are shown in the below figure.


- (a) (4 pts) Find the energy of s₀(t), E_{s0}, and that of s₁(t), E_{s1}. Show that E_{s0}/E_{s1} = 3.
- (b) (3 pts) Find the inner product of s₀(t) and s₁(t); i.e., (s₀(t), s₁(t)).
- (c) (5 pts) Show s₀(t) and s₁(t) as vectors, indicate the angle between those two vectors.
 [Hint: this part can be solved without using the Gram-Schmidt orthogonolization method.]
- (d) (4 pts) Draw an s₂(t) which is orthogonal to both s₀(t) and s₁(t). [Hint: this part can be solved by inspection.]

Suppose that $s_0(t)$ and $s_1(t)$ represent the transmitted signals for "0" and "1", respectively, in a baseband binary communications system. Assume that 0's and 1's are equally-likely. Assume further that the channel is ideal and the noise is AWGN with PSD = $N_o/2$.

- (e) (3 pts) If T = 2.5 microseconds (refer to the above figure), find the bit rate. How long will it take to transfer a file of 5 Megabytes with this signalling scheme?
- (f) (7 pts) Draw the optimum receiver for this system using one single matched filter. Draw the impulse response of that filter.
- (g) (5 pts) Find the probability of error in terms of E_{av} (average bit energy).
 [Hint: this part can be solved by inspection.]
- (h) (4 pts) Suppose that it is given that s₁(t) has to be used to represent "1", and you have flexibility in choosing the signal representing "0"; let us denote this signal by s'₀(t). Determine s'₀(t) that will yield the minimal probability of error at the receiver with the following constraint: the energy of s'₀(t) must be equal to that of s₀(t), in order to have a fair comparison (in other words, E_{av} is preserved). Assume that the receiver is optimal.
- (i) (4 pts) Give the probability of error expression, in terms of E_{av}, for the signalling scheme described in part (h). [Hint: this part can be solved by inspection.]
- (j) (5 pts) Does the signalling scheme composed of s'₀(t) and s₁(t) have DC power? Explain. In this context, is this signalling scheme suitable for dial-up modems which use twisted-pair telephone channels? Explain.

Question 2 (80 pts) Binary Signalling with Non-Antipodal Pulses

A baseband binary signalling scheme is used in a zero-mean AWGN channel (with PSD $N_0/2$) as shown in the below figure. Obviously, this is not an "antipodal" signalling scheme since the pulses that represent "1" and "0", $s_1(t)$ and $s_0(t)$, do not have opposite polarity. At the receiver, the decision variable at the output of the sampler is y = s + n, where s and n denote the signal noise components, respectively.

- (a) (5 pts) Is there ISI in this system (explain)?
- (b) (10 pts) Find s|0, s|1, and n.
- (c) (10 pts) Find f_Y(y|0) and f_Y(y|1) and sketch them together.
- (d) (5 pts) Assuming that 0's and 1's are equally likely, find the threshold level, λ, for the threshold detector.
- (e) (10 pts) Find the probability of error, P_e, in term of the erfc(.) function given below:

$$\operatorname{erfc}(x) = \frac{2}{\sqrt{\pi}} \int_{x}^{\infty} e^{-u^{2}} du.$$

- (f) (10 pts) Is the receiver filter given above a matched filter (explain)? Can you design a better receiver filter (i.e., which will yield a smaller P_e)?
- (g) (10 pts) Consider a binary NRZ signalling scheme, which is antipodal where a "1" and a "0" are represented by rectangular pulses of amplitude B and −B, respectively. Assume that a matched filter is used at the receiver (all other assumptions are the same). For what value of B (found in terms of A), this scheme will have the same P_e as the one described above?
- (h) (5 pts) What is the average instantaneous power, P_{av} , for the above described non-antipodal and antipodal cases? ($P_{av} = \frac{1}{2}P_{s_0} + \frac{1}{2}P_{s_1}$, where P_{s_0} and P_{s_1} denote the instantaneous powers for the pulses that represent "0" and "1", respectively.)
- (i) (5 pts) For a given P_{av}, is an antipodal or a non-antipodal scheme yields less probability of error?
- (j) (10 pts) If the s₀(t) and s₁(t) shown in the above figure were centred around t = 0 (that is, the pulses are defined in the interval t ∈ [-T/2, T/2]), what would have been the sampling time at the receiver? Sketch the impulse response of the corresponding receiver filter.