CARLETON UNIVERSITY

Department of Systems and Computer Engineering

SYSC 4600 – Digital Communications – Fall 2009

Assignment #3

Posted on Wednesday, November 4th, 2009

Due on Friday, November 13th at 4 pm in the assignment box.

Marking Scheme: Q1[25%], Q2[25%], Q3[50% + 5% bonus for constellation (e)].

Question 1

A communication system uses two signals $s_1(t) = a\phi(t)$ and $s_2(t) = (a+1)\phi(t)$ to transmit binary one and zero bits respectively, each equally likely, where a is a real number, and $\phi(t)$ is a bandpass signal with energy 1. The communication is corrupted by AWGN with PSD $N_0/2$ and received via a coherent receiver with filter matched to $\phi(t)$.

- 1. Assuming ASK transmission:
 - (a) Find a.
 - (b) What is the average energy per bit \mathcal{E}_{b} ?
 - (c) What is the probability of bit error $P_{\rm e}$ as a function of $\mathcal{E}_{\rm b}/N_0$? You may use formulas from class.
- 2. Answer the same questions for PSK transmission.
- 3. Now for any *a*:
 - (a) Find $P_{\rm e}$ as a function of $\mathcal{E}_{\rm b}/N_0$ and a.
 - (b) What is the choice of a that gives the smallest $P_{\rm e}$ for a given $\mathcal{E}_{\rm b}/N_0$? (Proof required)

Solution

- 1. Assuming ASK transmission,
 - (a) a = 0 (or a = -1) (b) $\mathcal{E}_{\rm b} = \frac{1}{2}\mathcal{E}_0 + \frac{1}{2}\mathcal{E}_1 = \frac{1}{2}$ (c) $d = 1, P_{\rm e} = \frac{1}{2}\operatorname{erfc}\left(\frac{d}{2\sqrt{N_0}}\right) = \frac{1}{2}\operatorname{erfc}\left(\frac{1}{2/\sqrt{N_0}}\right) = \frac{1}{2}\operatorname{erfc}\left(\frac{1}{\sqrt{2}}\sqrt{\frac{\mathcal{E}_{\rm b}}{N_0}}\right).$

- 2. Assuming PSK transmission,
 - (a) $a = -\frac{1}{2}$ (b) $\mathcal{E}_{b} = \frac{1}{2}\mathcal{E}_{0} + \frac{1}{2}\mathcal{E}_{1} = \frac{1}{2}\frac{1}{4} + \frac{1}{2}\frac{1}{4} = \frac{1}{4}$ (c) $d = 1, P_{e} = \frac{1}{2}\operatorname{erfc}\left(\frac{d}{2\sqrt{N_{0}}}\right) = \frac{1}{2}\operatorname{erfc}\left(\frac{1}{2/\sqrt{N_{0}}}\right) = \frac{1}{2}\operatorname{erfc}\left(\sqrt{\frac{\mathcal{E}_{b}}{N_{0}}}\right).$
- 3. Now for any a:

(a) We have
$$P_{\rm e} = \frac{1}{2} \operatorname{erfc}\left(\frac{1}{2/\sqrt{N_0}}\right)$$
. Now $\mathcal{E}_{\rm b} = \frac{1}{2}\mathcal{E}_0 + \frac{1}{2}\mathcal{E}_1 = a^2 + a + \frac{1}{2}$.
We can therefore write $P_{\rm e} = \frac{1}{2}\operatorname{erfc}\left(\sqrt{\frac{\mathcal{E}_{\rm b}}{N_0}}\frac{1}{2\sqrt{a^2+a+\frac{1}{2}}}\right)$

(b) The function erfc is monotone decreasing, and inversion is also a monotone decreasing for positive numbers, while the square root is monotone increasing, therefore $P_{\rm e}$ grows with $a^2 + a + \frac{1}{2}$. Therefore $P_{\rm e}$ is minimised when $a^2 + a + \frac{1}{2}$ is minimised. Now $a^2 + a + \frac{1}{2}$ is an upward parabola with minimum at $\frac{\partial}{\partial a}(a^2 + a + \frac{1}{2}) = 2a + 1 = 0 \Rightarrow a = -\frac{1}{2}$. Therefore PSK is the most energy–efficient transmission scheme.

Question 2

Consider a 4FSK system which uses four frequencies $f_1 = 1$ GHz, $f_2 = 1.02$ GHz, $f_3 = 1.05$ GHz, $f_4 = 1.09$ GHz. The four symbols are therefore $s_i(t) = A \cos(2\pi f_i t)$, $0 \le t \le T_{\rm S}$. Assume A = 1.

- 1. Assuming $T_{\rm S} = 25$ ns, are the four signals orthogonal?
- 2. Find the lowest $T_{\rm S}$ that ensures all four signals are orthogonal. What is the corresponding transmission bit rate?

Hint: For both questions, it is best to find $\langle s_i, s_j \rangle$ for general f_i, f_j .

Solution

Using the hint, we find

$$\begin{aligned} \langle s_i, s_j \rangle &= \int_0^{T_{\rm S}} \cos\left(2\pi f_i t\right) \cos\left(2\pi f_j t\right) dt = \frac{1}{2} \int_0^{T_{\rm S}} \cos\left(2\pi (f_i + f_j) t\right) dt + \frac{1}{2} \int_0^{T_{\rm S}} \cos\left(2\pi (f_i - f_j) t\right) dt \\ &= \frac{-\sin\left(2\pi (f_i + f_j) T_{\rm S}\right)}{4\pi (f_i + f_j)} + \frac{-\sin\left(2\pi (f_i - f_j) T_{\rm S}\right)}{4\pi (f_i - f_j)} \approx \frac{-\sin\left(2\pi (f_i - f_j) T_{\rm S}\right)}{4\pi (f_i - f_j)} \end{aligned}$$

Then

1. For $T_{\rm S} = 25$ ns,

$$\langle s_2, s_3 \rangle \approx \frac{-\sin(2\pi 0.0325)}{4\pi 0.03 \text{ GHz}} = \frac{-\sin(1.5\pi)}{4\pi 0.03 \text{ GHz}} \neq 0.$$

Since two of the signals are not orthogonal, the four signals are not orthogonal.

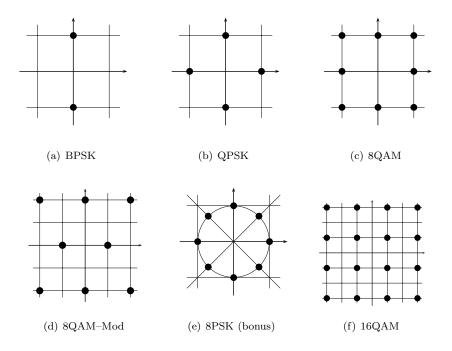
2. To have all signals orthogonal, we need all inner products zero for $i \neq j$. We need:

$\langle s_1, s_2 \rangle \approx 0 \Rightarrow 0.02 \text{ GHz} \times T_{\mathrm{S}} = \frac{1}{2}k_1,$	$T_{\rm S} = k_1 \times 25 \text{ ns},$
$\langle s_1, s_3 \rangle \approx 0 \Rightarrow 0.05 \text{ GHz} \times T_{\text{S}} = \frac{1}{2}k_2,$	$T_{\rm S} = k_2 \times 10 \text{ ns},$
$\begin{cases} \langle s_1, s_4 \rangle \approx 0 \Rightarrow 0.09 \text{ GHz} \times T_{\rm S} = \frac{1}{2}k_3, \\ \Rightarrow \end{cases}$	$T_{\rm S} = k_3 \times \frac{50}{9} \mathrm{ns},$
$\begin{cases} \langle s_2, s_3 \rangle \approx 0 \Rightarrow 0.03 \text{ GHz} \times T_{\rm S} = \frac{1}{2}k_4, \end{cases} \Rightarrow \end{cases}$	$T_{\rm S} = k_4 \times \frac{50}{3}$ ns,
$\langle s_2, s_4 \rangle \approx 0 \Rightarrow 0.07 \text{ GHz} \times T_{\rm S} = \frac{1}{2}k_5,$	$T_{\rm S} = k_5 \times \frac{50}{7} \mathrm{ns},$
	$T_{\rm S} = k_6 \times 12.5 \text{ ns},$

with all k_i integers. The smallest T_S that verifies this is $T_S = 50$ ns. This corresponds to 20M symbols/second, i.e., 40Mbps.

Question 3

Consider the 6 following signal constellations, with each division representing one unit:



(Note: you may get full marks if you ignore constellation (e), which is worth bonus marks)

1. For each of the 5(6) constellations, find:

- (a) The average energy per symbol \mathcal{E}_{S} and the average energy per bit \mathcal{E}_{b} .
- (b) Assuming that the probability of error is dominated by errors between the nearest points in the constellation, find d_{\min} the smallest distance between two points. Then find the probability that a given symbol is received with error, using the approximation

$$P_{\rm e}({\rm symbol}) \approx \frac{1}{2} \operatorname{erfc}\left(\frac{d_{\min}}{2\sqrt{N_0}}\right)$$

to find $P_{\rm e}(\text{symbol})$ in the form $\frac{1}{2} \operatorname{erfc} \left(\alpha \sqrt{\frac{\mathcal{E}_{\rm b}}{N_0}} \right)$ (basically, you must find the constant α for every constellation).

- 2. If we want to achieve a particular $P_{\rm e}(\text{symbol})$, sort the constellations from most energy-efficient to least. Justify your answer.
- 3. Now assume that the symbols are grey-coded, meaning that (practically) every symbol error results in one bit error only. For each of the 5(6) constellations:
 - (a) Find the (approximate) probability $P_{\rm e}({\rm bit})$ that a given received bit is in error, as a function of $\mathcal{E}_{\rm b}/N_0$.
 - (b) Assuming $\mathcal{E}_{\rm b}/N_0 = 13 \,\mathrm{dB}$, find the numeric value of $P_{\rm e}({\rm bit})$ (hint: use the *MATLAB* function *erfc*).
- 4. When $\mathcal{E}_{\rm b}/N_0 = 13$ dB, sort the constellations from lowest $P_{\rm e}({\rm bit})$ to highest.

Solution

100 115
16QAM
4
10
$\frac{5}{2}$
2
$\sqrt{\frac{2}{5}}$
≈ 0.6325

1. The parameters are:

We find α like so:

$$\frac{1}{2}\operatorname{erfc}\left(\frac{d_{\min}}{2\sqrt{N_0}}\right) = \frac{1}{2}\operatorname{erfc}\left(\alpha\sqrt{\frac{\mathcal{E}_{\mathrm{b}}}{N_0}}\right) \Rightarrow \alpha = \frac{d_{\min}}{2\sqrt{\mathcal{E}_{\mathrm{b}}}}$$

2. The higher the α , the lower the $\mathcal{E}_{\rm b}/N_0$ needed to achieve a particular $P_{\rm e}({\rm symbol})$. Therefore, constellations with higher α are more energy efficient for a given $P_{\rm e}({\rm symbol})$: BPSK = QPSK > 8QAM–Mod > 8QAM > 8PSK > 16QAM.

We have $P_{\rm e}({\rm bit}) = P_{\rm e}({\rm symbol})/({\rm bits \ per \ symbol})$: System $P_{\rm e}({\rm bit})$ $P_{\rm e}({\rm bit})$ when $\mathcal{E}_{\rm b}/N_0 = 13 \, {\rm dB} \approx 19.95$ $\frac{1}{2}$ erfc $\frac{\mathcal{E}_{\rm b}}{N_0}$ $1.333 \cdot 10^{-10}$ BPSK $\frac{1}{4}$ erfc $\frac{\mathcal{E}_{\rm b}}{N_0}$ $6.665 \cdot 10^{-11}$ QPSK $1.323\cdot 10^{-6}$ 8QAM $\frac{1}{6}$ erfc $\frac{\mathcal{E}_{\rm b}}{N_0}$ $2.991 \cdot 10^{-7}$ $\frac{1}{6}$ erfc 8QAM-Mod $\frac{\mathcal{E}_{\rm b}}{N_0}$ 47 $4.709\cdot10^{-6}$ 8 PSK $\frac{1}{6}$ erfc $\left(\sqrt{3}\sin\frac{\pi}{8}\right)$ $\frac{\mathcal{E}_{\rm b}}{N_0}$ $\frac{1}{8}$ erfc $8.078\cdot 10^{-6}$ 16QAM $\frac{\mathcal{E}_{\rm b}}{N_0}$ $\frac{2}{5}$

3. For grey–coded constellations:

(Note: do not forget to convert $\mathcal{E}_{\rm b}/N_0$ from dB to linear scale.)

4. QPSK > BPSK > 8QAM-Mod > 8QAM > 8PSK > 16QAM.