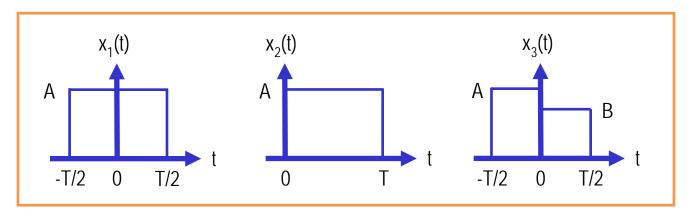
CARLETON UNIVERSITY

Department of Systems and Computer Engineering

SYSC 4600

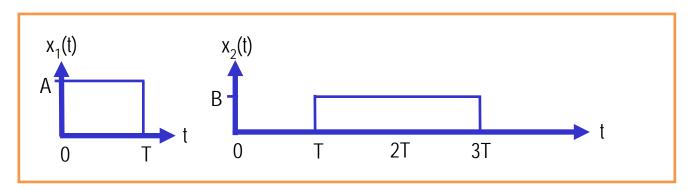
Digital Communications

Fall 2016

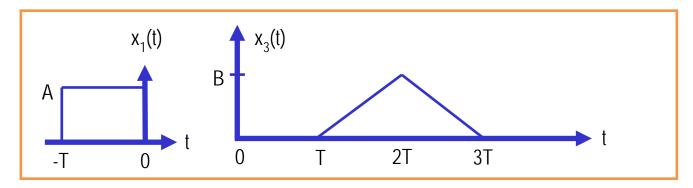

Assignment 2

H. Yanikomeroglu

Posted on: Tuesday, 20 September 2016


Due on: Will not be collected (for studying purposes only)

Q1. Fourier Transforms


- Find and sketch $X_1(f)$.
- Find and sketch $X_2(f)$.
- Find and sketch $X_3(f)$.

Q2. Convolution

- Sketch $x_1(t)*x_2(t)$.
- Sketch $x_2(t)*x_1(t)$.

Q3. Convolution, Energy

- If $x_1(t)*x_2(t) = x_3(t)$, sketch $x_2(t)$.
- Find the energy of $x_1(t)$.
- Find the energy of $x_3(t)$.

Q4. Probability

X is a uniform random variable in the range [0, 4].

- Find m_1 (first moment = mean).
- Find m_2 (second moment = mean square).
- Find σ_X (standard deviation).

Q5. BER Calculation in a 2-Path Wireless Channel

A large file composed of 0's and 1's is to be transmitted through a wireless channel. Binary 1 is represented by the rectangular function x(t) with amplitude A and duration [0, T]; binary 0 is represented by -x(t).

Consider a wireless channel modelled as an LTI (linear, time-invariant) system with an impulse response $h(t) = a\delta(t) + a\delta(t-T)$, where a is a constant and T is the bit duration.

Assume that there is no background noise. Find the probability of bit error at the output of the receiver detector.

Q6. Sinusoidals

• Sketch $\cos(2\pi f_c t - \pi/4)$.