CARLETON UNIVERSITY

Department of Systems and Computer Engineering

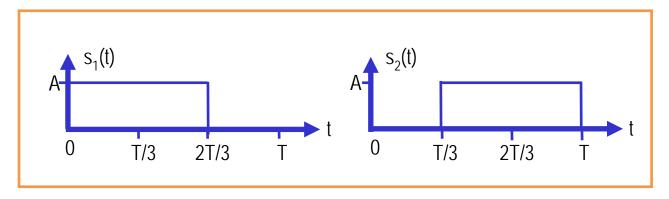
SYSC 4600 - Digital Communications - Quiz 3 - Fall 2015

Professor H. Yanikomeroglu 23 November 2015 100 pts, 20 mins

Name: Student #: E-mail:

Q1 [35 pts] – Transmission Rate

It was discussed in the lectures that the peak data rate, R_{max} , can be calculated as


 $R_{max} = n W \log_2(1+SNR)$ [b/s], where

- $n = \min(n_{tx}, n_{rx})$, where n_{tx} and n_{rx} denote the number of antennas at the transmitter and the receiver, respectively (n is often referred to as the MIMO gain),
- log₂(1+SNR): spectral efficiency [b/s/Hz],
- W: bandwidth [Hz].

Consider a wireless link in which SNR = 20 dB and the target peak rate is $R_{max} = 10$ Mb/s. The access point has 2 antennas. Suggest appropriate values for

- i) the number of antennas at the mobile device,
- ii) the bandwidth, and
- iii) the spectral efficiency.

Q2 [65 pts] – Signal Space Analysis

Consider the above binary transmission system in which "1" is represented by $s_1(t)$ and "0" by $s_2(t)$.

- a) Find the dimension of the signal space.
- b) Obtain the basis functions and sketch them.
- c) Write $s_1(t)$ and $s_2(t)$ as a linear combination of the basis functions.

(additional space for Q2)