SYSC3601 LABORATORY #4 (Summer 2009)

FLIGHT Motorola 68EC020 EVB and Application Board

You will be filling in the blanks on the answer sheets provided by the TAs (one per group). The T.A. will ask you questions about your work. You will have to demo your work to the T.A. Be prepared to submit your program listing at the end of the lab for marking. All programs must be well documented.
Resources for this lab

· Download the software package for lab4 (Lab4Materials.zip). You should unzip this file to a new directory (different than Intel code from previous labs). The zip file contains:
· LAB4C.ASM – Code for use with Part C below.
· LAB4D.ASM – Code for use with Part D below.
· LAB4E.ASM – Code for use with Part E below.
· LAB4F.S28 – Pre-assembled machine code for use with Part F below.
· The FLIGHT 68EC020 EVM User Manual (available in the lab)
· Chapter 3 gives an overall System Description

· Chapter 8 provides the entire 68EC020 instruction set

· Chapter 12 describes the 68230 PI/T chip

Part A – Getting to know the EVB

Take some time to look over the EVB (the larger board with ‘MOTOROLA’ printed on it. Read through chapter 3 of “The FLIGHT 68EC020 EVM User Manual” and answer the following questions. Looking at the chip schematics in the appendix of the User Manual may also be helpful.

1) You will note that all IC’s have a number starting with ‘U’. From what you have read in the EVM User Manual and from looking at the chips on the board, fill in Table A1 (note: please don’t peel labels off the chips). Note that you really do have to read Chapter 3 to answer this question.

2) Appendix A1 describes the number of wait states available for use through a jumper setting. How many wait states are used on the EVB and how can you tell?

___A2__

3) The MCM6208P25 are 64K x 4 bit static memory chips. How much memory is on the 68EC020 circuit board? What can the board be expanded to?

___A3__

4) Examine the memory map in Appendix B. What address range does “RAM” occupy?

___A4__

5) Appendix A4 describes the jumper configurations to set the various timer modes. What timer mode is currently set?
___A5__

Part B - Running a simple program

1) The first step is to ensure that all power and port connections are made correctly:

· A null-modem serial cable should be plugged into P2 on the 68020 EVM board and into COM2 of the PC.

· The flat 40-pin cable should be connecting the EVM (P5) to the application board.

· A 9V adaptor should be plugged into the P6 connector on the EVM board

· A second 9V adaptor should be plugged into the application board (near the heat sink)

2) Open Crossware Embedded Development Studio (it may just be named Embedded Development Studio).

3) You must first configure the serial port before using it. Open the menu item Comms→Settings make sure the settings match the following figure before clicking OK.

Figure 1: Comm serial port settings

[image: image1.png]Serial port settings

Pot Setings | Trarsmit | Downoad | Pot Optons | View | Debug|

Seial pott Commurication Setfings

CO ~| |5audwt 3600

Transtit preferences

|«

Number of databis: [3 =
I LocalEcho =
¥ CRSCALF Paiy None =

Receve Preferences [1
¥ CRSCALF

Flow contl Ronikoll <.
I~ NullDiscard
P — I Paiy Check

[Cancel Help

Now open a serial port by selecting the menu item: Comms→Open Serial Port

Hit <enter> several times until the following start-up message is displayed on screen:

	Welcome to the Motorola 68EC020 Evaluation Module.

Tel. (UK) 03552 39101

Designed and Manufactured by Flight Electronics Ltd.

Suppliers of high technology products to education.

Call 0703 227721. Telex: 477389 FLIGHT G. Fax: 0703 330039.

Firmware Version V2.3 (C) Flight Electronics Ltd. 1991

F>

4) The FLIGHT monitor program provides a line assembler where assembly instructions may be entered one line at a time and assembled into machine code on the 68EC020. Type the line assembler command, 'AS' (no “enter” is required after ‘AS’.

When the AS command is invoked, what line is displayed and what is the meaning of this line?

___B1__

5) Type the program from Table B2 one line at a time with each line terminated by a carriage return (enter on the keyboard). Record the machine code that corresponds to each line in Table B2.
What do the “.B” and “.L” mean in the code above? Which bits of the destination are affected by each operation?

___B3__

The END statement exits the assembler command and returns to the F> prompt.

6) Now, examine the object code by using the print command `PR`. Type in the start address (400600) and end address (400608) when prompted. Fill in the blanks in B4 using what you observe.

___B4__

7) Now to run the program. To do this, use the `GO` command. Remember, <CR> means to press ENTER.
	F> GO

 ENTER ADDRESS : 400600<CR>

Exciting... the program is now running in an infinite loop without displaying anything. Hit `RESET` (SW1) on the FLIGHT 68020 circuit board. The registers have been reset, but the program is still in memory. The start-up procedure will need to be repeated, hitting <CR> until the COMM start-up message appears. To see what is happening, single step through the program using the command `SS`.

The display should be as follows.

	F> SS

 ENTER ADDRESS : 400600<CR>

MOVEQ #+$42,D5

CAAR=00000000 VBR=00000000 SFC=000 DFC=000 CZFE

 D0=00000000 D1=00000000 D2=00000000 D3=00000000 CACR=0000

 D4=00000000 D5=00000042 D6=00000000 D7=00000000 T10SM III XNZVC

 A0=00000000 A1=00000000 A2=00000000 A3=00000000 SR=1010011100000000

 A4=00000000 A5=00000000 A6=00000000 A7=004005F2 PC=00400602

The MOVEQ #66,D5 instruction has been executed, and moves the immediate integer 42H (6610) into register D5. Also note the Program Counter PC that has the address of the next instruction- which resides at address 400602. A7 is the stack pointer that is initialized to this value at start-up by the monitor program.

Examine the SR value and compare it with your course notes. Are we in supervisor or user mode?

___B5__

Hit <CR> and the next instruction will be executed- which will move the immediate integer value 72H into register D0.

The next instruction will subtract 4H from the contents of register D5.

Continue with the program, watching the PC and the registers D0 and D5, until both D0 and D5 go past 00000000. When the program is continued past this point, D0 starts at 00000000 as opposed to rolling over to 00000100, while D5 rolls over to FFFFFFFE. Explain why this is.

___B6__

Part C – Compiling on the host PC using the cross-compiler

Now let’s try compiling some code on the host PC using the cross-compiler and then transferring the object code to the FLIGHT EVM board. The Crossware Embedded Development Studio can be used to build large applications written in ASM, C, or a mixture of both. Note that a command-line version of the assembler is also provided. For this lab, we will use the Development Studio to create a simple project with a single ASM source file. Follow these steps to compile an ASM file into a Motorola S-record file (a text file containing an ASCII encoded representation of the machine code). Before you begin:

1. Create a new directory called ‘Lab4c’ on your H drive.

2. Copy the file ‘Lab4c.asm’ from Lab4Materials.zip into this new Lab4c directory.

Now switch to the Crossware Embedded Development Studio and do the following:

1. File->New. Under the Projects Tab, select Executable Program. Click OK

2. Set Target Family=680X0, Family Member=’FLIGHT -68EC020 (256k ram)’. Click NEXT.

3. Under project name, enter Lab4c. Click on Browse beside the Project Directory field, and navigate to your new ‘Lab4c’ directory. Click OK to select the directory. Click Next.

4. Leave ‘Code and data in RAM’ checked, leave Min and Max RAM addresses unchanged as 400600 and 43FFFF. Click Next.

5. Leave ‘Program File Format’ as S28. Click Next.

6. Uncheck both the ‘Create a startup file’ and ‘Create an initial source file’ checkboxes. Change Language to Assembler only. Click Finished.

7. When it asks if you want to add existing files to your new project, select Yes.

8. Find the Lab4c.asm file in the Lab4c project directory. Select it and press Add (Note that double-clicking on the file does not add it!). Click on Close.

· If the file fails to be added, goto “Build→Files In Project…” and add the Lab4c.asm file manually.

9. If the Workspace bar is not visible on the left side of your screen, select View→Workspace.

10. Find the Lab4c.asm source file in the Workspace bar on the left. Double-click on the file name to view the source file.

Once the Lab4c.asm file is opened in the editor window, you will see that the contents are the same as above with one line different. What is the new line and why is it needed?

___C1__

11. Build→Build

Watch for any error messages. It should report that the file compiled with no errors. Look in the ‘Lab4c’ directory that you created. There should now be a number of new files, all starting with ‘Lab4c.’. The file ‘Lab4c.S28’ is the Motorola S-record file containing your assembled machine code. Feel free to open it in a text editor and look at it.

We now need to transfer this S28 file to the EVM. Return to the COMM window and type: “LT” (for “Load Text File”) and press “enter” to select no offset.

	F> LT

LOAD "S" FORMAT OBJECT FILE FROM TERMINAL. TERMINATOR IS CONTROL T

ENTER OFFSET (<CR> IF NONE) : <CR>

Now select ‘Comms->Download File’ and navigate to your new S28 file. (Note that you may have to change the ‘Files of Type’ drop-down menu to ‘All files’ to see your Lab4c.S28 file). Click OK and you should see:

	LOAD COMPLETED

F>

You can now run the program using the ‘SS’ command as above and verify that the program works identically. You will have to reset the board to exit single-step mode.

Go back into EStudio and modify the Lab4c.asm program such that 4 is added to D0 and 1 is subtracted from D5 each loop. Re-compile your program, transfer it to the board again, and run it using single-stepping. Demo to the TA.
Part D – The application board

The application board provides a number of input and output devices in order to build many interesting applications. The PI/T 68230 chip is used to provide two parallel ports for communication between the EVM board and the application board. The PI/T chip is described in Chapter 12 of the EVM User Manual. PortB is set to an output port and carries all data FROM the CPU to the application board. Likewise, PortA is set to an input port and carries all data TO the CPU from the application board.

Figure 2: Connection between EVM and application boards via parallel ports

[image: image2]
1) The program contained in Lab4d.asm will read the state of the dip switches on the application board using PortA and will use that information to set a bit pattern on the LEDs using PortB. Start a new Embedded Development Studio project following the steps above (i.e. create a new directory called Lab4d, copy the lab4d.asm file into that directory, create a new project, include the lab4d.asm source file). Open lab4d.asm for editing and fill in the blanks in Lab4d.asm using the information from Chapter 12, especially Table 12.1 PI/T Register Addressing Assignments. Make sure you also fill in the blanks on the answer sheet.

2) Before you run your new program, ensure that the coloured “Mode Switches” are all in the UP position. Note that the “Mode Switches” are the coloured switches located above the blue or black DIP switches. They select which subsystem(s) listen to PortB (data from CPU) and drive PortA (data to CPU).

3) Build, load, and run your program using the GO monitor command. The LEDs should reflect the state of the “Output Switches”.

4) Now modify the program so that it returns to the monitor program when the $AA bit pattern is entered on the switches. Demonstrate your working program to a TA and explain your WELL DOCUMENTED code. (Note that TRAP #11 will return control to monitor program)

Part E – Controlling LEDs for traffic intersection simulator

Extract Lab4e.asm from the Lab4Materials zip file and save it into a new directory called Lab4e. Start a new Embedded Development Studio project in following the steps from Part C above. This program is complete, except that you need to create a new subroutine called INIT that initializes the PI/T chip for use with the Applications Board. All control and data port settings should be identical to Lab4d.asm (i.e. PortA should be set to 1X input mode and PortB should be set to 1X output mode, then PortB should be cleared).

Once your code compiles properly, download it to the board. Before you run it, make sure that all “Mode Switches” (coloured switches located above the blue/black DIP switches) are in the UP position.

When you run the program, you will observe the simulation of an intersection with 2 sets of lights. Bits 3-1 control north-south traffic, while bits 7-5 control east-west traffic. For example, while the north-south light is GREEN (i.e. LED 1 is ON), the east-west light is RED (i.e. LED7 is ON).

[image: image3.png]@000ece0
76543210

Your task is now to modify the program to add a walk/don’t walk signal. Using the other yellow LEDs (bits 0 and 4) to represent pedestrian crossings (LED on when it is safe to cross, and flash during last 5 seconds of green), modify the LED pattern/time table given in Lab4e to include a pedestrian facility. Use the results from your pre-lab to help make the changes.

Demonstrate your working WELL DOCUMENTED modified program to a TA.

Part F – Fun and Games

Included in the Lab4Materials zip file is a pre-compiled Lab4f.S28. Instructions for use:

· Ensure that the first 4 Mode Switches are DOWN (ADC, MOTOR, SPEED, DAC)

· Load the lab4f.S28 file

· Start your program using the GO monitor command.

· You can now control the motor speed by either the:

· SW3=VOLTS: Variable resister (turn the knob)

· SW3=LDR: light detector (cover with your finger)

· SW3=TEMP: temperature sensor Q1 (warm with finger tip – watch the blades!)

Note: SW3 is a sliding switch. It is white & red located immediately below the variable resistor.
PortA

68230

PI/T

Application Board

68EC020 EVM Board

68EC020

Data Bus

PortB

8

8

