SYSC3601 Microprocessor Systems

Unit 8: Direct Memory Access (DMA)

1. DMA

2. The 8237 DMA Controller

Reading: Chapter 13, sections 1-2

http://www.freebsd.org/doc/en_US.ISO8859-1/books/developers-handbook/dma.html

Direct Memory Access (DMA)

- Provides direct access to memory for I/O devices while the μP is temporarily disabled.
- Data is directly transferred between memory and the I/O device.
- Transfer rates can approach 33-150 Mbyte/s
 - Limited only by DMA Controller speed and RAM speed
 - Limited to 1.6 Mbytes/s using 8237 & 8086/88
- Used for DRAM refresh, video displays, disk read/write.

Direct Memory Access (DMA) – Basic Operation

- 2 signals are used on the μP :
 - HOLD Input used to request a DMA action
 - HLDA Output acknowledgement, transfer busses to DMA controller
- 'DMA controller' is essentially a special purpose μP for conducting high speed data transfers.
- During DMA transfer, the μP is effectively disconnected from the busses.
- DMA transfers data between:
 - memory \leftrightarrow I/O
 - memory ↔ memory
 - Not used in more advanced μP (faster to use CPU)

Direct Memory Access (DMA) - Sequence

- 1. HOLD input raised by DMA controller
- 2. μ P suspends execution of its program.
 - Note that HOLD has higher priority than INTR or NMI and can interrupt instructions mid-stream (like RESET, whereas INTR/NMI wait for instruction to complete)
- 3. μ P places its address, data, and control busses in high-impedance state.
- 4. μ P raises HLDA to signal device that it now has complete access to the busses.
- 5. DMA transfer takes place.
 - On more advanced μP, execution continues until system bus is required (from cache/pipeline)
- 6. Device signals μP that transfer is complete by dropping the HOLD signal.
- 7. μ P drops HLDA.

- A special purpose μP for conducting high speed data transfers.
- 4 DMA channels (0-3)
- Designed to manipulate the system busses in a way similar to the μ P, but much faster.
 - Generates addresses and ALE
 - Generates bus control signals
 - $\overline{\text{MRDC}}$, $\overline{\text{MWRC}}$, $\overline{\text{IORC}}$, $\overline{\text{IOWC}}$
 - Note that these signals are not available on the 8086/88 in minimum mode have to create using external circuitry.

- The μ P programs the DMA controller.
 - How much data to transfer (size in bytes)
 - Where the data comes from (source)
 - Where the data goes (destination)
- Note: on the 8237, a *channel* is a path between the 8237 and the memory or I/O device.
 - Each channel includes a DREQ request line, a DACK acknowledge line, and internal registers for address, counter, configuration, etc.
 - For I/O, channel acknowledge signal bypasses address decoding and activates I/O chip directly.

Intel 8237

SYSC3601

9

Microprocessor Systems

- Ex: Memory-to-I/O DMA transfers
 - Only need one channel (since only 1 address).
 - I/O device requests transfer, provides source memory address
 - DACK from DMA is used to enable the I/O device (rather than decoding port address)
 - Channel selects memory address
 - -MRDC and \overline{IOWC} are pulled low simultaneously
 - Data is transferred from memory directly to I/O device.

The 8237 DMA Controller – Printer example

SYSC3601

- Ex: Memory-to-memory DMA transfers
 - Channel 0: source address
 - Channel 1: destination address
 - A byte is read from address accessed by channel 0 an saved within the 8237
 - The 8237 writes the data byte to the address selected by channel 1
 - The number of bytes transferred is determined by the channel 1 count register
 - Memory-to-memory transfers are actually faster using the CPU (16-bit or 32-bit transfers...)

- Transfer Modes
 - 1. Single Mode: release HOLD after each byte is transferred.
 - Often used when I/O can only provide 1 byte at a time (e.g. floppy disk controller) or is very slow.
 - 2. Demand: Tx/Rx as long as DREQ is asserted.
 - Can also be interrupted by external \overline{EOP} signal.
 - 3. Batch/Block Mode: automatic Tx of a block of data until counter reaches zero.
 - 4. Cascade: Master/Slave arrangement of more than one 8237.

Use of DMA in multi-processor environment

SYSC3601

Microprocessor Systems