SYSC3601 Microprocessor Systems

Unit 4: 8086/88 Hardware & Bus Structure

- Brey Chapter 9: Hardware specifications
 - Pin-outs & pin functions
 - 8274 Clock generator
 - Bus buffering & latching
 - Bus timing
 - Ready & the wait state
 - Minimum mode vs. maximum mode

8086/88 Hardware and Bus Structure

- We will now focus on the 8086/88 hardware and pin functions – later we will review characteristics of other Intel μP and the Motorola family.
- Although these μP's are fairly old, they still are a good way to introduce the Intel family of microprocessors.
- Both machines are 16-bit microprocessors. The 8088 has an 8-bit data bus and the 8086 has a 16-bit data bus.
- Still used in embedded systems (cost < \$1)

8086/88 Hardware and Bus Structure

Abstract diagram showing data flow in/out of μP

General Characteristics

- Power:

- 8086 +5V ± 10%, 360mA (80C86 10mA)
- 8088 +5V ± 10%, 340mA (80C86 10mA)

– Temp:

- 32°F 180°F (not suitable for outdoors)
- CMOS version -40°F 255°F (MIL spec)
- Clock Frequency:
 - normally 5MHz. SDK86: 2.5MHz or 5MHz.

DC characteristics

• Must understand V-A characteristics of I/O pins in order to connect to the outside world. (next slide)

- Input characteristics

- compatible with standard logic-level components
 - logic 0: 0.8V max, 10 μA max
 - logic 1: 2.0V min, $10\mu A$ max
- The input current is very small gates of MOSFETs, so current represents leakage.

Output characteristics

- logic 1 voltage level is compatible with most logic families, but logic 0 is not. (Most logic families have logic 0 max 0.4V)
 - logic 0: 0.45V max, ± 2.0 mA max
 - logic 1: 2.0V min, \pm 400 μ A max
- No more than 10 loads per output without buffering.
- If more than 10 loads are attached to any bus pin, then the entire 8086/8088 must be buffered.

GND 1	$\sqrt{40}$ Vcc		GND $\Box 1$	40 □ Vcc	
AD14 □2	39 🗆 AD15		A14 🗆 2	39 🗆 A15	
AD13 🖬 3	38 🗖 A16/S3		A13 🗆 3	38 🗖 A16/S3	
AD12 4	37 🗖 A17/S4		A12 🗖 4	37 🗖 A17/S4	
AD11 디5	36 🏳 A18/S5		A11 🖬 5	36 🏳 A18/S5	
AD10 □6	35 □ <u>A19/S</u> 6		A10 🗖 6	35 🗖 A19/S6	
AD9 🗆 7	$34 \square \overline{BHE}/S7$		A9 🗆 7	$34 \square \overline{SS0}$	
AD8 🗆 8	$33 \square MN/MX$		A8 🗆 8	$33 \square MN/MX$	
AD7 49	$2086 \frac{32}{10} \overline{\text{RD}}$		AD7 \Box 9 000	$_{00}$ 32 \square $\overline{\text{RD}}$	
$\begin{array}{c} \text{AD7} \ \Box 9 \\ \text{AD6} \ \Box 10 \\ \end{array} \\ \begin{array}{c} 8 \\ 10 \\ 10 \\ \end{array}$	31 HOLD	(<u>RQ/GT0</u>)	$\begin{array}{c} \text{AD7} \\ \text{AD6} \end{array} \begin{array}{c} 10 \\ 10 \end{array} \begin{array}{c} 808 \\ 808 \end{array}$		$(\underline{RQ}/\underline{GT0})$
AD5 🗆 11 🕻	$PU 30 \sqcap HLDA$	$(\overline{RQ}/GT1)$	AD5 🗆 11 CP	U 30 □ <u>HLD</u> A	$(\underline{RQ}/\underline{GT1})$
AD4 🗆 12	$29 \square \overline{WR}$	$(\overline{\text{LOCK}})$	AD4 🗆 12	$29 \square \overline{WR}$	$(\underline{\text{LOCK}})$
AD3 🗆 13	$28 \square M/\overline{IO}$	$(\underline{S2})$	AD3 🗆 13	$28 \square IO/\overline{M}$	$(\overline{S2})$
AD2 🗆 14	$27 \square DT/R$	$(\underline{S1})$	AD2 🗆 14	$27 \square DT/R$	$(\overline{\underline{S1}})$
AD1 🗆 15	$26 \square \overline{\text{DEN}}$	(S0)	AD1 🗆 15	$26 \square \overline{\text{DEN}}$	(S0)
AD0 🗆 16	$25 \square ALE$	(QS0)	AD0 🗆 16	$25 \square ALE$	(QS0)
NMI 🗆 17	$24 \square \overline{\text{INTA}}$	(QS1)	NMI 🗆 17	$24 \square \overline{\text{INTA}}$	(QS1)
INTR 🗆 18	$23 \square \overline{\text{TEST}}$		INTR 🗆 18	$23 \square \overline{\text{TEST}}$	
CLK 🗆 19	22 🗖 READY		CLK 🗆 19	22 🗖 READY	
GND $\Box 20$	21 □ RESET		GND $\Box 20$	21 🗆 RESET	

8086/8088 DIP pin assignments (max mode in brackets)

- Both the 8086 and the 8088 are 40-pin Dual In-line Package (DIP) chips.
- 8086 16-bit μP and a 16-bit data bus
- 8088 16-bit μP and a 8-bit data bus
- 8086 has M/\overline{IO} , 8088 has IO/\overline{M}

- See text Fig 9-1. Note that on 8088, \overline{IO}/M should be IO/\overline{M}

 Pin 34 is also different: 8086 BHE/S7, 8088 has SSO

- AD₁₅ AD₀
 - Multiplexed address/data bus.
 - lines carry address bits $A_{15} A_0$ whenever ALE (Address Latch Enable) is logic 1.
 - lines carry data bits D_{15} D_0 whenever ALE is logic 0.
 - Note: 8088 only multiplexes D₇ D₀ because it uses an 8-bit data bus.
- $A_{19}/S_6 A_{16}/S_3$
 - multiplexed address/status bits.
 - lines carry address bits $A_{19} A_{16}$ whenever ALE is logic 1.
 - lines carry status bits $S_6 S_3$ whenever ALE is logic 0.

- S₆ always logic zero (not used).
- **S**₅ matches state of I flag bit (interrupt)
- S₄&S₃ reports segment being accessed during curr<u>ent bus cycle:</u>

S ₄	S ₃	Function
0	0	Extra Segment (ES)
0	1	Stack Segment (SS)
1	0	Code Segment (CS)
1	1	Data Segment (DS)

• Note: These status lines could be decoded/latched to address four separate 1M banks of memory. (Split I/D)

- $\overline{RD} \mu P$ is set to receive data when low
- WR μ P is outputting data when low
- M/IO (8086) indicates a memory address ('1'), or an I/O address ('0').
- DT/R Data transmit/receive. Data bus is transmitting ('1'), or receiving ('0') (for controlling bi-directional bus drivers).
- DEN Data bus enable used to activate external buffers/transceivers.
- BHE/S7 Bank high enable
 - used to enable D_{15} D_8 in an 8086 during a 16-bit read/write.
 - Multiplexed with S7, which is not used (always 1).
 - latched with ALE.

- Pins to be discussed later:
 - READY: Used to insert wait states (controlled by memory and IO for reads/writes) into the microprocessor.
 - **RESET:** Microprocessor resets if this pin is held high for 4 clock periods. Instruction execution begins at FFFF0H and IF flag is cleared.
 - CLK: Provides clock signal to 8086
 - HOLD: Requests a direct memory access (DMA).
 When 1, microprocessor stops and places address, data and control bus in high-impedance state.
 - HLDA (Hold Acknowledge): Indicates that the microprocessor has entered the hold state.
 - RO/GT₁ and RO/GT₀: Request/grant pins request/grant direct memory accesses (DMA) during maximum mode operation.

- Pins to be discussed later:
 - INTR: Used to request an interrupt
 - NMI: Used to request a non-maskable interrupt
 - INTA: Output to acknowledge an interrupt.
 - TEST: An input that is tested by the WAIT instruction. Commonly connected to the 8087 coprocessor.
 - QS₁ and QS₀: The queue status bits show status of internal instruction queue. Provided for access by the numeric coprocessor (8087).
 - LOCK: Lock output is used to lock peripherals off the system. Activated by using the LOCK: prefix on any instruction.

- Both the 8086 and the 8088 have two modes of operation:
 - 1. Minimum Mode: connect MN/ \overline{MX} to +5V (directly).
 - similar to 8085 operation.
 - all control signals for memory and I/O are generated by the $\mu\text{P}.$
 - (RD, M/IO, DT/R, DEN, ALE, INTA, WR, etc)
 - 2. Maximum Mode: connect MN/\overline{MX} to ground (directly).
 - dropped by Intel beginning with the 80286.
 - must use with co-processor (8087) present.
 - some control signals must be generated externally.
 - use with 8288 bus controller.

8288 Bus Controller (use when in MAX mode)

Some details omitted...

We will see how to achieve buffering & demultiplexing using generic chips...

Decoding Bus Control Signal

- In *"max mode"* use 8288 bus controller to generate MRDC, MWTC, IORC, IOWC.
- In *"min mode"* (and for other processors) it is sometimes better to decode the available signals.

8284A Clock Generator

- Used with 8086/88 to generate
 - 1. clock signal (see next slide)
 - 2. reset signal (see next slide)
 - 3. ready signals (wait states)

Inputs:

- FIC Frequency/crystal select.
 - $1 \rightarrow$ external clock
 - $0 \rightarrow$ crystal (X1-X2 provides timing).
- CSYNC Only used with external clock, otherwise grounded.
- **RES** Reset input pin. Generates RESET output.

8284A Clock Generator

10K pullup? 0.5mA sink. (debouncing!)

Bus Transfer Synchronization

- Synchronous busses (eg. Motorola 6800/11/12)
 - Transfer times and synchronization are tied to the system clock.
 - No facility for varying bus timing.
 - Clock generators could be used to vary bus speed (for slower memory), but would slow entire μP
- Semi-synchronous busses
 - provide for "wait states" to be inserted into bus timing (eg. 8086).
 - Allows more flexibility in interfacing to slower memory or I/O.
- Asynchronous busses (eg. Motorola 68000).
 - Requires extra bus signals for bus arbitration.
 - Requires *"acknowlegement"* signal from devices.
 - Requires bus time-out (watchdog).
 - Easier multiprocessor memory management.

- 8086 and 8088 bus cycles consume four system clock periods (T-states), T₁, T₂, T₃ and T₄.
- At 5MHz, each T-state is 200nS, therefore a bus cycle is 800nS.
- Semi-synchronous bus control allows inserting of wait states (T_w), also 200nS, between T_3 and T_4 which allows access to slow memory and I/O devices
 - (Text says T_w inserted between T_2 and T_3 , but the Intel manual says between T_3 and T_4).
- Most processors are very similar in I/O and memory access operations.

Write Cycle

Read Cycle

SYSC3601

Read/Write Cycle Events

- T₁: Address, ALE, DT/R, M/IO.
- T₂: RD, WR, DEN, data on the bus (for write).
- At the end of T_2 (middle of T_3), μP samples READY.
 - (a) while READY = 0; do
 - (b) insert T_w .
- T_3/T_w : Gives time for memory or I/O device to read/write.
- For read cycles, data bus is sampled at end of T_3 .
- T₄: All bus signals are deactivated.
- Normal memory access time is 460nS. Slower devices will need at least one wait state which will give 660nS.

Wait State Generation using 8284A

Example Timing for 2 Wait States

Bus Latching and Buffering

- Latches are used to de-multiplex the address/data and address/status lines and commonly have output buffers for driving external loads.
- Buffers are used to drive external loads, and to isolate component when disabled.

Three-state Buffer (Tri-state buffer)

- When enabled by the control line, output follows input (buffered, pass-through).
- When disabled, output is a very high impedance which prevents the output from driving or loading connected circuits.
- When disabled, the outputs are said to be floating.
- In effect, it is like a switch.

Bidirectional buffers (transceivers)

EX: 74LS245 octal bus transceiver.

Latches (D-type flip-flops)

- When enable is high, Q follows D.
- When enable goes low, Q maintains (latches) state of D.
- Eg:
 - 74LS373 (latched on falling edge).
 - -74LS374 (latched on rising edge)

A fully buffered 8086

SYSC3601

Microprocessor Systems