	Course Outline
SYSC3601 Microprocessor Systems Prof. James Green Unit 1: Introduction & History	 Goal: To familiarize students with microprocessor-based circuit design. The course deals with the applications, organization, architecture, and design of microprocessor systems. Topics covered include: addressing, bus structures, memory and I/O interfacing, interrupt mechanisms, and related techniques at the hardware and assembly language levels.
	SYSC3601 2 Microprocessor Systems
History of the µProc	History of the µProc
 400BC: Abacus invented in Babylonia (now Iraq) 100BC: Antikythera mechanism, used for registering and predicting the motion of the stars and planets 700AD: Arabic numbers introduced (zero, 10's, 100's, etc) 1641: John Napier invents logs 1623: Wilhelm Schickard builds first mechanical calculator. 6 digits. Prototype only 1642: Blaise Pascal builds mechanical calculator. 8 digits, trouble with carries, jams 	 1820: Charles Babbage conceives of "Difference Engine" to print astronomical tables. Cancelled after 40 years. Analytical machine next (steam powered), but can't build due to manufacturing of 1000s of small cogs, etc. 1833: Augusta Ada Byron meets Babbage. Analyses programming potential and outlines fundamentals of computer programming.

History of the μ Proc

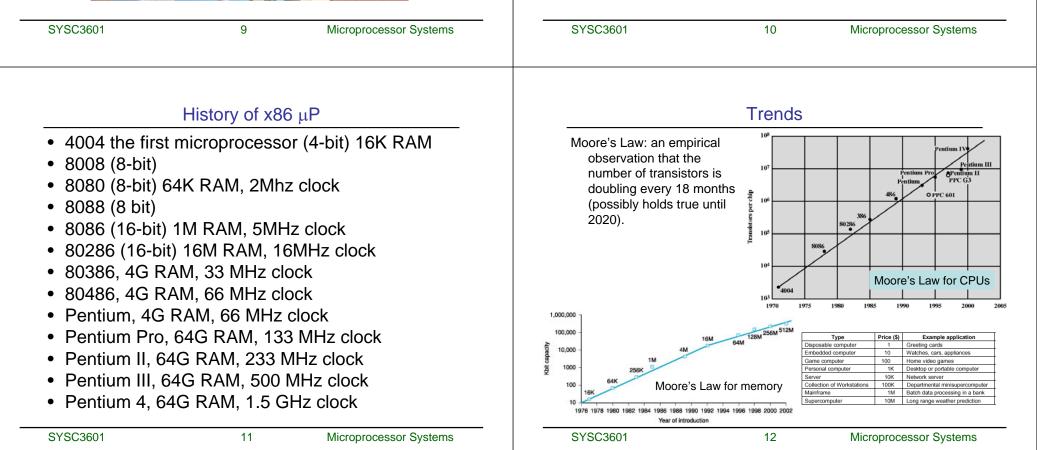
• 1800's to ~1939: Mechanical machines

Census tabulator used ~1890


7

- WWII:
 - Konrad Zuse builds first general purpose programmable calculator (1941).
 - Pioneers use of binary math and Boolean logic in electronic calculation.
 - Relay logic, 5.33 Hz
 - Mechanical encrypting machine ENIGMA by Siemens
 - Turing Colossus code-breaking machine vacuum tubes. Non-programmable. TOP SECRET. (1943)
 - Electronic Numerical Integrator Analyzor and Computer (ENIAC). Ballistics tables. 1st programmable. (1946)
 - 17,000 vacuum tubes, 1500 relays, 30 tonnes, 140 KW power
 - Programmed via 6000 switches, 100's jumpers
 - Too late for war effort, but spawned many research programs

SYSC3601	5	Microprocessor Systems	SYSC3601	6	Microprocessor Systems
 1947: Bell Labs 1952: Von Neu most modern c Program in me 1959: Texas Instannounce integ 1960: DEC PDI First minicomp 512x512 displat 1964: IBM 360 1965: An IC that cost 	mann create omputers use mory. struments ar rated circuit P-1. uter (50 sold, \$ - popular bu \$1000 in 1959 predicts the nu	transistor s IAS this design. d Fairchild 120K, first video game!, usiness machine o now costs \$10. umber of components in	 1970: Fairchild Se Intel introdute DEC PDP-1 1971 Bill Gates at at a steve Jobs 1972: Intel 8 	uces 1K RAM & 40 11. Dominates min and Paul Allen form	nd Intel duces 256 bit RAM chip 04 μP icomputers in 1970s. n Traf-O-Data. building "blue boxes" ion of 4004.

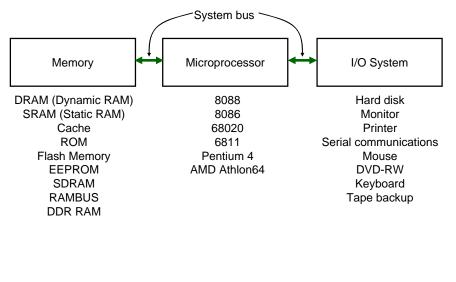

History of the μ Proc

- 1975:MITS Altair 8800.
 - Hailed as first personal computer.
 - Sold as a kit

History of the μ Proc

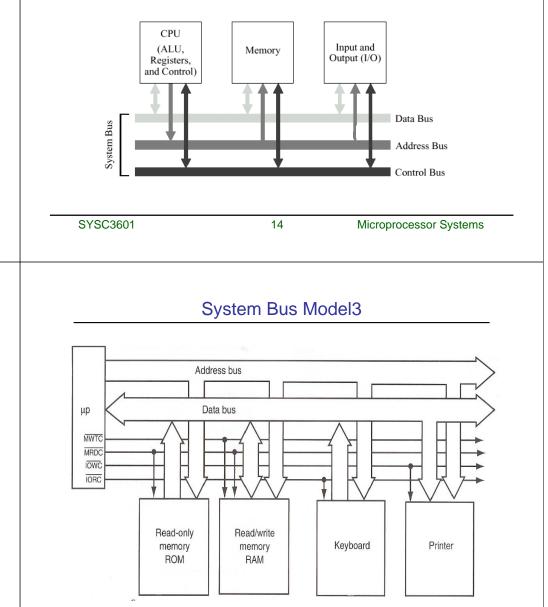
- 1975: Paul Allen & Bill Gates develop BASIC.
 Microsoft is born.
- 1977: Apple II. 16K RAM. US\$1195 (no monitor)
- 1978: DEC VAX First 32-bit superminicomputer
- 1981: IBM PC. 8088 & COTS. No patent. Sold cct diag books for \$49 → clones! Packaged with MS DOS.
- 1984: Apple Macintosh
- 1985: MS Windows 1.0
- 1985: MIPS First commercial RISC machine
- 1987: Sun SPARC First SPARC-based RISC workstation
- 1989: MS Sales reach \$1 billion per year

Von Neumann Model


- Consists of 5 major components:
 - Arithmetic and Logic Unit (ALU): Performs mathematical and logical operations on its operands
 - Control Unit: Produces control signals to orchestrate functioning of all other units (the boss!)
 - Memory Unit: Holds both data and program (in a stored program computer)
 - Input Unit: Obtains data from external sources
 - Output Unit: Provides data to external sources

Memory Input Unit Control Unit

13


SYSC3601

System Bus Model2

System Bus Model1

- Refinement of the von Neumann Model
 - Same 5 components, but CPU (Central Processing Unit) or microprocessor now contains both ALU and Control Unit.
- All components are attached to a shared communication pathway called the **system bus**.

Microprocessor Systems

The Microprocessor

- Controls memory & I/O through bus
- 3 main tasks:
 - 1. Data transfer: MOV, Push*, Pop*, IN, OUT.
 - 2. Arithmetic and logic: ADD, SUB, MUL*, DIV*, AND, OR, XOR, NOT, NEG, shift, rotate.
 - 3. Program flow: Branch, Jump, Trap, Loop.
 - Possibly based on flags (e.g. ZERO, SIGN, CARRY, OVERFLOW, PARITY)
 - * Depends on architecture

The Microprocessor

- Program stored in memory as binary data
 - i.e. stored program computer
- Data widths:
 - Byte (8-bits) (octet in network world)
 - Word (16-bits) *
 - Double word / Long word (32-bits) *
 - * Depends on architecture

SYSC3601 17 Microprocessor Systems	SYSC3601 18 Microprocessor Systems
The Microprocessor	Memory
 Types of microprocessors General purpose processors Desktop processors (e.g. Intel P4, PowerPC, AMD Athlon XP) GPU – Graphics Processing Unit Specialized for high-throughput graphics processing. Emphasis on data throughput and floating point operations. DSPs – Digital Signal Processors Like GPU, emphasis on throughput (multiple streams) and floating point operations (e.g. multiply&add in single operation) Microcontrollers Entire computer on a single chip. Mainly used for embedded applications. Dominates market. 	 Each addressable location is typically 1 byte of binary data Each memory element (byte) has an address, usually specified in hexadecimal notation. Memory size chart: 1KB 2¹⁰ bytes 1,024 bytes 1MB 2²⁰ bytes 1,048,576 bytes 1GB 2³⁰ bytes 1,073,741,824 bytes Ex: 64KB = 64 x 2¹⁰ bytes = 65536 bytes 64K = 2¹⁶ : need 16 address lines. Side note: difference between 'kilo' and 'kibi' 1 kilo=1K=10³; 1 kibi=1Ki=2¹⁰; 1K = 0.976Ki; Will ignore this

Microprocessor Systems

System Bus

- A bus is a collection of wires or traces that interconnect components.
- Grouped by function.

SYSC3601

- Data bus: Moves data among the system components. Can be one- or two-way.
- Address bus: Carries address of element that is being read from or written to.
- Control bus: Carries control signals that coordinate access to the data and address busses.

23

Microprocessor Systems

· Busses can be multiplexed to save pins/wires

Address Bus

- Selects a location in memory or I/O space for reading or writing
- *N* address lines can access 2^{*N*} locations
 - 8086/8088: N=20, 2²⁰, 1M byte
 - 80286/386/68000: N=24, 2²⁴, 16MB
 - 80386DX/486/68020: N=32, 2³², 4GB

24

Microprocessor Systems

- Pentium II: N=36, 2³⁶, 64GB
- AMD Athlon64: N=40, 240, 1TB

SYSC3601 21 Microprocessor System	SYSC3601 22	Microprocessor Systems
Data Bus	Control Bus	
 Transfers information between μP and memory or I/O Data transfers vary in size: 8088/68008/6811: 8 bits 8086/80286/some 386/68000/68010: 16 bits 386DX/486/68020: 32 bits Pentium: 64 bits* Some AMD Athlon64: 128 bits* 	 In most ix86 systems, these 4 of found: — MRDC : Memory ReaD Control — MWTC: Memory WriTe Control — IORC : I/O Read Control — IOWC : I/O Write Control Note: all signals are active low 	control signals are
* Fetches are to cache		

SYSC3601

Control Bus				
 Example read cycle: 1. μP puts address on address bus 2. μP drops MRDC to cause memory to place data on data bus 3. μP reads data from data bus 		Review of binary, decimal, and Hex Dec BCH 0 0 0000		
		hexadecimal numbers (see text chap 1) $\begin{bmatrix} 0 & 0 & 0000 \\ 1 & 1 & 0001 \\ 2 & 2 & 0010 \end{bmatrix}$		
		• Examples: 4 4 0100 5 5 0101		
		$7FE_{16} = 0111\ 1111\ 1110_2$		
		7 - 7 - 0111		
		3A9h = 0011 1010 1001 ₂		
		$6B4Ch = 0110\ 1011\ 0100\ 1100_2$ 9 9 1001		
				A 10 1010
		B 11 1011 C 12 1100		
		Polynomial method (convert to decimal) D 13 1101		
		$ABC_{16} = 10(16^2) + 11(16^1) + 12(16^0) = 2748_{10}$		
		F 15 1111		
Remainde	r Method	Hex Addition		
		Hex Addition • Examples:		
Remainde • Used to convert from • Example: 123 ₁₀ = 11	decimal to binary	Hex Addition • Examples: $C_{16} + 5_{16} = 12_{10} + 5_{10} = 17_{10} = 16_{10} + 1_{10} = 11_{16}$		
 Used to convert from Example: 123₁₀ = 11 Integer 	decimal to binary $11011_2 = 7B_{16}$ Remainder	• Examples:		
 Used to convert from Example: 123₁₀ = 11 	decimal to binary $11011_2 = 7B_{16}$	• Examples: $C_{16} + 5_{16} = 12_{10} + 5_{10} = 17_{10} = 16_{10} + 1_{10} = 11_{16}$ (carry) 1 1 1 1 1		
 Used to convert from Example: 123₁₀ = 11 Integer 	decimal to binary $11011_2 = 7B_{16}$ Remainder	• Examples: $C_{16} + 5_{16} = 12_{10} + 5_{10} = 17_{10} = 16_{10} + 1_{10} = 11_{16}$		
 Used to convert from Example: 123₁₀ = 11 Integer 123/2= 61 	decimal to binary $11011_2 = 7B_{16}$ Remainder 1 \leftarrow LSB	• Examples: $C_{16} + 5_{16} = 12_{10} + 5_{10} = 17_{10} = 16_{10} + 1_{10} = 11_{16}$ (carry) 1 1 1 1 1		
 Used to convert from Example: 123₁₀ = 11 Integer 123/2= 61 61/2= 30 	decimal to binary $11011_2 = 7B_{16}$ Remainder 1 \leftarrow LSB 1	• Examples: $C_{16} + 5_{16} = 12_{10} + 5_{10} = 17_{10} = 16_{10} + 1_{10} = 11_{16}$ $(carry) 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1_{10}$ $(carry) 1 + 1 + 1 + 1 + 1_{10}$ $(carry) 1 + 1 + 1 + 1_{10}$ $(carry) 1 + 1 + 1_{10}$ $(carry) 1 + 1 + 1_{10}$ $(carry) 1 + 1$		
 Used to convert from Example: 123₁₀ = 11 Integer 123/2= 61 61/2= 30 30/2= 15 	decimal to binary $11011_2 = 7B_{16}$ Remainder 1 \leftarrow LSB 1 0	• Examples: $C_{16} + 5_{16} = 12_{10} + 5_{10} = 17_{10} = 16_{10} + 1_{10} = 11_{16}$ $(carry) 1 1 1 1 1 1 1_{10} 1_{10} 1_{10}$ $(carry) 1 1 1_{10} 1_{$		
• Used to convert from • Example: $123_{10} = 11$ Integer 123/2 = 61 61/2 = 30 30/2 = 15 15/2 = 7 7/2 = 3 3/2 = 1	decimal to binary $11011_2 = 7B_{16}$ Remainder 1 \leftarrow LSB 1 0 1 1	• Examples: $C_{16} + 5_{16} = 12_{10} + 5_{10} = 17_{10} = 16_{10} + 1_{10} = 11_{16}$ $(carry) 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1_{10}$ $(carry) 1 + 1 + 1 + 1 + 1_{10}$ $(carry) 1 + 1 + 1 + 1_{10}$ $(carry) 1 + 1 + 1_{10}$ $(carry) 1 + 1 + 1_{10}$ $(carry) 1 + 1$		
• Used to convert from • Example: $123_{10} = 11$ 123/2 = 61 61/2 = 30 30/2 = 15 15/2 = 7 7/2 = 3	decimal to binary $11011_2 = 7B_{16}$ Remainder 1 \leftarrow LSB 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1	• Examples: $C_{16} + 5_{16} = 12_{10} + 5_{10} = 17_{10} = 16_{10} + 1_{10} = 11_{16}$ $(carry) 1 1 1 1 1 1 1_{10} 1_{10} 1_{10}$ $(carry) 1 1 1_{10} 1_{$		

Sign & Magnitude	
 Use left-most bit to represent sign. 	
Remaining bits represent magnitude	
• Examples:	
$-12_{10} = 10001100_2$	
$+12_{10} = 00001100_{2}$	
 For an 8-bit number: 	
– Range = [-127,+127]	
$-$ Smallest = $-127 = 11111111_2$	
- Largest = +127 = 01111111 ₂	
Pro: simple	
 Con: two representations for zero! (+0/-0) 	
SYSC3601 30 Microprocessor Systems	
Radix complement (2's comp)	
Add 1 to Radix-1 complement	
• Examples:	
•	
$+12_{10} = 00001100_2$	
$-12_{10} = 11110100_2$	
$-12_{10} = 11110100_2$ 16's comp of $4AB_{16} = B55_{16}$	
$-12_{10} = 11110100_{2}$ 16's comp of $4AB_{16} = B55_{16}$ • For an 8-bit number:	
$-12_{10} = 11110100_{2}$ 16's comp of $4AB_{16} = B55_{16}$ • For an 8-bit number: - Range = [-128,+127]	
$-12_{10} = 11110100_{2}$ 16's comp of $4AB_{16} = B55_{16}$ • For an 8-bit number:	
$-12_{10} = 11110100_{2}$ 16's comp of $4AB_{16} = B55_{16}$ • For an 8-bit number: - Range = [-128,+127] - Smallest = -128 = 10000000_{2}	
$-12_{10} = 11110100_{2}$ $16's \text{ comp of } 4AB_{16} = B55_{16}$ • For an 8-bit number: - Range = [-128,+127] - Smallest = -128 = 10000000_{2} - Largest = +127 = 01111111_{2}	
$-12_{10} = 11110100_{2}$ $16's \text{ comp of } 4AB_{16} = B55_{16}$ • For an 8-bit number: - Range = [-128,+127] - Smallest = -128 = 10000000_{2} - Largest = +127 = 01111111_{2} • Pro: Good for arithmetic, single zero bit pattern • Con: Discontinuity in bit pattern @ 0 (i.e. 1=0000001, 0=0000000, -1=1111111)	
$-12_{10} = 11110100_{2}$ $16's \text{ comp of } 4AB_{16} = B55_{16}$ • For an 8-bit number: $- \text{ Range} = [-128,+127]$ $- \text{ Smallest} = -128 = 10000000_{2}$ $- \text{ Largest} = +127 = 01111111_{2}$ • Pro: Good for arithmetic, single zero bit pattern • Con: Discontinuity in bit pattern @ 0	

Excess or biased

- Add bias to Radix complement
- Examples (8-bit, excess-127):
 - $+12_{10} = 10001011_{2}$
 - $-12_{10} = 01110011_{2}$
- For an 8-bit excess-127 number:
 - Range = [-127,+128]
 - Smallest = $-127 = 0000000_2$
 - Largest = +128 = 11111111₂
- Pro: Smaller numbers have smaller bit patterns; single zero; continuous bit pattern @ 0 (i.e. 1=10000000, 0=01111111, -1=01111110)

33

Data sizes

- For signed byte, high order bit is sign and

- Little endian (Intel) vs. Big endian (Motorola)

- Con: Difficult to compute by hand
- Used for IEEE-754 floating point

• Bytes (signed or unsigned)

carries weight of -128₁₀

Words (signed or unsigned)

- Formed from 2 bytes

- Formed from 4 bytes

- Little endian vs Big endian

Double (long) words

- Bit ordering: 7 6 5 4 3 2 1 0

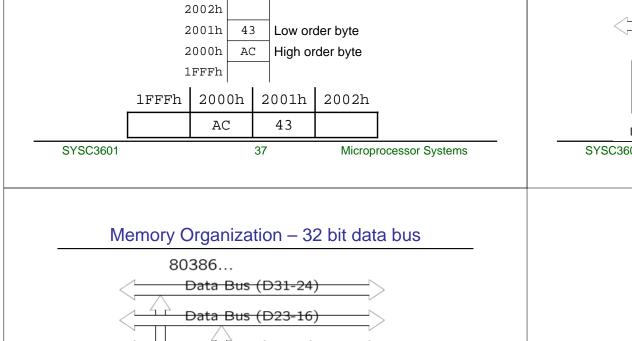
Data Types

- Can be represented using byte (char), word (int),

Integers (whole or fixed point)

double word (long int) - Compiler-dependent Binary coded decimal Each nibble stores a single digit Funky instructions - No longer used much Floating point (deferred) ASCII (EBBCDIC) - Characters and strings All data represented using bits in microprocessor, regardless of type! SYSC3601 34 **Microprocessor Systems** Little Endian (Intel) Least significant byte stored in lower-numbered memory location · Consistent with BIT ordering Require byte flipping in network code • Ex: store AC43h to memory location 2000h: 2002H 2001H AC High order byte 2000H 43 Low order byte 1FFFH 2001H 2002H 1FFFH 2000H 43 AC SYSC3601 36 Microprocessor Systems

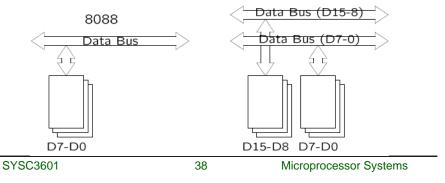
SYSC3601

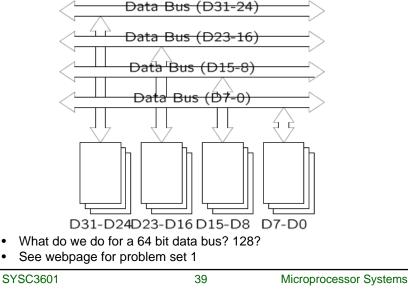

SYSC3601

Microprocessor Systems

Microprocessor Systems

Big Endian (Motorola, Network)


- · Most significant byte stored in lower-numbered memory location
- When incrementing through memory, highest (most significant) byte is first (like writing a number by hand)
- Ex: store AC43h to memory location 2000h:



Memory Organization

- Memory devices are arranged in bytes of 8-bits (modulo parity/ECC)
- μ P may have 8, 16, 32, or 64 data lines ٠
- · Each memory chip returns a single byte - Therefore, multiple banks of memory chips are used.
- Each bank requires a 'bank enable' signal

8086/186/286

•