
SYSC 3601, Winter 2012, Review for Final Exam

Prof. V. Aitken, Ph.D., P.Eng.

These slides are taken mostly from the lecture notes
and focus on material that is important for the final

exam. Additional review material, not included in this
slide deck, will be presented during the remaining

lectures of this term. Be there!

Students who need additional assistance to prepare for
the final exam must contact me ASAP via e-mail to

arrange for meeting dates/times.

History of Intel x86 µP

• 4004 the first microprocessor (4-bit) 16K RAM
• 8008 (8-bit)
• 8080 (8-bit) 64K RAM, 2Mhz clock
• 8088 (8 bit)
• 8086 (16-bit) 1M RAM, 5MHz clock
• 80286 (16-bit) 16M RAM, 16MHz clock
• 80386, 32-Bit, 4G RAM, 33 MHz clock
• 80486, 4G RAM, 66 MHz clock
• Pentium, 4G RAM, 66 MHz clock
• Pentium Pro, 64G RAM, 133 MHz clock
• Pentium II, 64G RAM, 233 MHz clock
• Pentium III, 64G RAM, 500 MHz clock
• Pentium 4, 64G RAM, 1.5 GHz clock

 History of Motorola 680X0 µP

• 6800 - 1974, 8-bit.
• 68000 - 1979, 16-bit data, 24-bit address.
• 68008 - 8 bit data bus, 20 bit address bus.
• 68010 - 1982. Added virtual memory support.
• 68020 - 1984. Fully 32 bit. 3 stage pipeline.

– 256 byte cache. More addressing modes!
• 68030 - 1987. Integrated MMU into chip.
• 68040 - 1991. Harvard architecture with two 4-k caches.

FP on chip. 6 stage pipeline.
• 68060 - 1994. Superscalar version . 10-stage pipeline. 2

integer, 1 fp unit. 8k caches.

Von Neumann Model
• Consists of 5 major components:

– Arithmetic and Logic Unit (ALU): Performs mathematical and logical
operations on its operands

– Control Unit: Produces control signals to orchestrate functioning of all other
units (the boss!)

– Memory Unit: Holds both data and program (in a stored program computer)

– Input Unit: Obtains data from external sources

– Output Unit: Provides data to external sources

ALU Input Unit Output Unit

Memory

Control Unit

System Bus Model1
• Refinement of the von Neumann Model

– Same 5 components, but CPU (Central Processing Unit) or microprocessor now
contains both ALU and Control Unit.

• All components are attached to a shared communication pathway called
the system bus.

Memory

• Each addressable location is typically 1 byte of binary data
– Each memory element (byte) has an address, usually specified in

hexadecimal notation.
• Memory size chart:

• Ex: 64KB = 64 x 210 bytes = 65536 bytes
64K = 216 : need 16 address lines.

1KB 210 bytes 1,024 bytes

1MB 220 bytes 1,048,576 bytes

1GB 230 bytes 1,073,741,824 bytes

Memory Organization
• Memory devices are arranged in bytes of 8-bits (modulo

parity/ECC)

• µP may have 8, 16, 32, or 64 data lines...more?
• Each memory chip returns a single byte

– Therefore, multiple banks of memory chips are used.

• Each bank requires a ‘bank enable’ signal

Memory Organization – 32 bit data bus

• What do we do for a 64 bit data bus? 128?
• Addresses depend on Little vs Big Endien

32-bit Wide Memory

• Requires 4 banks, each 8-bits wide to generate (up to) 32-bits
per read/write

• Bank ID is system address ‘mod 4’

• No A0, or A1 address pins (Why?)

• Requires 4 bank enable signals for writes:

Bank Enables

32-bit Data and 32-bit Address Intel Memory (‘386DX)

8086 Registers and Internal Architecture
EAX,EBX,EDI,etc

A

B

Intel Execution Unit – Programming Model

Motorola 68000 µP – Programming Model

Intel Real Mode Address Generation

1400:1200

or

 14000H
 +1200H

 15200H

Ex. If IP=1200H and CS=1400H
then next instruction will be fetched from:

Not done in Motorola...use lower 24 bits of internal 32-bit address registers

Intel Addressing Modes - Effective Address (EA)

 Effective Address
 (16 bit offset relative to segment)

Final Physical Address
(full 20 bit address)

16 bit Segment shifted to
create 20 bit address

Motorola 68000 µP – Addressing Modes
• There are 14 different addressing modes (more with the 68020!)

Mode Syntax

Data reg direct dn, n = 0..7

Addr reg direct an, n = 0..7

Addr reg indirect (an)

 with Postincrement (an)+

 with Predecrement -(an)

 with Displacement d16(an)

 with Index d8(an,Xm) (Xm is any am or dm)

Relative with offset d16(PC)

Relative with index and offset d8(PC,Xn)

Absolute short < … > (16-bits sign-extended to 32)

(for 000000-007FFF or FF8000-FFFFFF)

Absolute long < … > (32-bits)

Immediate #< … >

Quick immediate #< … > (1 byte, sign-extend to 32)

Implied Register specified as part of mnemonic

Motorola 68000 µP – Addressing Mode Examples
• Example: A sample assembler subroutine for the 68000:
Total: Find the sum of 16-bytes stored in memory.

 org $8000 ;load program counter
total clr.w d0 ;clear D0.
 move.b #16,d1 ;initialize counter
 movea.l #data,a0 ;init pointer to data
loop add.b (a0)+,d0 ;add byte, increment address
 subq.b #1,d1 ;decrement counter
 bne loop ;test for zero, branch not equal.
 movea.l #sum,a1 ;load address to store result
 move.w d0,(a1) ;store sum at sum
 rts ;return from subroutine.

sum dc.w 0 ;save room for result.
data ds.b 16 ;save room for 16 data bytes.
 end

• Note:

– dc.w - define a constant word, operand specifies the value to be written.
– ds.b - define storage byte, operand specifies number of bytes, but not the contents

Intel Assembly and Machine Language
• 16 bit mode instructions take the form:

• OPCODE++

– Typically 1 byte, but not always!

– Selects the operation (MOV, ADD, JMP)

Opcode++
1-2 bytes

MOD-REG-R/M
0-1 byte

Displacement
0-2 bytes

Immediate
0-2 bytes

Assembly and Machine Language
• Example: Base relative + index (memory) to register

MOV AX,[BX+DI+1234H]

100010 D W MOD REG R/M Displacement

Opcode: 100010
D: 1 Must be 1, dest AX specified by REG

W: 1 16 bit transfer

MOD: 10 16-bit displacement

REG: 000 AX

R/M: 001

Machine instruction is: What?

Te
Addr Data

D15-D8
Data

D7 – D0
Addr

ABCD:1013 ABCD:1012

ABCD:1011 ... FB ABCD:1010

ABCD:100F EB 12 ABCD:100E

ABCD:100D 34 81 ABCD:100C

ABCD:100B 8B 12 ABCD:100A

ABCD:1009 34 C3 ABCD:1008

ABCD:1007 81 12 ABCD:1006

ABCD:1005 34 B8 ABCD:1004

ABCD:1003 FB EB ABCD:1002

ABCD:1001 07 ... ABCD:1000

Example: Decode the following 8086 instructions:
• There are two MOV statements and one Add statement
• Give Starting Address of each statement and full ASM code

8086/8088 Pin Assignments & Functions

Motorola 68000 µP – Hardware

Clock
Circuit

Crystal

Intel Decoding Bus Control Signals

• In “max mode” use 8288 bus controller to generate
MRDC,MWTC, IORC, IOWC.

• In “min mode” (and for other processors) it is
sometimes better to decode the available signals.

Motorola 68000 µP – Asynchronous bus control
No Separate IO and Memory!

8284A Clock Generator

10K pullup? 0.5mA sink. (debouncing!)

Bus Transfer Synchronization
• Synchronous busses (eg. Motorola 6800/11/12)

– Transfer times and synchronization are tied to the system clock.

– No facility for varying bus timing.

– Clock generators could be used to vary bus speed (for slower memory).

• Semi-synchronous busses
– provide for “wait states” to be inserted into bus timing (eg. 8086).

– Allows more flexibility in interfacing to slower memory or I/O.

• Asynchronous busses (eg. Motorola 68000).
– Requires extra bus signals for bus arbitration.

– Requires “acknowlegement” (DTACK) signal from devices.

– Requires bus time-out (watchdog).

– Easier multiprocessor memory management.

Wait State Generation using 8284A

8-bit shift
register

will generate 1 wait state

Intel Write Cycle

address data (FROM µP)

Intel Read Cycle

address data (TO µP)

Motorola 68000 µP – Read Cycle

A1-A23

Data may not be
avail when DTACK drops
Only guaranteeing that it
WILL be ready in time
(end of S6)

ASYNCHRONOUS!
From memory device.

READ DATA
(end of S6)

CHECK DTACK
(S5)

Motorola 68000 µP – Write Cycle

A1-A23

ASYNCHRONOUS!
From memory, can
arrive any time before
S5 without causing
wait states

Microcontrollers – MC68HC11

R/W

MC68HC11

AD0
AD1
AD2
AD3
AD4
AD5
AD6
AD7

Port C

A8
A9

A10
A11
A12
A13
A14
A15

AS

Port B

Control

Clock

AS

Port C

Port B

R/W

AS

Port B

Port C

R/W

Read
Cycle

Write
Cycle

A7 - A0 Data In

A15 - A8

A7 - A0 Data Out

A15 - A8

Read/Write Bus Cycle Timing Waveforms

Motorola HC11 Expanded Mode Read/Write Bus Cycles

Program Timing
• See Text Appendix B (or handout) for timing

– Note: the times provided assume that the instructions
have already been fetched and are waiting in the queue.

• Max 8086 clock:
– 5MHz (200ns or 0.2µs per cycle)
– 2.5MHz (400ns or 0.4µs per cycle)

• instruction times are given in clock cycles.
• Ex: Estimate the time for a 5MHz, zero wait state,

8086 to execute the following code segment:
 MOV DI,00FFH
 AGAIN: ADD [1234H+DI],AL
 DEC DI
 JNZ AGAIN

Program Timing
• Note: Loop is executed 254 times with a jump to again, and once with no

jump.

 Instruction Add.Mode T-states Times Total
MOV DI,00FFH (reg,imm) 4 1 4

ADD [1234H+DI],AL
(mem,reg)

EA=9
16+EA=25 255 6375

DEC DI (reg 16) 3 255 765

JNZ AGAIN
T 16 254 4064

F 4 1 4

TOTAL 11212

Total time is: 11212 x 200ns = 2.24ms
Note: Timing is complicated by 1) Wait States and 2) Unaligned Transfers.

Buffered and Demultiplexed 8086

Control

Address

Data

Buffered Motorola 68000, No Demultiplexing!

1234 Hex, Little Endian (Intel) vs Big Endian (Motorola)

• 8086 memory drawn with odd bank (addresses) on left, and even bank on right.

• 68000 memory is usually drawn with even Addr. bank on left, and odd
bank on right.

Odd Even

00003H 12 34 00002H
00001H 00000H

D15-D8

(BHE)
D7-D0

(BLE)

Even Odd

$000002 12 34 $0000003
$000000 $0000001

D15-D8

(UDS)
D7-D0

(LDS)

Memory & I/O Interfacing

• General steps for memory and I/O interfacing
– Generic memory device:

Memory & I/O Interfacing
• Steps to success:

1) Architectural questions:
• How many chips are required?

• How many address lines go to each chip?

• How will chips be organized into banks and which parts of the address bus
will be used?

2) Determine address range:
• Typically problem is to place devices within memory map

• Determine START, SIZE, LO (=START), HI (=LO+SIZE-1)

• Determine CONST, SEL, and MEM address lines

3) Generate overall chip select signal (MSEL) from CONST portion of address
range and M/IO

4) Generate bank-specific write signals if required

5) Complete interface design! (often using decoders)
• Be sure to connect address bus, data bus, and control bus (RD, WR)

Address Decoding

• The 74LS138 3-to-8 decoder

8086 Memory Interface

• The 8086 has a 16-bit data bus.

• Memory is arranged in two 8-bit banks
– low bank: contains all even addresses.

– high bank: contains all odd addresses.

8086 Memory Interface
• Aligned/unaligned words

– W1 is stored on an even (aligned) address.
• It can be access in a single read cycle.

– W2 is stored at an odd (unaligned) address.
• It will require two read cycles (8 T-cycles).

 (a) During first read, W2L (odd address) will appear on the high byte of the
data bus.

 (b) During the second read, W2H (even address) will appear on the low byte
of data bus.

• During a read operation, both banks may (and often are)
activated.

• The µP will read 16-bits for read operations, or will only read
the correct half of the data bus for byte operations.
– Note that AL may receive data from the high half of the data bus when

reading a byte from an odd address!

Memory Interface
• Write cycles must activate the correct bank(s)

based on BHE and BLE (A0).
• BHE is supplied by µP (multiplexed with S7)
• A0 is used as BLE

– i.e. A0=0 for an even address and A0=1 for an odd
address

– (A0 is not even a pin on the ‘386 and up)

BHE BLE Function
0 0 Both banks (16 bits)

0 1 High bank (8 bits)

1 0 Low bank (8 bits)

1 1 No banks enabled

16-bit Intel Memory Interfacing Example

• Design a memory interface for the 8086 which will
provide 256k bytes of SRAM, organized as 128k x
16bits, starting at address ?????H and using 62256
SRAM chips (32k x 8bit).
– Assume that 8086 address, data, status, and control busses

are already demultiplexed and buffered.

16-bit Memory Interfacing Example 1

What address range
does each chip respond to?

Motorola 68000 µP – Memory Interfacing

• Almost identical to the 8086 except:
1. Switch even and odd banks

2. Must generate DTACK

3. Must use AS, R/W, UDS and LDS for control.

• During a byte-read operation, the µP will select the
correct half of the data bus depending on whether
it's an even or odd address (similar to 8086).

• Separate write strobes are required for even and odd
banks so that data is not written to the wrong
memory bank.

16-bit Motorola Memory Interfacing Example

• Design a memory interface for the 68000 which will
provide 256k bytes of SRAM, organized as 128k x
16bits, starting at address $?????? and using 62256
SRAM chips (32k x 8bit).
– Assume that the 68000 address, data, status, and control

busses are already buffered.

Intel I/O Mapping Options

• Two methods are available for Intel:
1. I/O mapped I/O (isolated I/O, Intel)

• I/O Ports are isolated from memory in a separate I/O
address space.

• Memory can be expanded to full size

• Data transfer from/to I/O is restricted to IN and OUT
instructions.

• Separate control signals using M/IO, WR, RD enable I/O
ports.

• Intel-based PC’s use isolated I/O

I/O Mapping Options

2. Memory Mapped I/O (Intel and Motorola)

• I/O device is treated as a memory location.

• Any memory transfer instruction can used to access the
device.

• Reduces amount of system memory available to
applications.

• Reserves fixed portion(s) of the memory map for I/O.

• 6800, 68000 uses memory-mapped I/O.

I/O Interfacing

1) Supervisory Control System Architecture:

I/O Interfacing

Peripheral Device Interfacing for I/O

I/O Interfacing

Ex: 8255 Interface:

Addr. Decoder

To/from
External
Devices…

8086

8086

Motorola 68000 µP – I/O Interfacing
• All I/O is memory-mapped.
• Decoding is the same as for memory.
• One still must generate DTACK.

Would require another
buffer/latch pair for UDS
for a 16-bit I/O interface.
(connected to D15-D8).

Motorola 68000 DTACK
• Block diagram of DTACK circuit:

• DTACK delay generator:

Note that AS high leads to
DTACK going high immediately

‘Device select’
signal from address
decoder.

‘PRE’ presets the
flip-flop (sets it to 1)

Intel Interrupt Response Sequence
• Each time the µP completes execution of an

instruction, it will check the status of NMI and INTR.
• if either is active, or if the next instruction is INTO,
INT n, or BOUND, then:

 1. Push flag register onto stack.
 2. Clear IF and TF (interrupt enable and trap

 flags). Interrupts are now disabled.
 3. Push CS then IP on stack.

 4. Fetch the interrupt vector (discussed shortly)

• The final statement of an interrupt service route (ISR)
is IRET – it pops IP, CS and Flags.

Intel Interrupt Vector Table

• Located in first 1K of memory (00000-003FF).

• Contains 256, 4-byte interrupt vectors.

• Each interrupt vector contains the address (segment

and offset) of the service routine.

• Each entry in the vector table is represented by an

integer between 0 and 255, called the interrupt type.

Intel Interrupt Vector Table

Intel response to hardware interrupts
• The response to an INTR is two INTA bus

cycles separated by two idle clock cycles.
• No address is provided by the 8086, but ALE is

generated which will load the address latches
with unknown data.

• First INTA cycle signals devices to prepare to
present the TYPE number on the next INTA
(CPU does not capture info on the first INTA).

• During the second INTA, the device causing the
interrupt places a byte on D7-D0 which
represents the interrupt TYPE.

Intel response to hardware interrupts

Note: One more idle clock cycle here

Motorola 68000 µP – Exceptions (Interrupts)
• 68000 Hardware Interrupts

– Seven levels of external interrupts depending on IPL2, IPL1, and
IPL0.

– Level 0, all IPLs = 1, no interrupt.

– Level 7, all IPLs = 0, highest priority (non-maskable).

– Interrupt priority mask (bits 8, 9, and 10 of SR) is set to disable lower
priority interrupts.

Example circuit to generate a level-7 interrupt
using a single push-button.

We can develop more complex circuits to generate
multiple interrupt levels depending on the source
of the interrupt request.

Motorola 68000 µP – Exceptions (Interrupts)

• Interrupt Acknowledge Cycle

– (asynchronous, hardware interrupt requests)

1. Device and interrupt logic set IPL2, IPL1and

IPL0.

2. µP completes current instruction.

3. µP enters interrupt acknowledge cycle.

(a) FC2, FC1, FC0 = 111.

(b) AS = 0, LDS = 0, R/W = 1.

A3, A2, A1 = requested interrupt level.

Motorola 68000 µP – Exceptions (Interrupts)

• Interrupt Acknowledge Cycle con’t
4. External logic may do one of two things:

(a) Supply a vector number.
– Place 8-bit vector number of D7-D0.

– pull DTACK low.

– µP will read D7-D0.

(b) Request an “auto-vector".
– Pull VPA low. Leave DTACK high.

– µP generates its own vector based on interrupt level first supplied to
IPL inputs.

– autovectors point to locations $064 through $07f in vector table.

– Autovectors should be used whenever 7 or less interrupt
types are needed.

5. Proceed with exception handling steps from slide 42

Motorola 68000 µP – Exceptions (Interrupts)

The response to an interrupt:

1. Resolve priorities from external

interrupt request,

present appropriate 3-bit code on

IPL2-0

2. Monitor FC2-0 for intr acknowledge

cycle.

• AS=0, R/W=1, LDS=0

• A3-1 = requested interrupt level

3. Either:

3a) provide vector number on D7-0

and pull DTACK low,

OR

3b) request autovector by pulling

VPA low.

1

1

2

2

2
2
3a

3a
3b

2

	Slide Number 1
	History of Intel x86 mP
	 History of Motorola 680X0 mP
	Von Neumann Model
	System Bus Model1
	Memory
	Memory Organization
	Memory Organization – 32 bit data bus
	32-bit Wide Memory
	32-bit Data and 32-bit Address Intel Memory (‘386DX)
	8086 Registers and Internal Architecture
	Intel Execution Unit – Programming Model
	Motorola 68000 mP – Programming Model
	Intel Real Mode Address Generation
	Intel Addressing Modes - Effective Address (EA)
	Motorola 68000 mP – Addressing Modes
	Motorola 68000 mP – Addressing Mode Examples
	Intel Assembly and Machine Language
	Slide Number 19
	Slide Number 20
	Assembly and Machine Language
	Slide Number 22
	8086/8088 Pin Assignments & Functions
	Motorola 68000 mP – Hardware
	Intel Decoding Bus Control Signals
	Motorola 68000 mP – Asynchronous bus control�No Separate IO and Memory!
	8284A Clock Generator
	Bus Transfer Synchronization
	Wait State Generation using 8284A
	Intel Write Cycle
	Intel Read Cycle
	Motorola 68000 mP – Read Cycle
	Motorola 68000 mP – Write Cycle
	Microcontrollers – MC68HC11
	Slide Number 35
	Program Timing
	Program Timing
	Buffered and Demultiplexed 8086
	Buffered Motorola 68000, No Demultiplexing!
	1234 Hex, Little Endian (Intel) vs Big Endian (Motorola)
	Memory & I/O Interfacing
	Memory & I/O Interfacing
	Address Decoding
	8086 Memory Interface
	8086 Memory Interface
	Memory Interface
	16-bit Intel Memory Interfacing Example
	16-bit Memory Interfacing Example 1
	Motorola 68000 mP – Memory Interfacing
	16-bit Motorola Memory Interfacing Example
	Intel I/O Mapping Options
	I/O Mapping Options
	I/O Interfacing
	I/O Interfacing
	Peripheral Device Interfacing for I/O
	I/O Interfacing
	Motorola 68000 mP – I/O Interfacing
	Motorola 68000 DTACK
	Intel Interrupt Response Sequence
	Intel Interrupt Vector Table
	Intel Interrupt Vector Table
	Intel response to hardware interrupts
	Intel response to hardware interrupts
	Motorola 68000 mP – Exceptions (Interrupts)
	Motorola 68000 mP – Exceptions (Interrupts)
	Motorola 68000 mP – Exceptions (Interrupts)
	Motorola 68000 mP – Exceptions (Interrupts)

