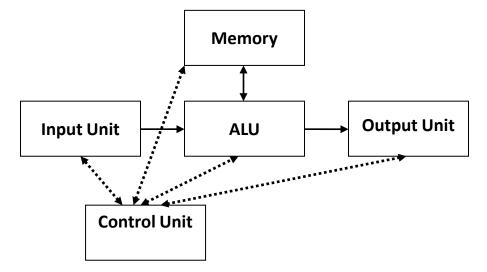
SYSC 3601, Winter 2012, Review for Final Exam

Prof. V. Aitken, Ph.D., P.Eng.

These slides are taken mostly from the lecture notes and focus on material that is important for the final exam. Additional review material, not included in this slide deck, will be presented during the remaining lectures of this term. Be there!

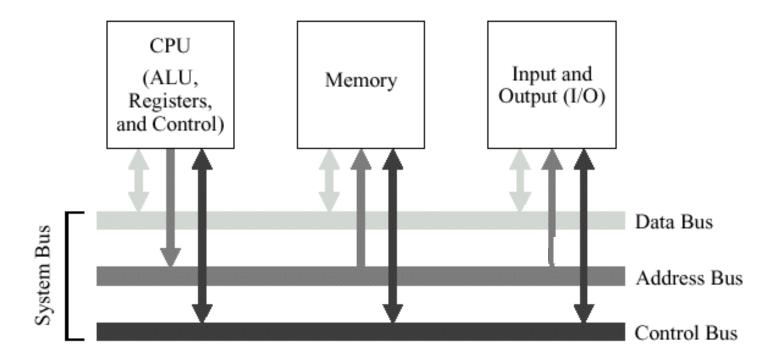
Students who need additional assistance to prepare for the final exam must contact me ASAP via e-mail to arrange for meeting dates/times.

<u>History of Intel x86 μP</u>


- 4004 the first microprocessor (4-bit) 16K RAM
- 8008 (8-bit)
- 8080 (8-bit) 64K RAM, 2Mhz clock
- 8088 (8 bit)
- 8086 (16-bit) 1M RAM, 5MHz clock
- 80286 (16-bit) 16M RAM, 16MHz clock
- 80386, 32-Bit, 4G RAM, 33 MHz clock
- 80486, 4G RAM, 66 MHz clock
- Pentium, 4G RAM, 66 MHz clock
- Pentium Pro, 64G RAM, 133 MHz clock
- Pentium II, 64G RAM, 233 MHz clock
- Pentium III, 64G RAM, 500 MHz clock
- Pentium 4, 64G RAM, 1.5 GHz clock

History of Motorola 680X0 μP

- 6800 1974, 8-bit.
- 68000 1979, 16-bit data, 24-bit address.
- 68008 8 bit data bus, 20 bit address bus.
- 68010 1982. Added virtual memory support.
- 68020 1984. Fully 32 bit. 3 stage pipeline.
 256 byte cache. More addressing modes!
- **68030** 1987. Integrated MMU into chip.
- **68040** 1991. Harvard architecture with two 4-k caches. FP on chip. 6 stage pipeline.
- **68060** 1994. Superscalar version . 10-stage pipeline. 2 integer, 1 fp unit. 8k caches.


Von Neumann Model

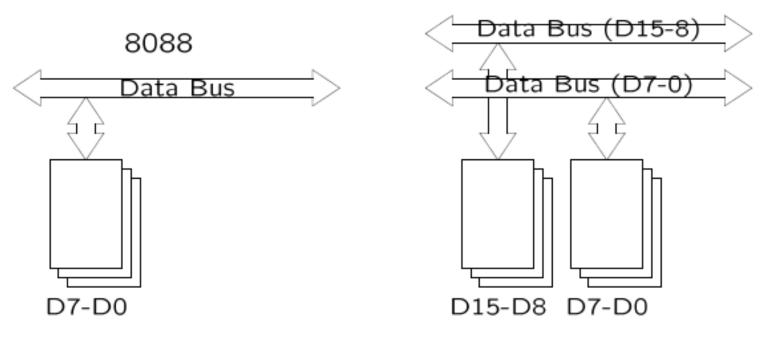
- Consists of **5 major components**:
 - Arithmetic and Logic Unit (ALU): Performs mathematical and logical operations on its operands
 - Control Unit: Produces control signals to orchestrate functioning of all other units (the boss!)
 - Memory Unit: Holds both data and program (in a stored program computer)
 - Input Unit: Obtains data from external sources
 - Output Unit: Provides data to external sources

System Bus Model1

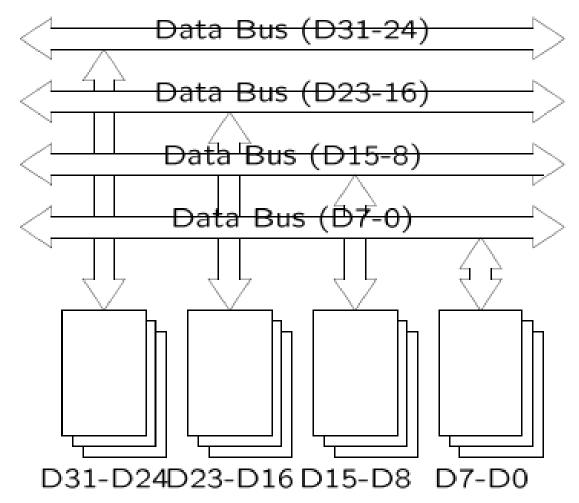
- Refinement of the von Neumann Model
 - Same 5 components, but CPU (Central Processing Unit) or microprocessor now contains both ALU and Control Unit.
- All components are attached to a shared communication pathway called the **system bus**.

<u>Memory</u>

- Each addressable location is typically 1 byte of binary data
 - Each memory element (byte) has an address, usually specified in hexadecimal notation.
- Memory size chart:

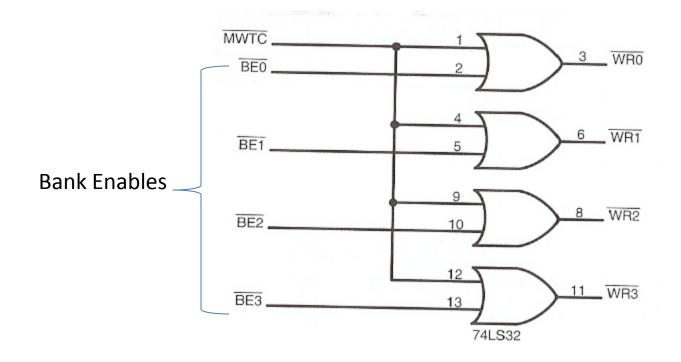

1KB	2 ¹⁰ bytes	1,024 bytes
1MB	2 ²⁰ bytes	1,048,576 bytes
1GB	2 ³⁰ bytes	1,073,741,824 bytes

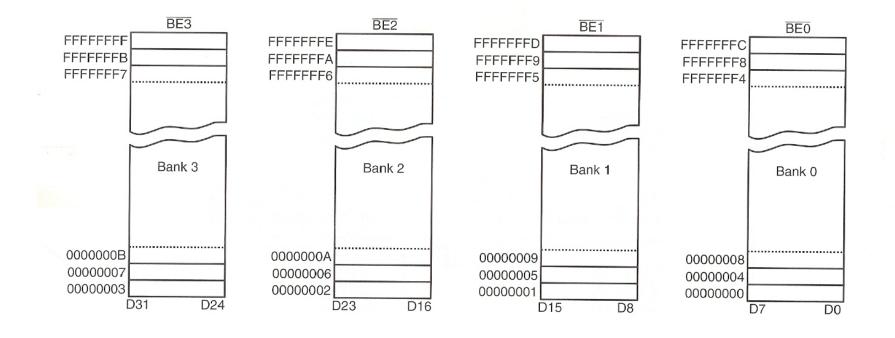
 Ex: 64KB = 64 x 2¹⁰ bytes = 65536 bytes 64K = 2¹⁶ : need 16 address lines.


Memory Organization

- Memory devices are arranged in bytes of 8-bits (modulo parity/ECC)
- µP may have 8, 16, 32, or 64 data lines...more?
- Each memory chip returns a single byte
 - Therefore, multiple banks of memory chips are used.
- Each bank requires a 'bank enable' signal

8086/186/286


<u>Memory Organization – 32 bit data bus</u> 80386...


- What do we do for a 64 bit data bus? 128?
- Addresses depend on Little vs Big Endien

32-bit Wide Memory

- Requires 4 banks, each 8-bits wide to generate (up to) 32-bits per read/write
- Bank ID is system address 'mod 4'
- No AO, or A1 address pins (Why?)
- Requires 4 bank enable signals for writes:

32-bit Data and 32-bit Address Intel Memory ('386DX)

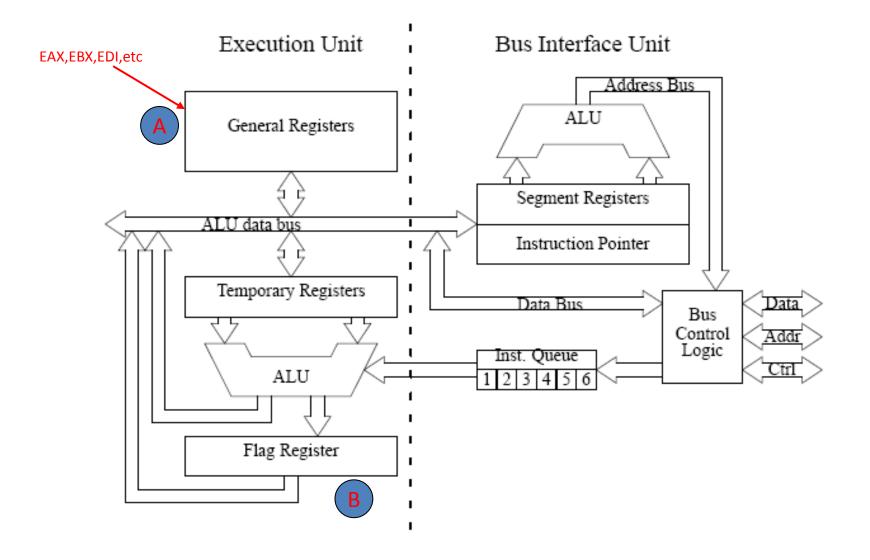
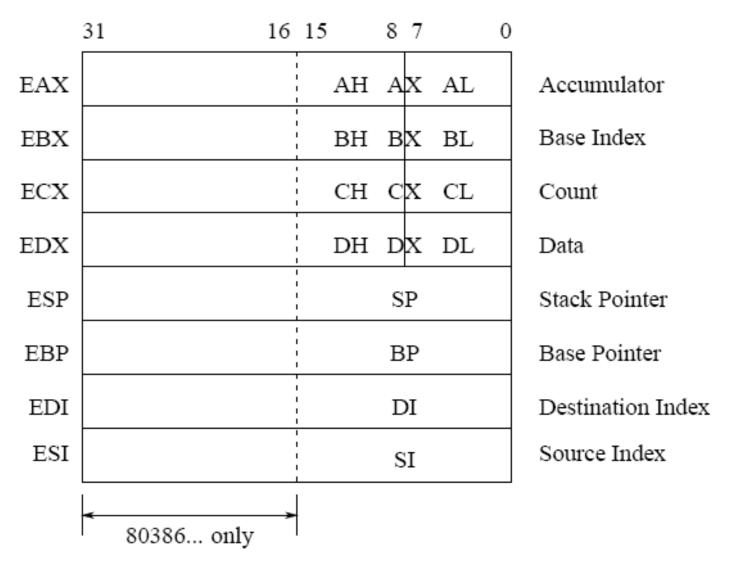
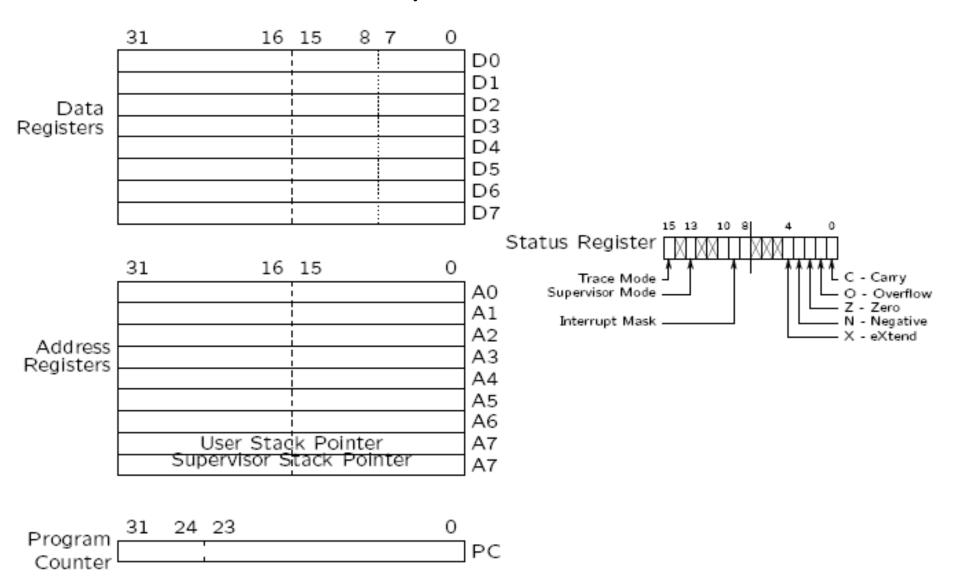
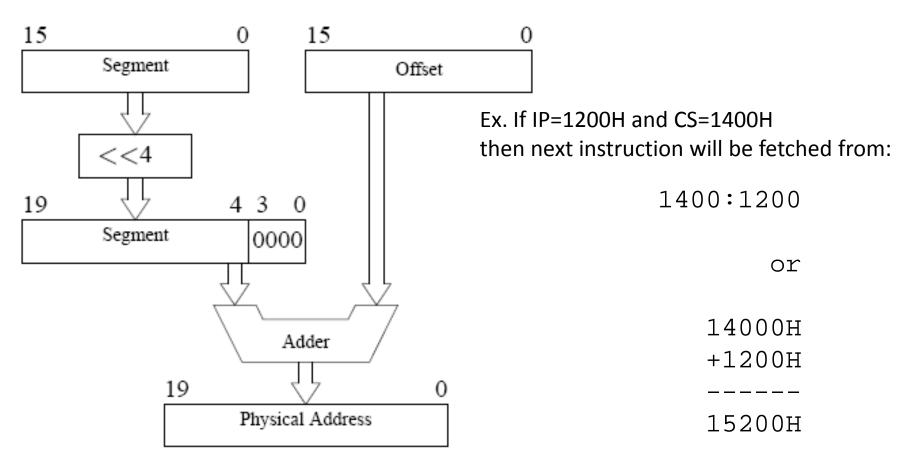
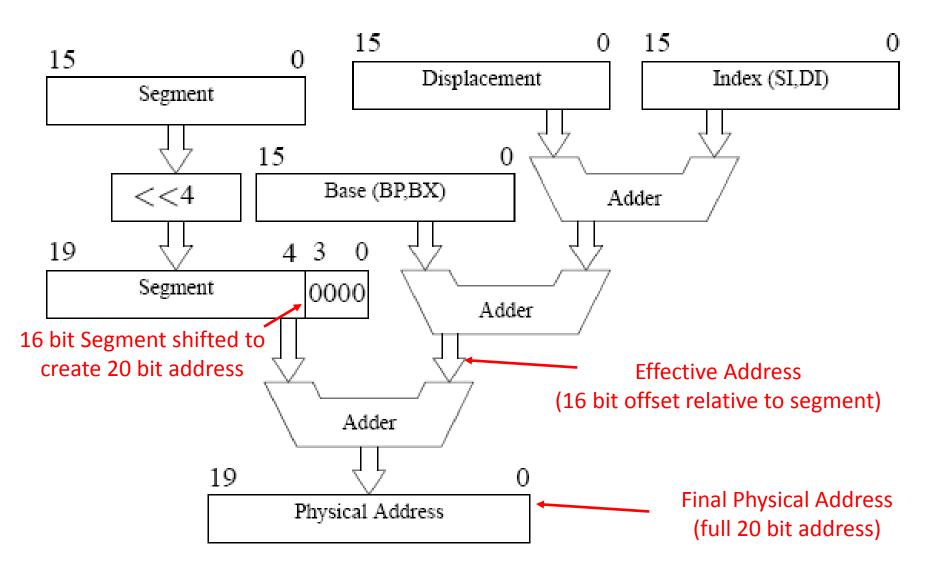




Figure 1: Internal Architecture of the 8086/88


Intel Execution Unit – Programming Model

<u>Motorola 68000 µP – Programming Model</u>



Intel Real Mode Address Generation

Not done in Motorola...use lower 24 bits of internal 32-bit address registers

Intel Addressing Modes - Effective Address (EA)

Motorola 68000 μP – Addressing Modes There are 14 different addressing modes (more with the 68020!)

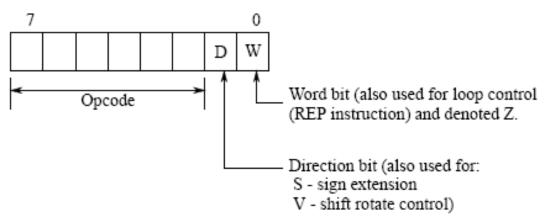
•

Mode	Syntax
Data reg direct	d _n , n = 07
Addr reg direct	a _n , n = 07
Addr reg indirect	(a _n)
with Postincrement	(a _n)+
with Predecrement	-(a _n)
with Displacement	$d_{16}(a_n)$
with Index	$d_8(a_n, X_m)$ (X _m is any a_m or d_m)
Relative with offset	d ₁₆ (PC)
Relative with index and offset	d ₈ (PC,X _n)
Absolute short	< \dots > (16-bits sign-extended to 32)
	(for 000000-007FFF or FF8000-FFFFFF)
Absolute long	< > (32-bits)
Immediate	#< >
Quick immediate	#< > (1 byte, sign-extend to 32)
Implied	Register specified as part of mnemonic

<u>Motorola 68000 µP – Addressing Mode Examples</u>

• Example: A sample assembler subroutine for the 68000: Total: Find the sum of 16-bytes stored in memory.

total	org clr.w		;load program counter ;clear D0.
		#16,d1	; initialize counter
	movea.1	#data,a0	;init pointer to data
loop	add.b	(a0)+,d0	;add byte, increment address
	subq.b	#1,d1	;decrement counter
	bne	loop	;test for zero, branch not equal.
	movea.l	#sum,a1	;load address to store result
	move.w	d0,(a1)	;store sum at sum
	rts		;return from subroutine.
sum	dc.w	0	;save room for result.
data	ds.b end	16	;save room for 16 data bytes.


- Note:
 - dc.w-define a constant word, operand specifies the value to be written.
 - ds.b-define storage byte, operand specifies number of bytes, but not the contents

Intel Assembly and Machine Language

• 16 bit mode instructions take the form:

Opcode++	MOD-REG-R/M	Displacement	Immediate
1-2 bytes	0-1 byte	0-2 bytes	0-2 bytes

- OPCODE⁺⁺
 - Typically 1 byte, but not always!
 - Selects the operation (MOV, ADD, JMP)

]	Displacement Immediate				
1-2 Dytes		0-	1 Dyle	_	0-2 Dyt	65	0-2 Dytes	_	
Direction:					"data"				
D=0 9	SRC=RE	G							
D=1 1	DST=RE	G							
Word:									
W=0	8-Bit								
W=1	16-Bit								
		-							
"reg" Field	Bit As	sign	ments:		"r/m" I	ield B	it Assignmen	its:	
16-Bit	8-Bi	t	Comment.	1	r/m	Oper	and Address		
(w=1)	(w=0)	Segment		000	(BX)	+ (SI) + DISP		
000 AX	000 2	AL	00 ES	1	001	(BX)	+ (DI) + DISP		
001 CX	001 (CL	01 CS	1	010	(BP)	+ (SI) + DISP		
010 DX	010 1	DL	10 33	1	011	(BP)	+ (DI) + DISP		
011 BX	011 1	BL	11 DS		100	(5	I) + DISP		
100 SP	100 2	AH		-	101	à	DI) + DISP		
101 BP	101 (CH			110	(B	P) + DISP		
110 SI	110 1	DH			111	(B	X) + DISP		
	1-2 bytes Direction: D=0 9 D=1 1 Word: W=0 W=1 "reg" Field 16-Bit (w=1) 000 AX 001 CX 010 DX 011 BX 100 SP 101 BP	1-2 bytes Direction: D=0 SRC=RE D=1 DST=RE Werd: W=0 8-Bit W=1 16-Bit 8-Bit 'reg" Field Bit Ass 16-Bit 8-Bit 000 AX 000 0 000 0 001 CX 001 0 010 0 011 DX 010 1 101 1 100 SP 100 2 100 2 101 BP 101 0 00 2	1-2 bytes 0- Direction: D=0 SRC=REG D=1 DST=REG Werd: S-Bit W=0 S-Bit W=1 16-Bit "reg" Field Bit Assign 16-Bit S-Bit (w=1) (w=0) 000 AX 000 AL 001 CX 001 CL 010 DX 010 DL 011 BX 011 BL 100 3P 100 AH 101 BP 101 CH	1-2 bytes 0-1 byte Direction:	1-2 bytes 0-1 byte Direction: D=0 SRC=REG D=1 DST=REG Word: W=0 8-Bit W=1 16-Bit "reg" Field Bit Assignments: 16-Bit 8-Bit 000 AX 000 AL 00 E3 001 CX 0010 DL 10 SS 011 DX 010 DL 10 SS 100 SP 100 AH 101 BP 101 CH	1-2 bytes 0-1 byte 0-2 byte Direction:	1-2 bytes 0-1 byte 0-2 bytes Direction: "data D=0 SRC=REG D=1 DST=REG Word: "data W=0 8-Bit W=1 16-Bit 16-Bit 8-Bit 000 AX 000 AL 000 I CX 001 CL 010 DX 010 DL 010 DX 010 DL 100 SP 100 AH 101 CH 110 (BP)	1-2 bytes 0-1 byte 0-2 bytes 0-2 bytes Direction: "data" "data" D=0 SRC=REG "data" D=1 DST=REG "data" Weod 8-Bit "meg" Field Bit Assignments: "r/m" Field Bit Assignment 16-Bit 8-Bit Segment 000 (BX) + (SI) + DISP 000 AX 000 AL 00 ES 001 (BX) + (DI) + DISP 010 DX 010 DL 10 SS 010 (BP) + (SI) + DISP 011 BX 011 BL 11 DS 101 (DD) + DISP 101 SP 100 (SI) + DISP 101 (DD) + DISP 101 (DD) + DISP 101 BP 101 CH 110 (BP) + DISP 101 (BP) + DISP	

"mod" Field Bit Assignments:

111 DI 111 BH

mod	Displacement
00	DISP = 0*, disp-low and disp-high are absent
01	DISP = disp-low sign-extended to 16-bits, disp-high is absent
10	DISP = disp-high:disp-low
11	r/m is treated as "reg" field

*except if mod = 00 and r/m = 110 then EA = disp-high:disp-low

Effective Address Calculation Time

EA Components					
Displacement Only		6			
Base or Index Only	(BX,BP,SI,DI)	5			
Disp + Base or Index	(BX,BP,SI,DI) + DISP	9			
Base + Index	BP + DI, BX + SI	7			
Dase + IIIdex	BP + SI, BX + DI	8			
Disp + Base + Index	BP + DI + DISP BX + SI + DISP	11			
Dip Dux Huter	BP + SI + DISP BX + DI + DISP	12			

MOV - MOVE (BYTE OR WORD)

Operation	(DEST)←(SRC)

Flags Affected None

Description MOV destination, source

MOVE transfers a byte or word from the source to the destination operand.

Encoding

Memory or Register Operand to/from Register Operand

1000100	w mod reg r/m	"data"
If d = 1 then SRC = 1	A, DEST = REG, else SRC =	REG, DEST = EA.

Immediate Operand to Memory or Register Operand

1	1	0	0	0	1	1	W	mod ()	0	0	r/m	"data"
SRC	;=	dat	a, 1	DE	ST	=]	EA.						

____,____

Immediate Operand to Register						
1011w reg	"data"					
SRC = data, DEST = REG.						

Memory Operand to Accumulator

1	0	1	0	0	0	0	W	addr-low	addr-high
If w = 0 then SRC = addr, DEST = AL, else SRC = addr, DEST = AX.									

. .

Accumulator to Memory Operand

1	0	1	0	0	0	1	×	addr-low	addr-high	
If w	If w = 0 then SRC = AL, DEST = addr, else SRC = AX, DEST = addr.									

Memory or Register Operand to/from Segment Register

I	1	0	0	0 1	1	d 0	m	od 0	reg	r/m		"dat:	2″	
	d m	ist l	be s	et su	ch ti	hat se	gment re	gister	r is enc	oded by	2-bit reg	field. C	S cannot be	DST.

MOV Operands	Clocks	Transfers	Bytes	MOV Coding Example
memory, accumulator	10	1	3	MOV ARRAY, AL
accumulator, memory	10	1	3	MOV AX, TEMP_RESULT
register, register	2	-	2	MOV AX, CX
register, memory	8 + EA	1	2-4	MOV BP, STACK TOP
memory, register	9 + EA	1	2-4	MOV COUNT[DI], CX
register, immediate	4	-	2-3	MOV CL, 2
memory, immediate	10 + EA	1	3-6	MOV MASK[BX][SI], 2CH
seg-reg, reg16	2	-	2	MOV ES, CX
seg-reg, mem16	8 + EA	1	2-4	MOV DS, SEGMENT_BASE
reg16, seg-reg	2	-	2	MOV BP, SS
memory, seg-reg	9 + EA	1	2-4	MOV [BX] SEG_SAVE, CS

	ION				DEC – DECR	EMENT			
Operation	(DEST)+-(LSRC) + (RSRC)			Operation	(DEST)←(DEST	D-1		
Flags . Affected	AF, CF, OF, PF, SF, Z	F			Flags Affected	AF, OF, PF, SF,	ZF		
Description	ADD destination, sou	rce			Description				and is treated as an unsigned
1	the destination opera	erands m	be bytes or words, replaces ay be signed or unsigned D updates AF, CF, OF, PF,		binary number (see AA and DAA). DEC updates AF, OF, P and ZF; it does not affect CF.				
Encoding					Encoding				
000000a fd=1thenLSRC	ter Operand with Re i w mod reg r/ = REG, RSRC = EA, I RSRC = REG, DEST	m DEST = REG	"data"	·	8-bit Register or Memory 1 1 1 1 1 1 1 w mod 0 0 1 r/m DEST = EA.				
100000:	and to Memory or Re w mod 0 0 0 1 C = data, DEST = EA.	<i>19</i>	16-bit Register (0 1 0 0 1 DEST = REG.						
immediate Opera	nd to Accumulator		DEC Operand	s Clocks	Transfers	Bytes	DEC Coding Example		
000001	0 w "data"				reg16	3	-	1	DEC AX
	= AL, RSRC = data, I				reg8 memory	3 15 + EA	2	2	DEC AL DEC ARRAY[SI]
else LSRC = AX, RSRC = data, DEST = AX.					memory	15 + LA	2	2-4	DEC ARRAI[51]
		ADD Operands Clocks Transfers Bytes ADD Coding Example							
ADD Opera	nds Clocks	Transfers	Bytes	ADD Coung Example					
ADD Opera register,register	3	-	2	ADD CX, DX	INF HIM			17 II	NO ON NOT 7FPO
register,register register,memory	3 9 + EA	-	2 2-4	ADD CX, DX ADD DI, [BX]ALPHA	JNE – JUM	P ON NOT EC	QUAL / JN	(Z – Л	JMP ON NOT ZERO
register,register register,memory memory,register	3 9 + EA 16 + EA	- 1 2	2 2-4 2-4	ADD CX, DX ADD DI, (BX)ALPHA ADD TEMP, CL	JNE – JUM Operation		-		MP ON NOT ZERO
register,register register,memory memory,register register,immedia	3 9 + EA 16 + EA te 4	- 1 2 -	2 2-4 2-4 3-4	ADD CX, DX ADD DI, [BX]ALPHA ADD TEMP, CL ADD CL,2	Operation Flags		-		
register, register register, memory memory, register register, immediat memory, immedia	3 9 + EA 16 + EA te 4 ate 17 + EA	- 1 2 - 2	2 2-4 2-4 3-4 3-6	ADD CX, DX ADD DI, [BX]ALPHA ADD TEMP, CL ADD CL, 2 ADD ALPHA, 2	Operation Flags Affected	If (ZF) = 0 then none	(₽)+-(₽)+	disp (sig	n extended to 16-bits)
register,register register,memory memory,register register,immedia	3 9 + EA 16 + EA te 4 ate 17 + EA	- 1 2 -	2 2-4 2-4 3-4	ADD CX, DX ADD DI, [BX]ALPHA ADD TEMP, CL ADD CL,2	Operation Flags	If (ZF) = 0 then none JNE (Jump on N	(IP)+−(IP) + iot Equal to)/ get operand	disp (sig JNZ (Ju	
register,register register,memory memory,register register,immediat memory,immedia	3 9 + EA 16 + EA te 4 ate 17 + EA	- 1 2 - 2	2 2-4 2-4 3-4 3-6	ADD CX, DX ADD DI, [BX]ALPHA ADD TEMP, CL ADD CL, 2 ADD ALPHA, 2	Operation Flags Affected	If (ZF) = 0 then none JNE (Jump on N control to the tan tested (ZF = 0) i	(IP)+−(IP) + iot Equal to)/ get operand	disp (sig JNZ (Ju	n extended to 16-bits) mp on Not Zero) transfers
register,register register,memory memory,register register,immediat memory,immedia	3 9 + EA 16 + EA te 4 ate 17 + EA	- 1 2 - 2	2 2-4 2-4 3-4 3-6	ADD CX, DX ADD DI, [BX]ALPHA ADD TEMP, CL ADD CL, 2 ADD ALPHA, 2	Operation Flags Affected Description Encoding	If (ZF) = 0 then none JNE (Jump on N control to the tan tested (ZF = 0) i	(IP)+-(IP) + fot Equal to); get operand s true.	disp (sig JNZ (Ju (IP + dis	n extended to 16-bits) mp on Not Zero) transfers placement) if the condition
register,register register,memory memory,register register,immediat memory,immedia	3 9 + EA 16 + EA te 4 ate 17 + EA	- 1 2 - 2	2 2-4 2-4 3-4 3-6	ADD CX, DX ADD DI, [BX]ALPHA ADD TEMP, CL ADD CL, 2 ADD ALPHA, 2	Operation Flags Affected Description <u>Encoding</u>	If (ZF) = 0 then none JNE (Jump on N control to the tan tested (ZF = 0) i	(IP)+-(IP) + lot Equal to); get operand s true. Disp ts Trans	disp (sig JNZ (Ju (IP + dis	n extended to 16-bits) mp on Not Zero) transfers

Assembly and Machine Language

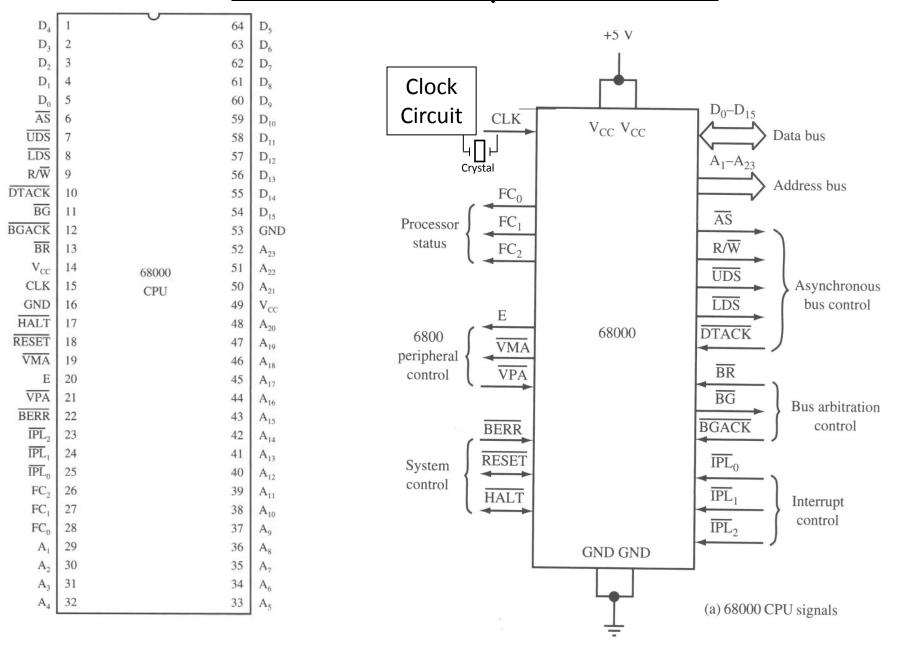
• **Example**: Base relative + index (memory) to register MOV AX, [BX+DI+1234H]

100010 D W MOD REG R/M Displacement

Opcode:	100010	
D:	1	Must be 1, dest AX specified by REG
W:	1	16 bit transfer
MOD:	10	16-bit displacement
REG:	000	AX
R/M:	001	

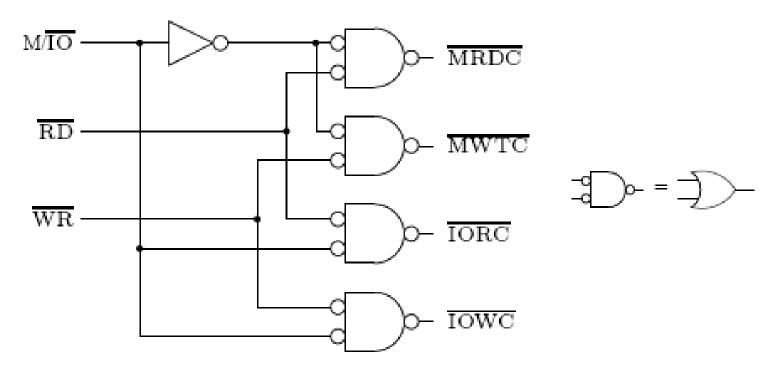
Machine instruction is: What?

Example: Decode the following 8086 instructions:


- There are two **MOV** statements and one **Add** statement
- Give Starting Address of each statement and full ASM code

Addr	Data D15-D8	Data D7 – D0	Addr
ABCD:1013			ABCD:1012
ABCD:1011		FB	ABCD:1010
ABCD:100F	EB	12	ABCD:100E
ABCD:100D	34	81	ABCD:100C
ABCD:100B	8B	12	ABCD:100A
ABCD:1009	34	C3	ABCD:1008
ABCD:1007	81	12	ABCD:1006
ABCD:1005	34	B8	ABCD:1004
ABCD:1003	FB	EB	ABCD:1002
ABCD:1001	07		ABCD:1000

8086/8088 Pin Assignments & Functions


	GND $\Box 20$ 21 \Box RESET GND $\Box 20$ 21 \Box RESET 21 \Box RESET	CLK \Box 19 22 \Box READY CLK \Box 19 22 \Box READY	INTR \Box 18 23 \Box TEST INTR \Box 18 23 \Box TEST	NMI \Box 17 24 \Box \overline{INTA} (QS1) NMI \Box 17 24 \Box \overline{INTA} (QS1)	AD5 [11 AD4 [12 AD3 [13 AD2 [14 AD1 [15 AD0 [16 NMI [17 INTR [18	38 37 36 35 34 33 33 33 32 33 32 33 33 32 33 32 33 32 33 32 33 32 33 32 29 28 27 26 27 28 27 26 27 28 23 23	AD15 A16/S3 A17/S4 A18/S5 A19/S6 BHE/S7 MN/MX RD HOLD HLDA WR M/IO DT/R DEN ALE INTA TEST	$(\overline{RQ}/\overline{GT0})$ $(\overline{RQ}/\overline{GT1})$ (\overline{LOCK}) $(S2)$ $(S1)$ $(S0)$ $(QS0)$ $(QS1)$	A13 [A12 [A11 [A10 [A9 [A9 [A07 [AD6 [AD5 [AD5 [AD4 [AD3 [AD2 [AD1 [AD0 [NM1 [INTR [CLK [3 4 5 6 7 8 9 10 8088 11 CPU 12 13 14 15 16 17 18 19	39 38 37 36 35 34 35 34 35 34 35 34 35 34 35 34 35 34 35 34 35 34 35 34 35 34 35 34 35 36 37 38 39 28 27 26 24 23	A16/S3 A17/S4 A18/S5 A19/S6 SS0 MN/MX RD HOLD HLDA WR IO/M DT/R DEN ALE INTA TEST	$(\overline{RQ}/\overline{GT0})$ $(\overline{RQ}/\overline{GT1})$ (\overline{LOCK}) $(\overline{S2})$ $(\overline{S1})$ $(S0)$ $(QS0)$ $(QS1)$
INTR1823TESTINTR1823TESTCLK1922READYCLK1922READY	INTR \Box 18 23 \Box TEST INTR \Box 18 23 \Box TEST		NMI \Box 17 24 \Box \overline{INTA} (QS1) NMI \Box 17 24 \Box \overline{INTA} (QS1)		AD0 🗆 16	25 🗖	ALE	(QS0)	AD0 [16	25 🗖	ALE	(QS0)
NMI1724 \overline{INTA} (QS1)NMI1724 \overline{INTA} (QS1)INTR1823 \overline{TEST} INTR1823 \overline{TEST} CLK1922READYCLK1922READY	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	NMI \Box 17 24 \Box \overline{INTA} (QS1) NMI \Box 17 24 \Box \overline{INTA} (QS1)		AD0 \Box 16 25 \Box ALE (QS0) AD0 \Box 16 25 \Box ALE (QS0)	AD1 🗆 15	26 🗖	DEN		AD1	15	26	DEN	· · · ·
AD01625 ALE (QS0) $AD0$ 1625 ALE (QS0)NMI1724 $INTA$ (QS1)NMI1724 $INTA$ (QS1)INTR1823 $TEST$ INTR1823 $TEST$ (QS1)CLK1922READYCLK1922READY	AD01625 ALE (QS0)AD01625 ALE (QS0)NMI1724 \overline{INTA} (QS1)NMI1724 \overline{INTA} (QS1)INTR1823 \overline{TEST} INTR1823 \overline{TEST} (QS1)	AD01625 ALE (QS0) $AD0$ 1625 ALE (QS0)NMI1724 $INTA$ (QS1)NMI1724 $INTA$ (QS1)	AD0 \Box 16 25 \Box <u>ALE</u> (QS0) AD0 \Box 16 25 \Box <u>ALE</u> (QS0)		AD2 🗆 14	27 🗖	DT/\overline{R}		AD2	14	27	DT/\overline{R}	$(\underline{S1})$
AD1 15 26 DEN (S0) AD1 15 26 DEN (S0) AD0 16 25 ALE (QS0) AD0 16 25 ALE (QS0) NMI 17 24 INTA (QS1) NMI 17 24 INTA (QS1) INTR 18 23 TEST INTR 18 23 TEST CLK 19 22 READY CLK 19 22 READY	AD11526 $\overline{\text{DEN}}$ (S0)AD11526 $\overline{\text{DEN}}$ (S0)AD01625 $\overline{\text{ALE}}$ (QS0) $\overline{\text{AD0}}$ 1625 $\overline{\text{ALE}}$ (QS0)NMI1724 $\overline{\text{INTA}}$ (QS1)NMI1724 $\overline{\text{INTA}}$ (QS1)INTR1823 $\overline{\text{TEST}}$ INTR1823 $\overline{\text{TEST}}$ INTR	AD11526 $\overline{\text{DEN}}$ (S0)AD11526 $\overline{\text{DEN}}$ (S0)AD01625 $\overline{\text{ALE}}$ (QS0) $\overline{\text{AD0}}$ 1625 $\overline{\text{ALE}}$ (QS0)NMI1724 $\overline{\text{INTA}}$ (QS1)NMI1724 $\overline{\text{INTA}}$ (QS1)	AD11526 $\overline{\text{DEN}}$ (S0)AD11526 $\overline{\text{DEN}}$ (S0)AD01625 $\overline{\text{ALE}}$ (QS0) $AD0$ 1625 $\overline{\text{ALE}}$ (QS0)	AD1 \Box 15 26 \Box \overline{DEN} (S0) AD1 \Box 15 26 \Box \overline{DEN} (S0)	AD3 🗆 13				AD3	13	28	IO/M	$(\underline{S2})$
AD21427 DT/\overline{R} $(S1)$ AD21427 DT/\overline{R} $(S1)$ AD11526 DEN $(S0)$ AD11526 DEN $(S0)$ AD01625 ALE $(QS0)$ $AD0$ 1625 ALE $(QS0)$ NMI1724 $INTA$ $(QS1)$ NMI1724 $INTA$ $(QS1)$ INTR1823 $TEST$ $INTR$ 1823 $TEST$ CLK 1922 $READY$	AD21427 DT/\overline{R} $(S1)$ AD21427 DT/\overline{R} $(S1)$ AD11526 DEN $(S0)$ AD11526 DEN $(S0)$ AD01625 ALE $(QS0)$ $AD0$ 1625 ALE $(QS0)$ NMI1724 $INTA$ $(QS1)$ NMI 1724 $INTA$ $(QS1)$ INTR1823 $TEST$ $INTR$ 1823 $TEST$	AD21427 DT/\overline{R} $(S1)$ AD21427 DT/\overline{R} $(S1)$ AD11526 DEN $(S0)$ AD11526 DEN $(S0)$ AD01625 ALE $(QS0)$ $AD0$ 1625 ALE $(QS0)$ NMI1724 $INTA$ $(QS1)$ NMI 1724 $INTA$ $(QS1)$	AD21427 DT/\overline{R} $(S1)$ AD21427 DT/\overline{R} $(S1)$ AD11526 DEN $(S0)$ AD11526 DEN $(S0)$ AD01625 ALE $(Q80)$ $AD0$ 1625 ALE $(Q80)$	AD21427 DT/\overline{R} $(S1)$ AD21427 DT/\overline{R} $(S1)$ AD11526 DEN $(S0)$ AD11526 DEN $(S0)$	AD4 🗆 12				AD4 [12			<u> </u>
AD31328 M/IO $\overline{S2}$ AD31328 IO/M $\overline{S2}$ AD21427 DT/\overline{R} $\overline{S1}$ AD21427 DT/\overline{R} $\overline{S1}$ AD11526 DEN $\overline{S0}$ AD11526 DEN $\overline{S0}$ AD01625 ALE $QS0$ $AD0$ 1625 ALE $QS0$ NMI1724 \overline{INTA} $QS1$ NMI 1724 \overline{INTA} $QS1$ INTR1823 \overline{TEST} $INTR$ 1823 \overline{TEST} CLK 1922 $READY$	AD31328 M/\overline{IO} $\overline{S2}$ AD31328 IO/\overline{M} $\overline{S2}$ AD21427 DT/\overline{R} $\overline{S1}$ AD21427 DT/\overline{R} $\overline{S1}$ AD11526 DEN $\overline{S0}$ AD11526 DEN $\overline{S0}$ AD01625 ALE $(QS0)$ $AD0$ 1625 ALE $(QS0)$ NMI1724 \overline{INTA} $(QS1)$ NMI 1724 \overline{INTA} $(QS1)$ INTR1823 \overline{TEST} $INTR$ 1823 \overline{TEST}	AD3I328 M/\overline{IO} $\overline{(S2)}$ AD3I328 IO/\overline{M} $\overline{(S2)}$ AD2I427 DT/\overline{R} $\overline{(S1)}$ $AD2$ I427 DT/\overline{R} $\overline{(S1)}$ AD1I526 DEN $\overline{(S0)}$ $AD1$ I526 DEN $\overline{(S0)}$ AD0I625 ALE $(Q80)$ $AD0$ I625 ALE $(Q80)$ NMII724 \overline{INTA} $(Q81)$ NMI I724 \overline{INTA} $(Q81)$	AD31328 M/\overline{IO} $\overline{(S2)}$ AD31328 IO/\overline{M} $\overline{(S2)}$ AD21427 DT/\overline{R} $\overline{(S1)}$ $AD2$ 1427 DT/\overline{R} $\overline{(S1)}$ AD11526 DEN $(S0)$ $AD1$ 1526 DEN $(S0)$ AD01625 ALE $(Q80)$ $AD0$ 1625 ALE $(Q80)$	AD3I328 M/\overline{IO} $\overline{(S2)}$ AD3I328 IO/\overline{M} $\overline{(S2)}$ AD2I427 DT/\overline{R} $\overline{(S1)}$ AD2I427 DT/\overline{R} $\overline{(S1)}$ AD1I526 DEN $\overline{(S0)}$ AD1I526 DEN $\overline{(S0)}$	AD5 🗆 11	CPU 30 □			AD5 [$\exists 11 \text{ CPU}$	30		
AD4 $\boxed{12}$ $\underbrace{29}$ \boxed{WR} (\boxed{LOCK}) $AD4$ $\boxed{12}$ $\underbrace{29}$ \boxed{WR} (\boxed{LOCK}) AD3 $\boxed{13}$ $\underbrace{28}$ $\boxed{M/IO}$ $\underbrace{S2}$ $AD3$ $\boxed{13}$ $\underbrace{28}$ $\boxed{IO/M}$ $\underbrace{S2}$ $AD2$ $\boxed{14}$ $\underbrace{27}$ $\underbrace{DT/R}$ $\underbrace{S1}$ $AD2$ $\boxed{14}$ $\underbrace{27}$ $\underbrace{DT/R}$ $\underbrace{S1}$ $AD1$ $\boxed{15}$ 26 \underbrace{DEN} $\underbrace{S0}$ $AD1$ $\boxed{15}$ 26 \underbrace{DEN} $\underbrace{S0}$ $AD0$ $\boxed{16}$ 25 \underbrace{ALE} $\underbrace{Q80}$ $AD0$ $\boxed{16}$ 25 \underbrace{ALE} $\underbrace{Q80}$ NMI $\boxed{17}$ $\underbrace{24}$ \underbrace{INTA} $\underbrace{Q81}$ NMI $\boxed{17}$ $\underbrace{24}$ \underbrace{INTA} $\underbrace{Q81}$ $INTR$ $\boxed{18}$ 23 \underbrace{TEST} $INTR$ $\boxed{18}$ 23 \underbrace{TEST} CLK $\boxed{19}$ 22 \overrightarrow{READY}	AD41229 \overline{WR} (\overline{LOCK}) AD41229 \overline{WR} (\overline{LOCK}) AD31328M/IO $(S2)$ AD31328 IO/M $(S2)$ AD21427 DT/R $(S1)$ AD21427 DT/R $(S1)$ AD11526 DEN $(S0)$ AD11526 DEN $(S0)$ AD01625 ALE $(QS0)$ $AD0$ 1625 ALE $(QS0)$ NMI1724 $INTA$ $(QS1)$ NMI 1724 $INTA$ $(QS1)$ INTR1823 $TEST$ $INTR$ 1823 $TEST$ $INTR$	AD41229 \overline{WR} (\overline{LOCK}) AD41229 \overline{WR} (\overline{LOCK}) AD31328M/IO $(S2)$ AD31328 IO/M $(S2)$ AD21427 DT/R $(S1)$ AD21427 DT/R $(S1)$ AD11526 DEN $(S0)$ AD11526 DEN $(S0)$ AD01625 ALE $(QS0)$ $AD0$ 1625 ALE $(QS0)$ NMI1724 $INTA$ $(QS1)$ NMI 1724 $INTA$ $(QS1)$	AD41229 \overline{WR} (\overline{LOCK}) AD41229 \overline{WR} (\overline{LOCK}) AD31328M/IO $(S2)$ AD31328 IO/M $(S2)$ AD21427 DT/R $(S1)$ AD21427 DT/R $(S1)$ AD11526 DEN $(S0)$ AD11526 DEN $(S0)$ AD01625 ALE $(Q80)$ $AD0$ 1625 ALE $(Q80)$	AD41229 \overline{WR} (\overline{LOCK}) AD41229 \overline{WR} (\overline{LOCK}) AD31328M/IO $(\underline{S2})$ AD31328 IO/M $(\underline{S2})$ AD21427 DT/R $(\underline{S1})$ AD21427 DT/R $(\underline{S1})$ AD11526 DEN $(S0)$ AD11526 DEN $(S0)$	AD6 □10		HOLD			$=10^{0000}$] HOLD	·
AD5I1CPU30HLDA $(RQ/GT1)$ AD5I1CPU30HLDA $(RQ/GT1)$ AD4I229 WR $(LOCK)$ AD4I229 WR $(LOCK)$ AD3I328 M/IO $(S2)$ AD3I328 IO/M $(S2)$ AD2I427 DT/R $(S1)$ AD2I427 DT/R $(S1)$ AD1I526 DEN $(S0)$ AD1I526 DEN $(S0)$ AD0I625 ALE $(QS0)$ AD0I625 ALE $(QS0)$ NMII724 $INTA$ $(QS1)$ NMII724 $INTA$ $(QS1)$ INTRI823 $TEST$ $INTR$ I823 $TEST$ CLK I922 $READY$	AD511CPU30HLDA $(RQ/GT1)$ AD511CPU30HLDA $(RQ/GT1)$ AD41229 WR (LOCK)AD41229 WR (LOCK)AD31328M/IO(S2)AD31328IO/M(S2)AD21427 DT/R (S1)AD21427 DT/R (S1)AD11526 DEN (S0)AD11526 DEN (S0)AD01625 ALE (QS0)AD01625 ALE (QS0)NMI1724 $INTA$ (QS1)NMI1724 $INTA$ (QS1)INTR1823 $TEST$ INTR1823 $TEST$ INTR1823 $TEST$	AD5I1CPU 30HLDA $(RQ/GT1)$ AD5I1CPU 30HLDA $(RQ/GT1)$ AD4I229WR(LOCK)AD4I229WR(LOCK)AD3I328M/IO(S2)AD3I328IO/M(S2)AD2I427DT/R(S1)AD2I427DT/R(S1)AD1I526DEN(S0)AD1I526DEN(S0)AD0I625ALE(QS0)AD0I625ALE(QS1)NMII724INTA(QS1)NMII724INTA(QS1)	AD5I1CPU 30HLDA $(RQ/GT1)$ AD5I1CPU 30HLDA $(RQ/GT1)$ AD4I229WR $(LOCK)$ AD4I229WR $(LOCK)$ AD3I328M/IO $(S2)$ AD3I328IO/M $(S2)$ AD2I427DT/R $(S1)$ AD2I427DT/R $(S1)$ AD1I526DEN $(S0)$ AD1I526DEN $(S0)$ AD0I625ALE $(QS0)$ AD0I625ALE $(QS0)$	AD511CPU 30HLDA $(RQ/GT1)$ AD511CPU 30HLDA $(RQ/GT1)$ AD41229 WR $(LOCK)$ AD41229 WR $(LOCK)$ AD31328 M/IO $(S2)$ AD31328 IO/M $(S2)$ AD21427 DT/R $(S1)$ AD21427 DT/R $(S1)$ AD11526 DEN $(S0)$ AD11526 DEN $(S0)$	AD7 디9	$32 \square$	RD		AD7 [79 0000	32	I RD	
AD610 8086_{31} HOLD $(\overline{RQ}/\overline{GT0})$ AD610 8088_{31} HOLD $(\overline{RQ}/\overline{GT0})$ AD511CPU30HLDA $(\overline{RQ}/\overline{GT1})$ AD511CPU30HLDA $(\overline{RQ}/\overline{GT1})$ AD41229WR(LOCK)AD41229WR(LOCK)AD31328M/IO(S2)AD31328IO/M(S2)AD21427DT/R(S1)AD21427DT/R(S1)AD11526DEN(S0)AD11526DEN(S0)AD01625ALE(QS0)AD01625ALE(QS0)NMI1724INTA(QS1)NMI1724INTA(QS1)INTR1823TESTINTR1823TESTCLK1922READY	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	AD610808631HOLD $(\overline{RQ}/\overline{GT0})$ AD610808831HOLD $(\overline{RQ}/\overline{GT0})$ AD511CPU30HLDA $(\overline{RQ}/\overline{GT1})$ AD511CPU30HLDA $(\overline{RQ}/\overline{GT1})$ AD41229 \overline{WR} (LOCK)AD41229 \overline{WR} (LOCK)AD31328M/IO(S2)AD31328IO/M(S2)AD21427 $\overline{DT/R}$ (S1)AD21427 $\overline{DT/R}$ (S1)AD11526 \overline{DEN} (S0)AD11526 \overline{DEN} (S0)AD01625 \overline{ALE} (QS0)AD01625 \overline{ALE} (QS0)NMI1724 \overline{INTA} (QS1)NMI1724 \overline{INTA} (QS1)	AD610 8086_{31} HOLD $(\overline{RQ}/\overline{GT0})$ AD610 8088_{31} HOLD $(\overline{RQ}/\overline{GT0})$ AD511CPU30HLDA $(\overline{RQ}/\overline{GT1})$ AD511CPU30HLDA $(\overline{RQ}/\overline{GT1})$ AD41229WR(LOCK)AD41229WR(LOCK)AD31328M/IO(S2)AD31328IO/M(S2)AD21427DT/R(S1)AD21427DT/R(S1)AD11526DEN(S0)AD11526DEN(S0)AD01625ALE(QS0)AD01625ALE(QS0)	AD610 8086_{31} HOLD $(\overline{RQ}/\overline{GT0})$ AD610 8088_{31} HOLD $(\overline{RQ}/\overline{GT0})$ AD511CPU 30HLDA $(\overline{RQ}/\overline{GT1})$ AD511CPU 30HLDA $(\overline{RQ}/\overline{GT1})$ AD41229 \overline{WR} (LOCK)AD41229 \overline{WR} (LOCK)AD31328M/IO(S2)AD31328IO/M(S2)AD21427 $\overline{DT/R}$ (S1)AD21427 $\overline{DT/R}$ (S1)AD11526 \overline{DEN} (S0)AD11526 \overline{DEN} (S0)	AD8 🗆 8	33 🗖			A8 [38	33		
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	AD9 □7	34 🗆			A9 [7	34		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	AD8833MN/MXA8833MN/MXAD79 32 RDAD79 32 RDAD6108086 31 HOLD(RQ/GT0)AD610 8088 31 HOLD(RQ/GT0)AD511CPU30HLDA(RQ/GT1)AD511CPU 30 HLDA(RQ/GT1)AD41229WR(LOCK)AD41229WR(LOCK)AD31328M/IO(S2)AD31328IO/M(S2)AD21427DT/R(S1)AD21427DT/R(S1)AD11526DEN(S0)AD11526DEN(S0)AD01625ALE(QS0)AD01625ALE(QS0)NMI1724INTA(QS1)NMI1724INTA(QS1)	AD8833MN/MXA8833MN/MXAD7932RDAD7932RDAD610808631HOLD(RQ/GT0)AD610808831HOLDAD511CPU30HLDA(RQ/GT1)AD511CPU30HLDA(RQ/GT1)AD41229WR(LOCK)AD41229WR(LOCK)AD31328M/IO(S2)AD31328IO/M(S2)AD21427DT/R(S1)AD21427DT/R(S1)AD11526DEN(S0)AD11526DEN(S0)AD01625ALE(Q80)AD01625ALE(Q80)	AD8833MN/MXA8833MN/MXAD7932 \overline{RD} AD7932 \overline{RD} AD610808631HOLD($\overline{RQ}/\overline{GT0}$)AD610808831HOLD($\overline{RQ}/\overline{GT0}$)AD511CPU30HLDA($\overline{RQ}/\overline{GT1}$)AD511CPU30HLDA($\overline{RQ}/\overline{GT1}$)AD41229WR(LOCK)AD41229WR(LOCK)AD31328M/IO(S2)AD31328IO/M(S2)AD21427DT/R(S1)AD21427DT/R(S1)AD11526DEN(S0)AD11526DEN(S0)	AD10 □6	35 🗆			A10 [6			
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	AD9734 $\overline{BHE}/S7$ A9734 $\overline{SS0}$ AD8833 $\overline{MN/MX}$ A8833 $\overline{MN/MX}$ AD7932 \overline{RD} $AD7$ 932 \overline{RD} AD610808631 \overline{HOLD} $\overline{RQ/GT0}$ $AD6$ 10 8088 31 \overline{HOLD} $\overline{RQ/GT0}$ AD511CPU30 \overline{HLDA} $\overline{RQ/GT1}$ $AD5$ 11CPU30 \overline{HLDA} $\overline{RQ/GT1}$ AD41229 \overline{WR} \overline{LOCK} $AD4$ 1229 \overline{WR} \overline{LOCK} AD31328 M/IO $\overline{S2}$ $AD3$ 1328 IO/M $\overline{S2}$ AD21427 DT/R $\overline{S1}$ $AD2$ 1427 DT/R $\overline{S1}$ AD11526 \overline{DEN} $\overline{S0}$ $AD1$ 1526 \overline{DEN} $\overline{S0}$	AD11 □5	36 🗆	A18/S5		A11 [5	36	A18/S5	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	AD12 4	37 🗆	A17/S4		A12 [4	37] A17/S4	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	AD13 □3	38 🗆	A16/S3		A13 [3	38 🗆	A16/S3	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	AD14 🗆 2	39 🗆	AD15		A14 [2	39 🗆	A15	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	GND □1		Vcc		GND [$\exists 1$ \smile	40] Vcc	

Motorola 68000 μP – Hardware

Intel Decoding Bus Control Signals

- In *"max mode"* use 8288 bus controller to generate MRDC, MWTC, IORC, IOWC.
- In *"min mode"* (and for other processors) it is sometimes better to decode the available signals.

<u>Motorola 68000 µP – Asynchronous bus control</u>

No Separate IO and Memory!

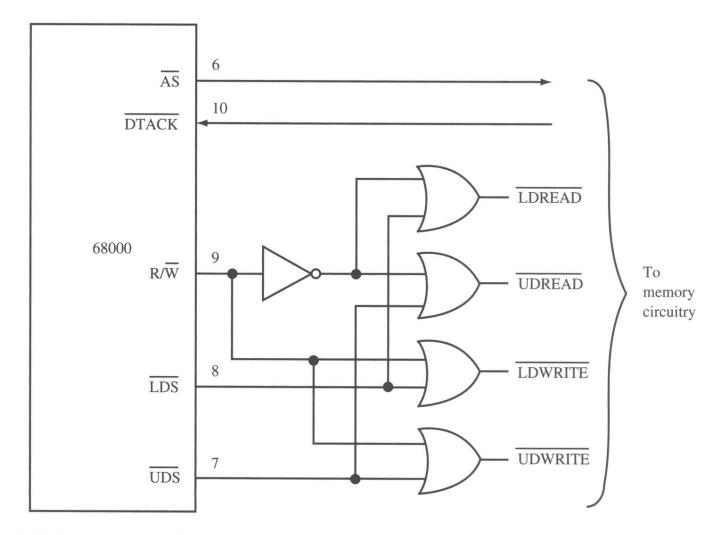
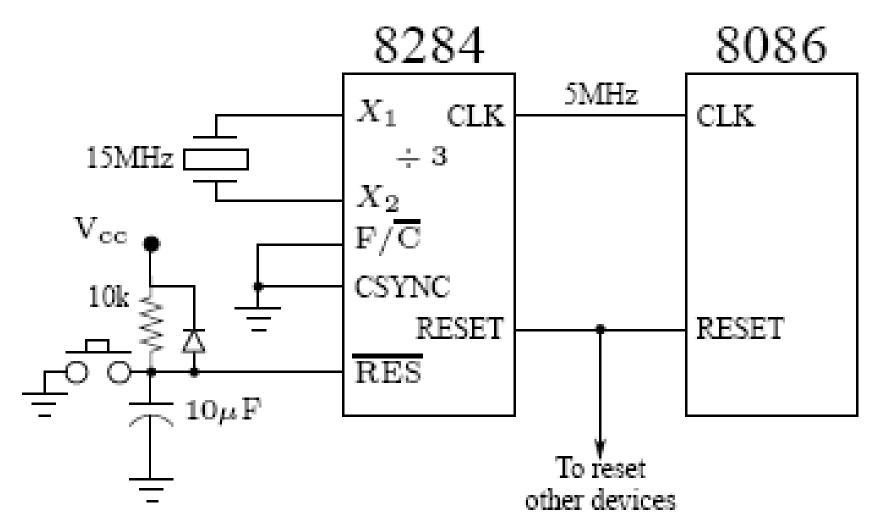
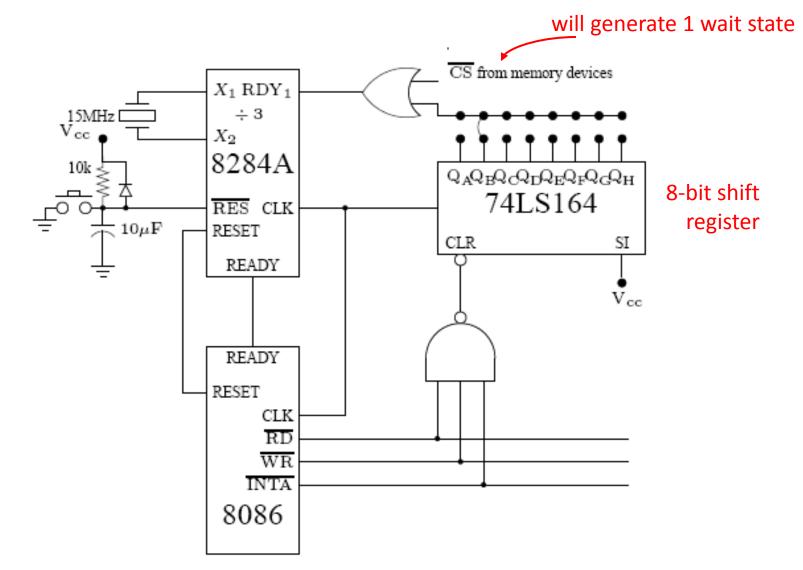
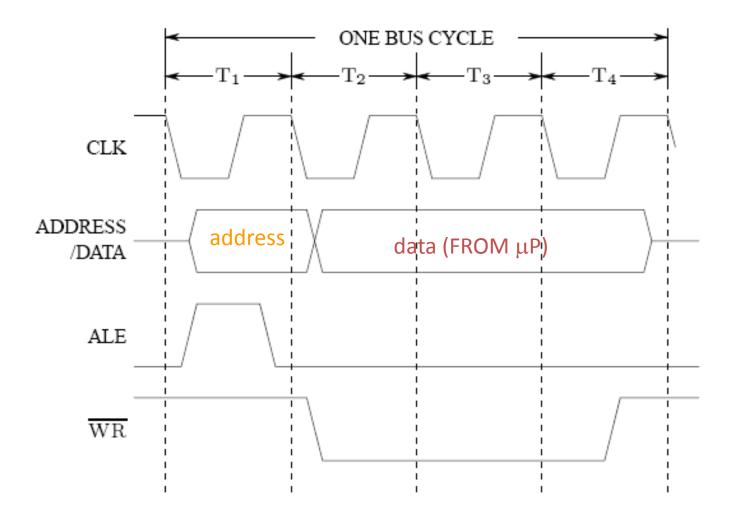



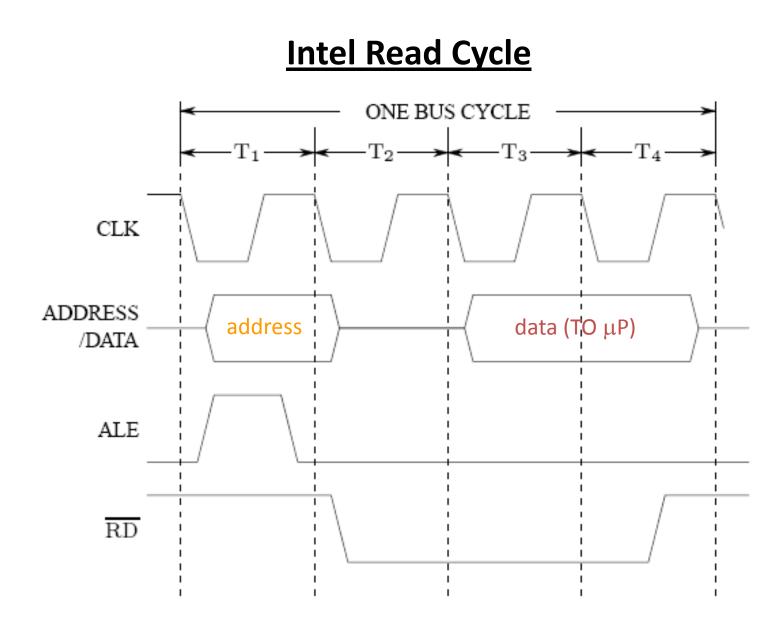
FIGURE 7.12 Decoding memory read/write signals

8284A Clock Generator

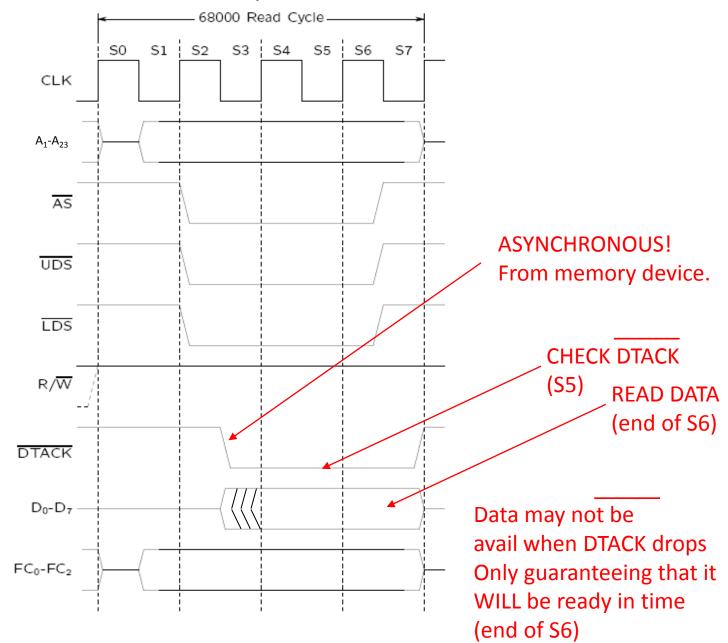


10K pullup? 0.5mA sink. (debouncing!)

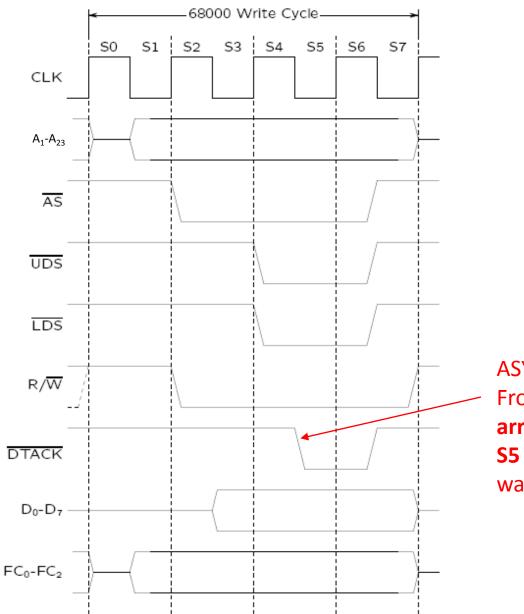

Bus Transfer Synchronization


- Synchronous busses (eg. Motorola 6800/11/12)
 - Transfer times and synchronization are tied to the system clock.
 - No facility for varying bus timing.
 - Clock generators could be used to vary bus speed (for slower memory).
- Semi-synchronous busses
 - provide for "wait states" to be inserted into bus timing (eg. 8086).
 - Allows more flexibility in interfacing to slower memory or I/O.
- Asynchronous busses (eg. Motorola 68000).
 - Requires extra bus signals for bus arbitration.
 - Requires *"acknowlegement" (DTACK*) signal from devices.
 - Requires bus time-out (watchdog).
 - Easier multiprocessor memory management.

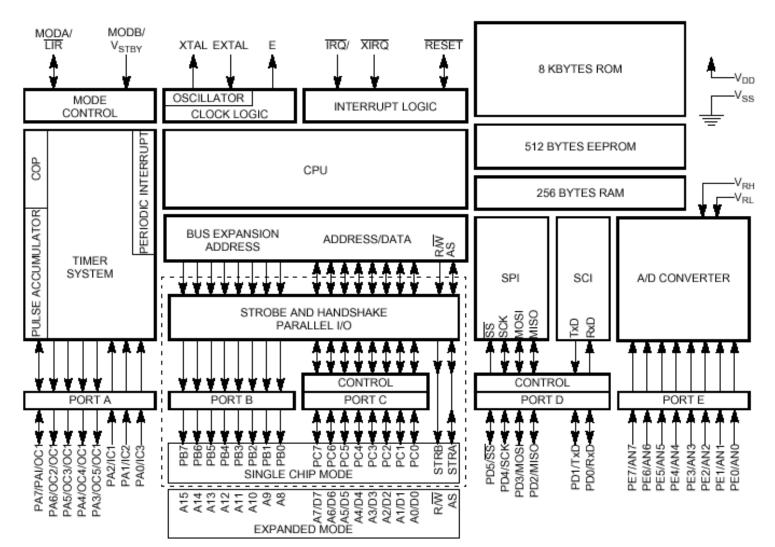
Wait State Generation using 8284A



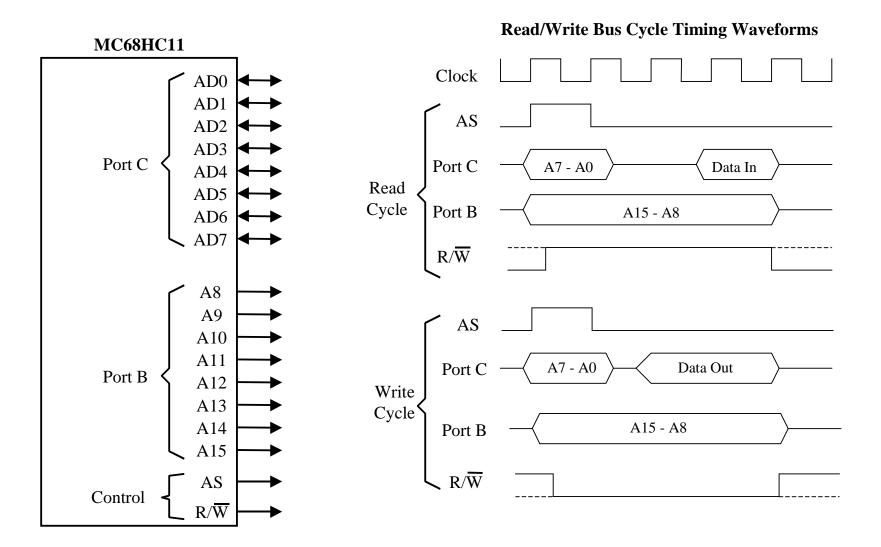
Intel Write Cycle



<u>Motorola 68000 µP – Read Cycle</u>



<u>Motorola 68000 µP – Write Cycle</u>


ASYNCHRONOUS! From memory, can arrive any time before S5 without causing wait states

Microcontrollers – MC68HC11

CIRCUITRY ENCLOSED BY DOTTED LINE IS EQUIVALENT TO MC68HC24.

Motorola HC11 Expanded Mode Read/Write Bus Cycles

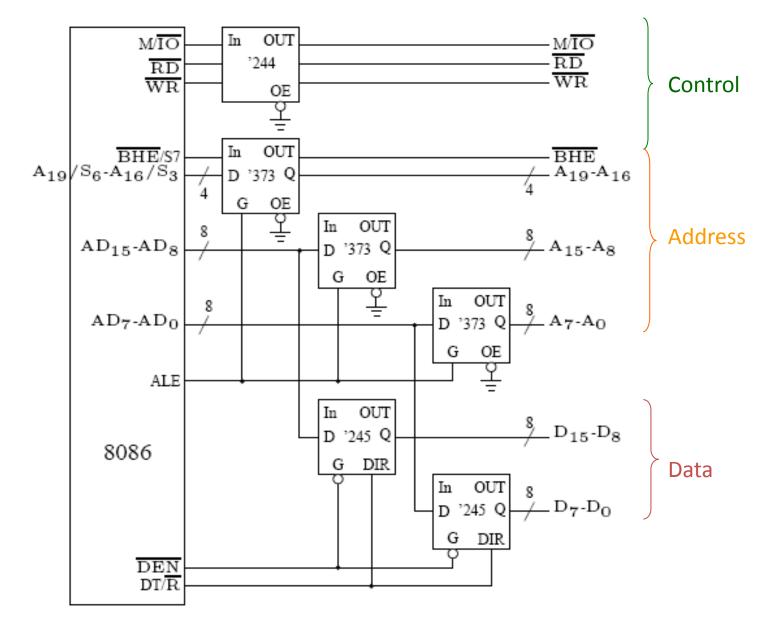
Program Timing

- See Text Appendix B (or handout) for timing
 - Note: the times provided assume that the instructions have already been fetched and are waiting in the queue.
- Max 8086 clock:
 - 5MHz (200ns or 0.2 μ s per cycle)
 - 2.5MHz (400ns or 0.4 μs per cycle)
- instruction times are given in clock cycles.
- Ex: Estimate the time for a 5MHz, zero wait state, 8086 to execute the following code segment:

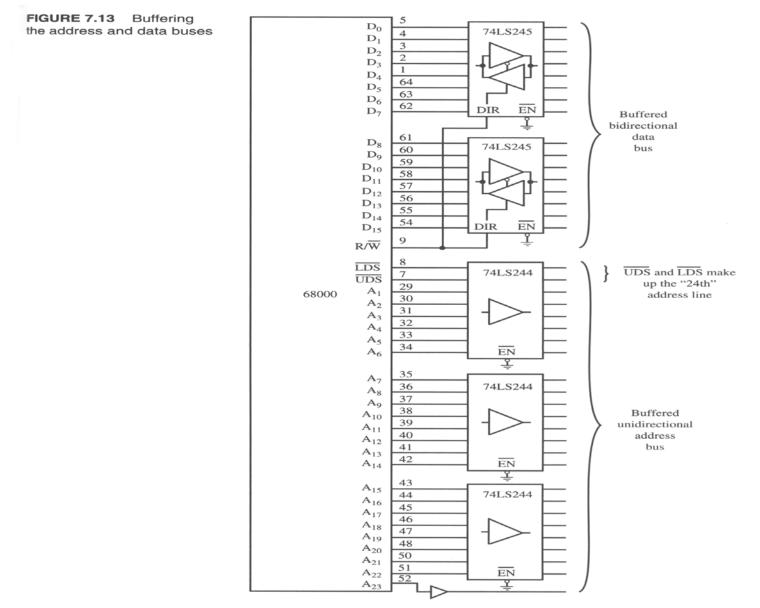
Program Timing

Note: Loop is executed 254 times with a jump to again, and once with no jump.

Instruction	Add.Mode	T-states	Times	Total
MOV DI,00FFH	(reg,imm)	4	1	4
ADD [1234H+DI],AL	(mem,reg) EA=9	16+EA=25	255	6375
DEC DI	(reg 16)	3	255	765
JNZ AGAIN	Т	16	254	4064
	F	4	1	4

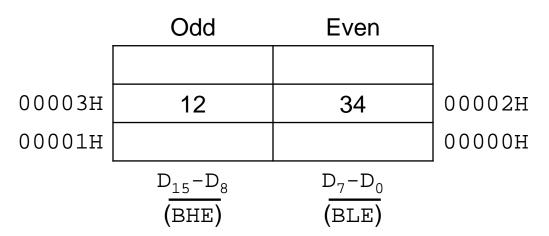

TOTAL

11212

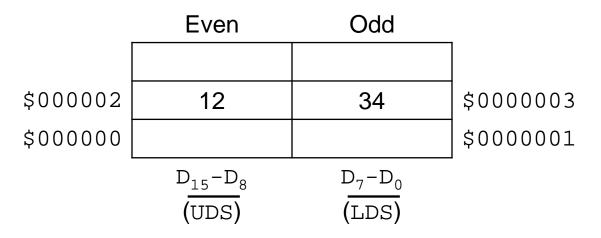

Total time is: 11212 x 200ns = 2.24ms

Note: Timing is complicated by 1) Wait States and 2) Unaligned Transfers.

Buffered and Demultiplexed 8086

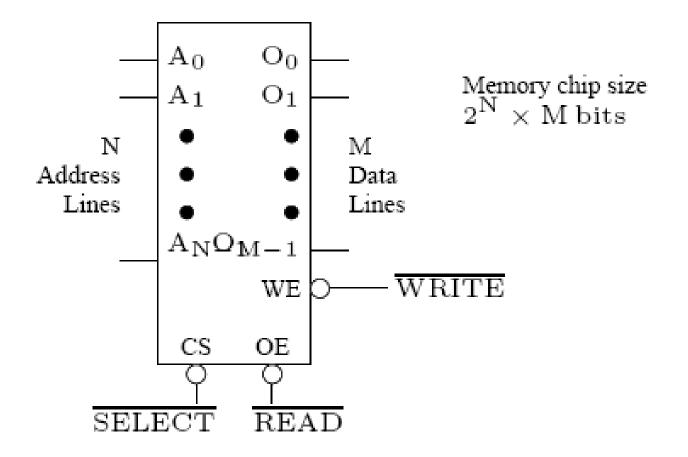


Buffered Motorola 68000, No Demultiplexing!



1234 Hex, Little Endian (Intel) vs Big Endian (Motorola)

• 8086 memory drawn with *odd bank* (addresses) on left, and *even* bank on right.



• 68000 memory is usually drawn with *even Addr.* bank on left, and *odd* bank on right.

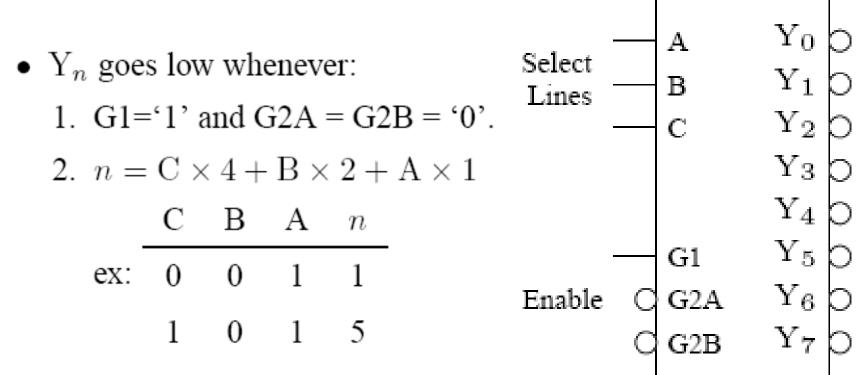
Memory & I/O Interfacing

- General steps for memory and I/O interfacing
 - Generic memory device:

Memory & I/O Interfacing

• Steps to success:

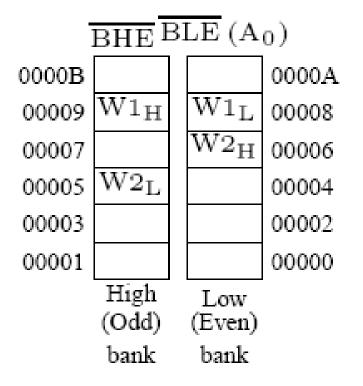
1) Architectural questions:


- How many chips are required?
- How many address lines go to each chip?
- How will chips be organized into banks and which parts of the address bus will be used?

2) Determine address range:

- Typically problem is to place devices within memory map
- Determine START, SIZE, LO (=START), HI (=LO+SIZE-1)
- Determine CONST, SEL, and MEM address lines
- 3) Generate overall **chip select** signal (MSEL) from CONST portion of address range and M/IO
- 4) Generate bank-specific write signals if required
- 5) Complete **interface** design! (often using decoders)
 - Be sure to connect address bus, data bus, and control bus (RD, WR)

Address Decoding


• The 74LS138 3-to-8 decoder

Typical time delay is 12nS.

8086 Memory Interface

- The 8086 has a 16-bit data bus.
- Memory is arranged in two 8-bit banks
 - low bank: contains all even addresses.
 - high bank: contains all odd addresses.

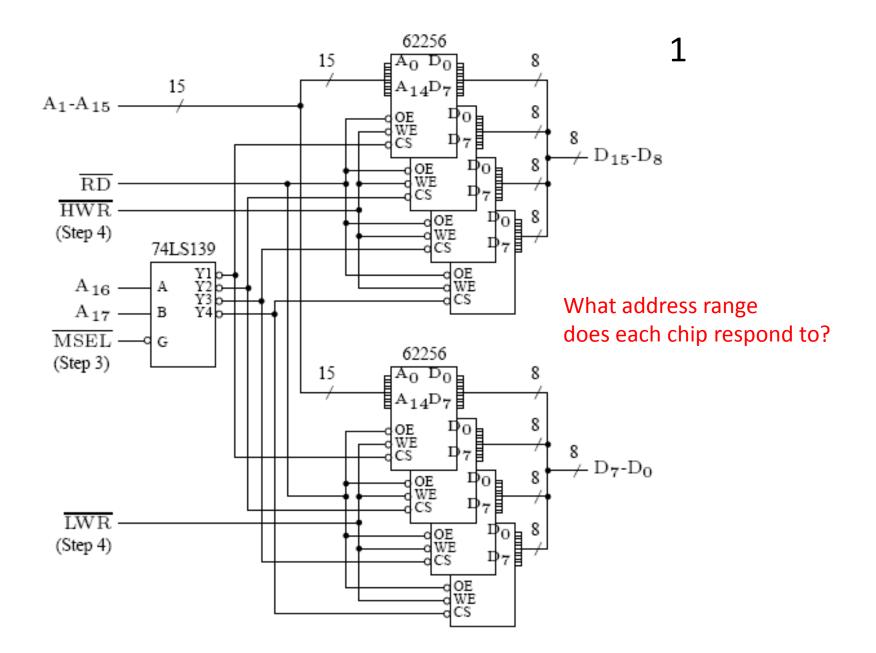
8086 Memory Interface

- Aligned/unaligned words
 - W1 is stored on an even (aligned) address.
 - It can be access in a single read cycle.
 - W2 is stored at an odd (unaligned) address.
 - It will require two read cycles (8 T-cycles).

(a) During first read, $W2_{L}$ (odd address) will appear on the high byte of the data bus.

(b) During the second read, $W2_{H}$ (even address) will appear on the low byte of data bus.

- During a read operation, both banks may (and often are) activated.
- The μP will read 16-bits for read operations, or will only read the correct half of the data bus for byte operations.
 - Note that AL may receive data from the high half of the data bus when reading a byte from an odd address!


Memory Interface

- Write cycles must activate the correct bank(s) based on BHE and BLE (A₀).
- BHE is supplied by μP (multiplexed with S₇)
- A_0 is used as \overline{BLE}
 - i.e. $A_0=0$ for an even address and $A_0=1$ for an odd address
 - $-(A_0 \text{ is not even a pin on the '386 and up})$

BHE	BLE	Function
0	0	Both banks (16 bits)
0	1	High bank (8 bits)
1	0	Low bank (8 bits)
1	1	No banks enabled

16-bit Intel Memory Interfacing Example

- Design a memory interface for the 8086 which will provide 256k bytes of SRAM, organized as 128k x 16bits, starting at address ?????H and using 62256 SRAM chips (32k x 8bit).
 - Assume that 8086 address, data, status, and control busses are already demultiplexed and buffered.

<u>Motorola 68000 µP – Memory Interfacing</u>

• Almost identical to the 8086 except:

1. Switch even and odd banks

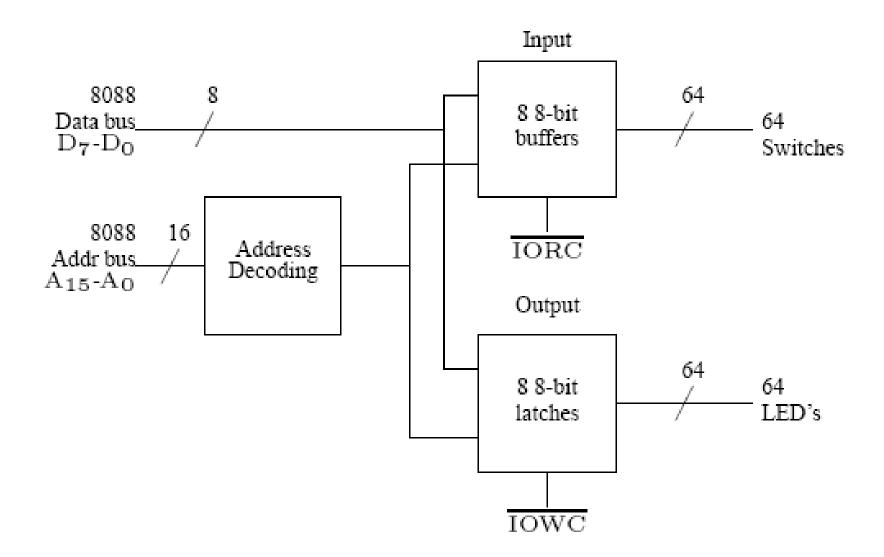
2. Must generate DTACK

3. Must use AS, R/W, UDS and \overline{LDS} for control.

- During a byte-read operation, the μP will select the correct half of the data bus depending on whether it's an even or odd address (similar to 8086).
- Separate write strobes are required for even and odd banks so that data is not written to the wrong memory bank.

16-bit Motorola Memory Interfacing Example

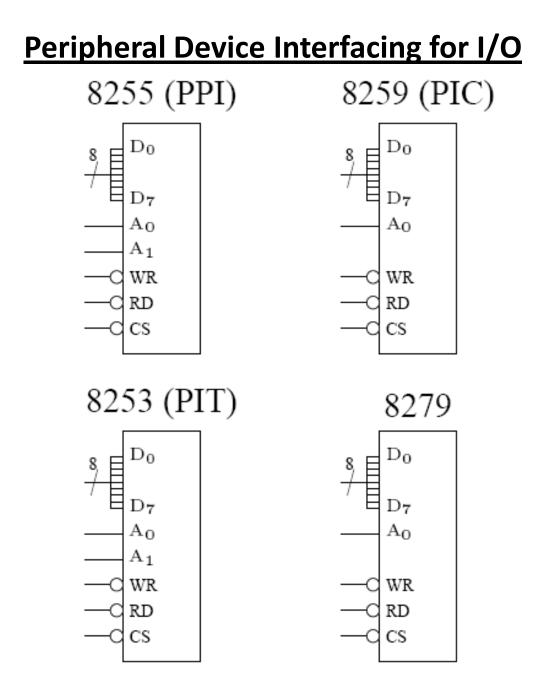
- Design a memory interface for the 68000 which will provide 256k bytes of SRAM, organized as 128k x 16bits, starting at address \$?????? and using 62256 SRAM chips (32k x 8bit).
 - Assume that the 68000 address, data, status, and control busses are already buffered.


Intel I/O Mapping Options

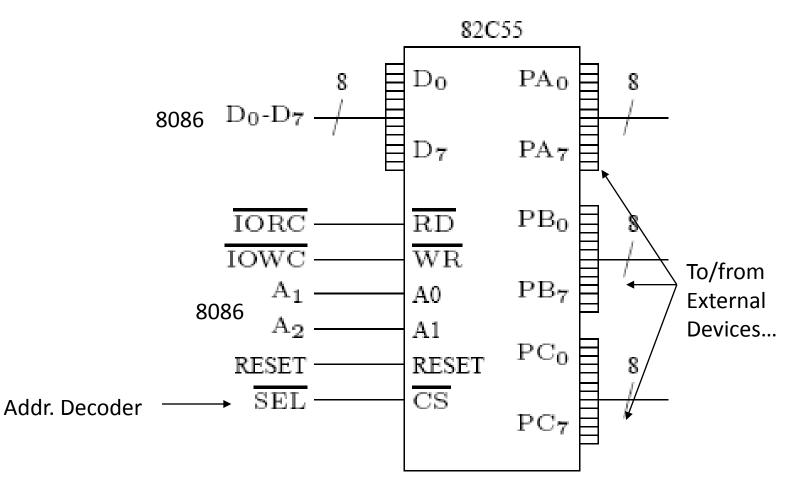
- Two methods are available for Intel:
 - 1. I/O mapped I/O (isolated I/O, Intel)
 - I/O Ports are isolated from memory in a separate I/O address space.
 - Memory can be expanded to full size
 - Data transfer from/to I/O is restricted to IN and OUT instructions.
 - Separate control signals using M/IO, WR, RD enable I/O ports.
 - Intel-based PC's use isolated I/O

I/O Mapping Options

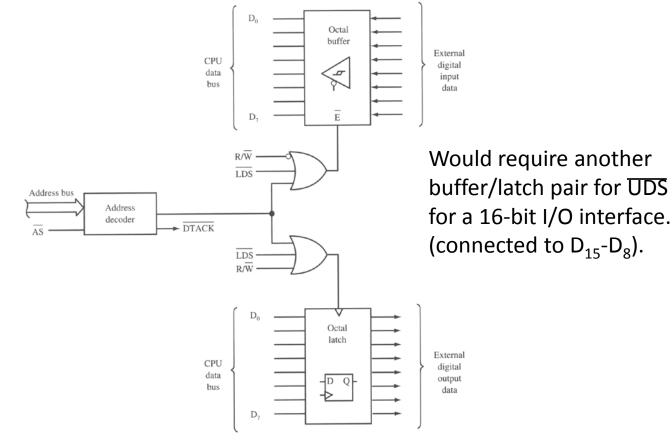
- 2. Memory Mapped I/O (Intel and Motorola)
 - I/O device is treated as a memory location.
 - Any memory transfer instruction can used to access the device.
 - Reduces amount of system memory available to applications.
 - Reserves fixed portion(s) of the memory map for I/O.
 - 6800, 68000 uses memory-mapped I/O.


I/O Interfacing

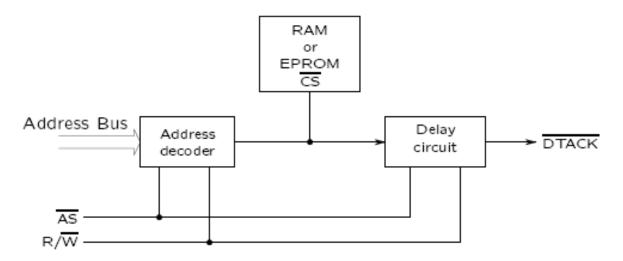
I/O Interfacing



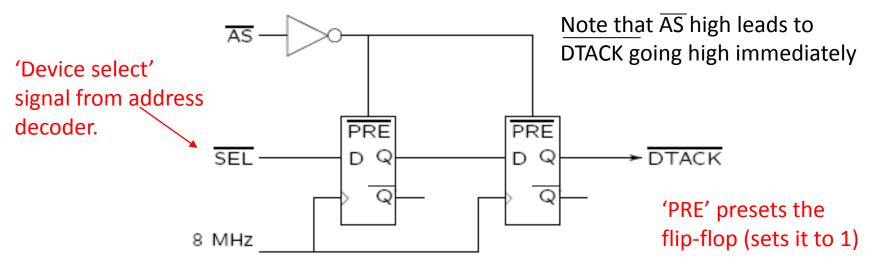
^aOnly one input and one output bank at address CBF4H is shown.


I/O Interfacing

Ex: 8255 Interface:


<u>Motorola 68000 μP – I/O Interfacing</u>

- All I/O is memory-mapped.
- Decoding is the same as for memory.
- One still must generate DTACK.



Motorola 68000 DTACK

• Block diagram of DTACK circuit:

• DTACK delay generator:

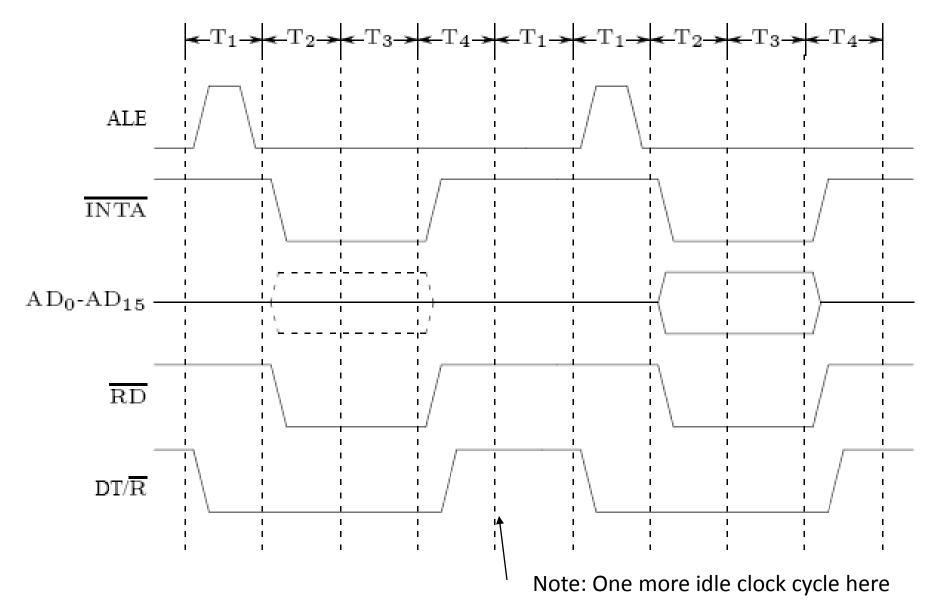
Intel Interrupt Response Sequence

- Each time the μP completes execution of an instruction, it will check the status of NMI and INTR.
- if either is active, or if the next instruction is INTO,
 INT n, or BOUND, then:
 - 1. Push flag register onto stack.
 - 2. Clear IF and TF (interrupt enable and trap flags). Interrupts are now disabled.
 - **3.** Push CS then IP on stack.
 - 4. Fetch the *interrupt vector* (discussed shortly)
- The final statement of an interrupt service route (ISR) is **IRET** it pops IP, CS and Flags.

Intel Interrupt Vector Table

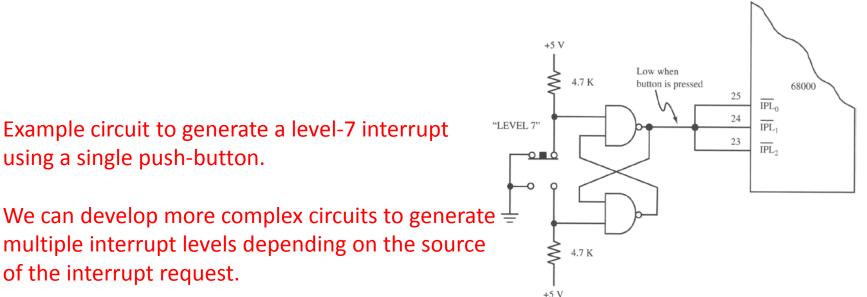
- Located in first 1K of memory (00000-003FF).
- Contains 256, 4-byte interrupt vectors.
- Each interrupt vector contains the address (segment and offset) of the service routine.
- Each entry in the vector table is represented by an integer between 0 and 255, called the *interrupt type*.

Intel Interrupt Vector Table


l	
	Type 32 — 255 User interrupt vectors
080H	Type 14 — 31 Reserved
040H	Type 16 Coprocessor error
озсн	Type 15 Unassigned
038H	Type 14 Page fault
034H	Type 13 General protection
озон	Type 12 Stack segment overrun
an casa	Type 11 Segment not present
02CH	Type 10
028H	Invalid task state segment
024H	Type 9 Coprocessor segment overrun
020H	Type 8 Double fault
	Type 7 Coprocessor not available
01CH	Туре 6
018H	Undefined opcode Type 5
014H	BOUND
010H	Type 4 Overflow (INTO)
00CH	Type 3 1-byte breakpoint
	Type 2 NMI pin
008H	Type 1
004H	Single-step
000H	Type 0 Divide error
	(a)

	Any interrupt vector
з	Segment (high)
3	Segment (low)
1	Offset (high)
0	Offset (Iow)
	(b)

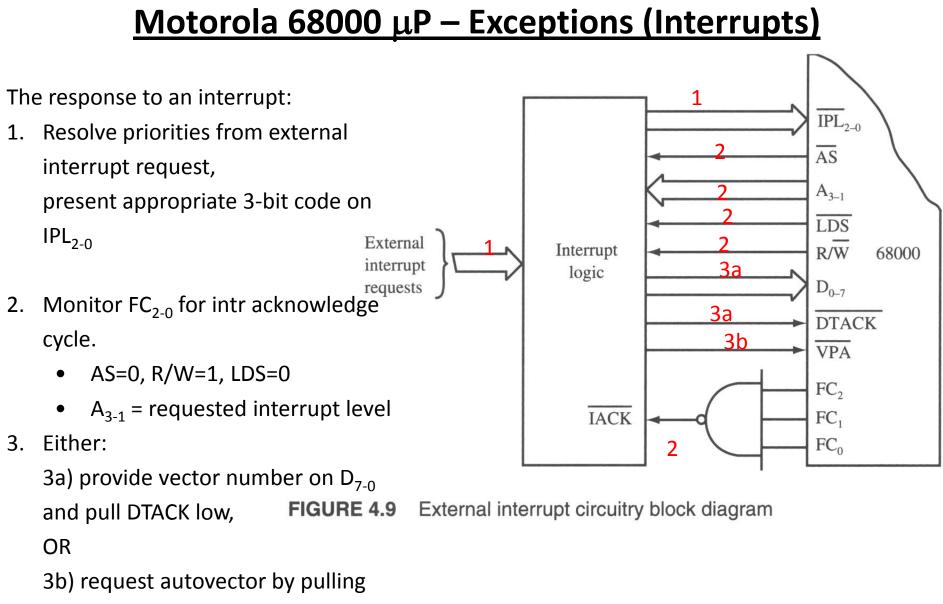
Intel response to hardware interrupts


- The response to an INTR is *two* INTA bus cycles separated by two idle clock cycles.
- No address is provided by the 8086, but ALE is generated which will load the address latches with unknown data.
- First INTA cycle signals devices to prepare to present the **TYPE** number on the next INTA (CPU does not capture info on the first INTA).
- During the second INTA, the device causing the interrupt places a byte on D7–D0 which represents the interrupt TYPE.

Intel response to hardware interrupts

<u>Motorola 68000 µP – Exceptions (Interrupts)</u>

- 68000 Hardware Interrupts
 - Seven levels of external interrupts depending on $IPL\overline{2}$, $IPL\overline{1}$, and $IPL\overline{0}$.
 - Level 0, all IPLs = 1, no interrupt.
 - Level 7, all IPLs = 0, highest priority (non-maskable).
 - Interrupt priority mask (bits 8, 9, and 10 of SR) is set to disable lower priority interrupts.


<u>Motorola 68000 µP – Exceptions (Interrupts)</u>

- Interrupt Acknowledge Cycle
 - (asynchronous, hardware interrupt requests)
 - 1. Device and interrupt logic set IPL2, IPL1and $\overline{IPL0}$.
 - 2. μ P completes current instruction.
 - 3. μ P enters interrupt acknowledge cycle.

(a) FC2, FC1, FC0 = 111. (b) $\overline{AS} = 0$, $\overline{LDS} = 0$, R/W = 1. A_3 , A_2 , A_1 = requested interrupt level.

<u>Motorola 68000 µP – Exceptions (Interrupts)</u>

- Interrupt Acknowledge Cycle con't
 - 4. External logic may do one of two things:
 - (a) Supply a vector number.
 - Place 8-bit vector number of $D_7 D_0$.
 - pull DTACK low.
 - μ P will read D₇-D₀.
 - (b) Request an "auto-vector".
 - Pull VPA low. Leave DTACK high.
 - μP generates its own vector based on interrupt level first supplied to IPL inputs.
 - autovectors point to locations 064 through 07f in vector table.
 - Autovectors should be used whenever 7 or less interrupt types are needed.
 - 5. Proceed with exception handling steps from slide 42

VPA low.