Lecture 4 1/9

Electrical Systems— Introductior

Systems and Simulations—Lecture 4 Introduction to Electrical Systems

Systems and Computer Engineering Dept., Carleton University, Ottawa, ON, Canada

Fall 2014

▲□▶▲□▶▲□▶▲□▶ □ のQ@

Lecture 4 2/9

Electrical Systems— Introduction

Elements of Electrical Systems

Resistance elements: R = e_R/i. Heat dissipation, no energy storage.

<日 > < 同 > < 目 > < 目 > < 目 > < 目 > < 0 < 0</p>

- Capacitance elements: $C = q/e_C$, $i = C\frac{de_C}{dt}$.
- Inductance elements: $e_L = L \frac{di_L}{dt}$.
- Voltage source
- Current source

Note: SI units assumed throughout.

Lecture 4 3/9

Electrical Systems— Introduction

Fundamentals of Electrical Circuits

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへで

- Ohm's law.
- Series and parallel circuits.
- Kirchhoff's current law.
- Kirchhoff's voltage law.
- Examples.

Lecture 4 4/9

Electrical Systems— Introduction

Modelling of Electrical Systems

◆□ > ◆□ > ◆豆 > ◆豆 > ̄豆 _ のへで

- Example of RL and RC circuits.
- Example of an RLC circuit.

Transfer Functions

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

- Zero initial conditions.
- Nonloading versus loading cascading elements.
- Complex impedances:
 - Resistor $R \rightarrow R$.
 - Capacitor with zero initial voltage: $C \rightarrow \frac{1}{Cs}$.
 - Inductor with zero initial current: $L \rightarrow Ls$.
- Transfer functions examples.

Electrical Systems— Introduction

Lecture 4

Analogous systems

- Systems physically different by mathematically identical.
- Two mechanical-electrical analogies:
 - Force-voltage analogy: Spring-mass-damper and series RLC circuits
 - Force-current analogy: Spring-mass-damper and parallel RLC circuits

Electrical Systems— Introduction

Lecture 4

Lecture 4 7/9

Electrical Systems— Introduction

Electromechanical systems

Modelling of a dc armature-controlled servomotor.

- Motor converts electrical to mechanical.
- With constant field current:
 - $T = Ki_a$ —(Mechanical-electrical)
- Back-emf proportional to speed: $e_b = K_f \dot{\theta}$ —(Mechanical-electrical)
- Motion equation: $T = J\ddot{\theta} + b\dot{\theta}$ —(Electrical)

Gear train

- Ratio of radii = ratio of teeth: $\frac{r_1}{r_2} = \frac{n_1}{n_2}$.
- Equal surface speeds at point of contact: $\omega_1 r_1 = \omega_2 r_2$.

• Frictionless gears: $T_1\omega_1 = T_2\omega_2$.

Example.

The operational amplifier

▲□▶▲□▶▲□▶▲□▶ □ のQ@

Electrical Systems— Introduction

Lecture 4

- Relationship between input and output: gain K
- Negative feedback for stability.
- Ideal op-amp.

Lecture 4 9/9

Electrical Systems— Introduction

Common Op-Amp Configurations

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ─ □ ─ の < @

- Inverting amplifier
- Non-inverting amplifier
- Integrator circuit.