Lecture 2 1/6

The Laplace Transform— Introduction

Systems and Simulations—Lecture 2 The Laplace Transform—A Review

Systems and Computer Engineering Dept., Carleton University, Ottawa, ON, Canada

Fall 2014

▲□▶▲□▶▲□▶▲□▶ □ のQ@

Why Laplace Transform?

▲□▶▲□▶▲□▶▲□▶ □ のQ@

The Laplace Transform— Introduction

Lecture 2

- Solving linear time-invariant differential equations.
- Initial conditions already accounted for.
- Transient and steady-state responses.
- Definition and notation.

Lecture 2 3/6

The Laplace Transform— Introduction

Sufficient Existence Conditions

Laplace integral converges.

• Function f(t) piecewise continuous, and $\exists \sigma$ such that $e^{-\sigma t}|f(t)| \rightarrow 0$ as $t \rightarrow \infty$.

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

- Abscissa of convergence.
- Examples

Lecture 2 4/6

The Laplace Transform— Introduction

Laplace transform examples

- $Ae^{-\alpha t}$, Au(t), At, $A\sin\omega_0 t$, $A\cos\omega_0 t$.
- Translated functions. Application pulse function.
- Impulse function. Transform and relation to unit step.

Lecture 2 5/6

The Laplace Transform— Introduction

Laplace transform properties

▲□▶▲□▶▲□▶▲□▶ □ のQ@

- Linearity.
- Multiplication by $e^{-\alpha t}$.
- Differentiation theorem.
- Final value theorem.
- Initial value theorem.
- Integration theorem.

Inverse Laplace transform

- Direct method: Involves contour integrations (difficult)
- Indirect methods: Use tables, or, for rational functions, use partial fraction expansion.
- Partial fraction expansion, form and factorization.
- Case with distinct poles. Examples.
- Case with multiple poles. Examples.
- Solving linear time-invariant differential equations.

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

The Laplace Transform— Introduction

Lecture 2