
SYSC-3120—Software Requirements Engineering 1

SYSC-3120—Software Requirements Engineering

Part IV – State-Based Modeling

State-Based Modeling

• State-Based Behaviour?

• States

• Transitions
– Triggering events and Guards

– Execution semantics

– Actions and activities

• Substates

• More on events on transitions

• Guidelines

 SYSC-3120—Software Requirements Engineering 2

Different Kinds of Object Behaviours
[Douglas, Wagner et al]

• Simple behaviour: object performs services on request and
keeps no memory of previous services
– e.g., a simple math function such as sine or square root
– function returns the last value measured from a sensor
– function returns the value of object attribute.

• State behaviour (a.k.a., state-driven, reactive): the way the
object performs services depends on what happened in the past
(memory), i.e., what other services have occurred before
– e.g., a cruise control
 an elevator control

• Continuous behaviour: current output depends on the previous
history in a way that does not lend itself to discretization (as in
state behaviour)
– e.g., digital filter

SYSC-3120—Software Requirements Engineering 3

SYSC-3120—Software Requirements Engineering 4

Purpose

• What do we model with a state machine?
– behavior of complex entity classes (e.g., customers, accounts)
– behavior of control classes

• State(s) of execution of a use case (e.g., conditional messages)
– behavior of a subsystem or system, but often too complex to

represent with a single state-machine
• Need to abstract away from details, or
• Use many communicating state-machines (one for each object)

• We will assume we model the state-based behaviour of a class
– Rather the behaviour of any instance of the class

• What are the benefits?
– systematic ways of implementing classes based on their state

machine description; lends itself to automatic code generation
– state-based behaviour can be automatically verified.

SYSC-3120—Software Requirements Engineering 5

State Machine

• Shows a behaviour that specifies the sequences of states an
object goes through during its lifetime in response to events,
together with its responses to events.
– describes the pattern of events, states and state transitions

undergone by objects of a class
– describes the life history of instances of a class

• State machine

– Is not concerned with algorithmic behaviour or internal control
– Is concerned with “when” operations execute, rather than “what”

operations do, or “how” they are implemented
– Not needed for stateless objects which always respond in the same

way to each stimulus, regardless of their state

State-Based Modeling

• State-Based Behaviour?

• States

• Transitions
– Triggering events and Guards

– Execution semantics

– Actions and activities

• Substates

• More on events on transitions

• Guidelines

 SYSC-3120—Software Requirements Engineering 6

Notion of State in a Finite State Machine

• State = information about past history;
 condition that persists for a significant period of time
• All states represent all possible situations in which the state

machine may ever be.
• Specifies a kind of memory: how the state machine can have

reached the present situation.
• As the application runs the state changes from time to time, and

outputs may depend on the current state as well as on the inputs.
• States are distinguishable: i.e., we can observe that they differ

from one another in either one (or several) of:
– the events they accept
– the transition they take as a result of accepting those events

• a transition is a response to an event that causes a state change
– the actions they perform.

 SYSC-3120—Software Requirements Engineering 7

SYSC-3120—Software Requirements Engineering 8

State

• State: a condition or situation in the life of an object during which
– the object satisfies some condition,
– the object performs some activity (in response to events),
– the object waits for some event.

• Condition satisfied in a state = state invariant
– each state is defined by one unique condition (state invariant)
– different states must satisfy different conditions
– state invariant described in terms of (condition on what?):

• attribute values
• links to other objects
• other objects’ states

• The current state of an object is the state in which the state
invariant is currently satisfied
– the current value of the object’s attributes and the links that it has

with other objects (and possibly their state)

SYSC-3120—Software Requirements Engineering 9

State (example 1)

• Class StaffMember has an attribute startDate which determines
whether a StaffMember object is in the probationary state:

– The StaffMember object is in the Probationary state for the first six
months of employment.

– While in this state, a staff member has different employment rights and is not
eligible for redundancy pay in the event that they are dismissed by the
company.

• Some attributes and links of an object are significant for the
determination of its state while others are not.
– staffName and staffNo attributes of a StaffMember object have no

impact upon its state (according to the specification above)
– startDate, and more so the comparison between startDate and the

current day is the condition that defines the probationary state.

SYSC-3120—Software Requirements Engineering 10

State (example 2)

• A 1L bottle is either empty, full, or partially full
• These are three states that specify different behaviours of the

bottle, i.e. different ways for the bottle to respond to events
– In state empty or partially full, the bottle can accept more liquid
– In state full, the bottle cannot accept more liquid
– In state partially full or full, we can remove liquid from the bottle
– In state empty, we cannot remove liquid from the bottle

• Assuming the bottle has an attribute quantity
– quantity=0 is the state invariant of state empty
– quantity=1 is the state invariant of state full
– quantity>0 and quantity<1 is the state invariant of state

partially full
– A bottle cannot be in two states at the same time, i.e., two state

invariants cannot be true at the same time: state conditions are
distinguishable.

State vs. Class Invariant

• State condition = State invariant
– A condition that does not vary (invariant) while the object is in the

respective state
– Attribute values may vary, but the condition remains.

• Class invariant = true in all the states an object can be in.

• Bottle:
– The state is either empty, full or partially full
– In state partially full, the quantity in the bottle is not 0 and is not the

maximum allowed
• this condition does not vary
• but the quantity (if one is pouring water in the bottle) does.

SYSC-3120—Software Requirements Engineering 11

State and Class Invariant Specification

• Often one adds a state attribute that is an
enumeration, to facilitate the specification of state
invariants and the class invariant.

• State invariant for state empty (three alternatives):
(state=BottleState::empty) = (qty=0)

or
(state=BottleState::empty) implies (qty=0)

or
(state=BottleState::empty) and (qty=0)

• Class invariant
(state=BottleState::empty and qty=0)

xor

(state=BottleState::full and qty=1)

xor

(state=BottleState::partiallyFull and qty>0 and qty<1)

SYSC-3120—Software Requirements Engineering 12

Bottle
- qty: Real
- state: BottleState

<<enumeration>>
BottleState

empty
partiallyFull
full

SYSC-3120—Software Requirements Engineering 13

Class vs. State Invariant

Class ImmediateJob
Inv: pickuploc<>””
 and pickupTime=””
 and bookedCab=performedBy
 and
 (
 (jobState=JobState::dispatched
 and self.performedBy->notEmpty
 and self.performedBy.currentJob=self
 and self.performedBy.cabState=CabState::busy
)
 xor
 (jobState=JobState::completed
 and self.performedBy.currentJob->isEmpty
 and self.performedBy->isEmpty
)
)

state invariant
(dispatched)

state invariant
(com

pleted)

class invariant

SYSC-3120—Software Requirements Engineering 14

UML Symbols for States

• Graphically

• Special states
– Initial state: indicates the default starting state

• State before any behaviour specified by the state
machine can actually happen.

• Indicates a state before the element modeled by
the state machine is actually created.

– Final state: indicates that the execution of the

state machine has been completed
• Specifies that the element which behaviour is being

modeled by the state machine has reached the end
of its life

Idle

(named) state

initial state

final state

SYSC-3120—Software Requirements Engineering 15

Bottle States

Empty
Full

PartiallyFull

Finite State Machine

• The object (or component) being modeled can only assume a
finite number of existence conditions called states

• The object behaviour in a given state is (distinguishable from
other states’ behaviour) essentially identical and defined by:
– The messages and events accepted
– The actions associated with each incoming event
– The state’s reachability graph (i.e., how state can change)
– The set of transitions

• An object spends all its time in states
– I.e., transitions take (approximately) zero time

• The object may change state only in a finite number of well-
defined ways, called transitions

• Transitions are enabled by events: a response to an event that
causes a change in state

• An object cannot be in two different states at the same time.
– One (and only one) state condition holds at a given instant

SYSC-3120—Software Requirements Engineering 16

A Simple Finite State Machine

A control system has to count the amount of money dropped into a
vending machine. Only 5 and 10 cent coins are accepted. The
correct, recognized sum (e.g., to deliver a drink) is 25 cents.

SYSC-3120—Software Requirements Engineering 17

start

five
5

ten

5 5

10

fifteen
10

twenty

5

10

vend

10

5

Idea of past (history): one introduced
either 5+5+5 or 5+10 or 10+5.

State-Based Modeling

• State-Based Behaviour?

• States

• Transitions
– Triggering events and Guards

– Execution semantics

– Actions and activities

• Substates

• More on events on transitions

• Guidelines

 SYSC-3120—Software Requirements Engineering 18

SYSC-3120—Software Requirements Engineering 19

Event

• Event: the occurrence of a stimulus that can trigger a state
transition.

• Transition: a relationship between two states indicating that an
object in the first (initial) state will perform certain actions and
enter the second (target) state when a specified event occurs
and specified conditions are satisfied.

• State changes are caused by events

Example: state of a rental object

SYSC-3120—Software Requirements Engineering 20

SYSC-3120—Software Requirements Engineering 21

Transitions and Events

• Transition: the act of changing state
• A transition is initiated by an event (also called trigger).
• Four kinds of events in UML:

– Signal event:
• An occurrence of interest arising asynchronously from outside the scope

of the state machine, by means of a signals (a signal can carry data)

– Call event:
• An explicit synchronous notification of an object by another

– Change event:
• An event based on the changing of an attribute value

– Time event:
• Either the elapse of a specific duration or the arrival of an absolute time

• Warning: an event has negligible duration
– Something that occurs at a particular time instant

• Recall: transitions take (approximately) zero time

SYSC-3120—Software Requirements Engineering 22

Call Events

Commissioned

Active

authorized(authorizationCode) [contract Signed]
 /setCampaignActive()

This event must correspond to an
operation in the Campaign class,
whose behaviour is specified with
this state machine

guard
condition action

Signals

• UML definition: “named event that can be raised”

• Signals have properties => can be modeled as objects with
attributes

– typical signal attributes are priority, time sent, sender ID

• Passed synchronously or asynchronously between objects

– Messages can pass a signal object, instance of a «signal» class.

• All the signals in a real-time system are modeled in a class
hierarchy.

– Signal classes must not be related to “normal” classes.

SYSC-3120—Software Requirements Engineering 23

SYSC-3120—Software Requirements Engineering 24

Signal Events

Elevator
Idle

Preparing to
Move Up

Preparing to
Move Down

Moving to
Floor

Checking
Next Destination

Up Request

Up Request

Down Request

Down Request

Elevator
Started

Elevator
Started

After(Timeout)

No Request

<<signal>>
NoRequest

<<signal>>
UpRequest

<<signal>>
DownRequest

<<signal>>
ElevatorStarted

<<signal>>
ElevatorSignal

SYSC-3120—Software Requirements Engineering 25

Elapsed-Time / Timeout transition

• A specific kind of event can be used to specify a timeout:
• The after(x) event

– The UML doesn’t define the units, but commonly they are
milliseconds or microseconds.

• This indicates a timeout event which fires some specified period
of time after the source state is entered.

• The timeout event is cancelled if the source state is exited prior
to the timeout, e.g., with a signal event.

State1 State2
after(60)/action

SYSC-3120—Software Requirements Engineering 26

Change Events

• Represents the notification that a condition has become true
• Is specified using the “when” keyword
• Must have a Boolean expression (e.g., OCL) enclosed in

parentheses designating the condition that must become true in
order for the transition to fire
– Unless the source state is exited prior to the this, e.g., with a signal

event

State1 State2
when(condition)

Example: elapsed-time and change events

• This example illustrates elapsed-time events and change events
• The current state of a GradeRate object can be determined by the two

attributes rateStartDate and rateFinishDate (state variables)
• An enumerated state variable may be used to hold the object state,

possible values would be Pending, Active or Lapsed

SYSC-3120—Software Requirements Engineering 27

Class GradeRate states

SYSC-3120—Software Requirements Engineering 28

Pending

Active

Lapsed

Transition
between
states

when [rateStartDate <=
currentDate]

when [rateFinishDate <=
currentDate]

after [1 year]

Final state

Initial state

Change
event

gradeRate()

Elapsed-time
event

Movement from
one state to
another is
dependent
upon events
that occur with
the passage of
time.

SYSC-3120—Software Requirements Engineering 29

Transitions

• A transition has
– a trigger, i.e., the event that can fire the transition and make the

state machine change state,
– an optional guard condition that is a condition controlling the firing

of the transition,
– an optional action (or series of actions), a.k.a., transition action(s),

that happens when the transition fires.
• The label of a transition has the following form:

triggeringEvent [guardCondition] / actionSequence
• In a nutshell:

if the state machine is in the source state,
and the triggeringEvent is received,
and the guard condition is true,
then the action sequence is executed
and the state machine changes state to the target state

Guard Condition

• A Boolean expression
• No side effect: i.e., it does not change the state of the system in

any way
– even if it calls some (query) class/object operations

• The model elements that can be evaluated in a guard condition:
– the attributes of the class that is modeled,
– links and their contents
– states of linked objects
– the arguments of the triggering event in case of a call event or a

signal event.
• Guard condition vs. change events:

– Guard conditions are evaluated when the event fires.
– Change events fire when a condition becomes true; they are

continuously checked when an object changes.

SYSC-3120—Software Requirements Engineering 30

Example: Phone call statechart

SYSC-3120—Software Requirements Engineering 31

State-Based Modeling

• State-Based Behaviour?

• States

• Transitions
– Triggering events and Guards

– Execution semantics

– Actions and activities

• Substates

• More on events on transitions

• Guidelines

 SYSC-3120—Software Requirements Engineering 32

Execution Semantics

• Event occurrences are detected, dispatched, and then processed by the
state machine, one at a time.

• When an event occurrence is detected and dispatched, the transitions
out of the current state (also called the current state configuration, or active
state configuration) are candidate for firing.

– First, the transitions (there might be more than one) with a triggering event that
matches the received event occurrence are identified.

– If no transition outgoing from the active state configuration is identified, the
received event occurrence is discarded (lost).

– Second, the guard conditions of the matched transitions are evaluated.
– If a guard condition evaluates to true, the corresponding transition is enabled

and fires.
• Since conditions are distinguishable, only one condition can be true at the same time

and therefore only one transition fires
– If no guard condition evaluates to true, the received event occurrence is

discarded (lost).

SYSC-3120—Software Requirements Engineering 33

Execution Semantics (cont.)

• Once a transition is enabled and it fires, the following occurs:
1.The source state is properly exited,

– i.e., its activity is interrupted in case it is still running
– and its exit action is executed.

2.The transition actions are executed in the order they are
specified.

3.The target state is properly entered
– i.e., its entry action is executed.

SYSC-3120—Software Requirements Engineering 34

Notions to be discussed later

Execution Semantics (cont.)

• Dispatching events?
– Signal event, time event or change event, dispatching the event is

simply that: an event is dispatched.
– What about call events?

• Dispatching a call event is simply that: an event is dispatched
– This is simply a request to execute
– The request may not be granted!

SYSC-3120—Software Requirements Engineering 35

Execution Semantics (cont.)

• Assuming a transition with a trigger matching a call event can be
found out of the active state

• The guard is evaluated:
– Until now this is still a request to satisfy a call!
– The receiving object is evaluating whether it can grant the request as

specified in the state machine.
• If the transition is enabled, i.e., the guard condition evaluates to

true, then the source state is existed, the operation
corresponding to the call event is executed, the transition actions
executes, and finally the target state is entered

• If the transition is not enabled, i.e., the guard condition evaluates
to false, then the event occurrence is discarded (lost)

SYSC-3120—Software Requirements Engineering 36

SYSC-3120—Software Requirements Engineering 37

Abstract Example

State1 State2 evt1

State3

State4

evt1

evt2[c1]
evt2[not c1]

State5

State6

[c2]

evt3[not c4 and c3]

evt3[not c4 and not c3]
evt4[c4]

only the event

only the
guard

no event,
no guard automatic

SYSC-3120—Software Requirements Engineering 38

State Transition Table

State Condition (if any) Event
received

Result

State1 evt1 State2
evt2

ignored evt3
evt4

State2 evt1 State2
C1 = true evt2 State3
C1 = false evt2 State4

evt3
ignored

evt4
State3 evt1

ignored
evt2
evt3
evt4

C2 = true State1

SYSC-3120—Software Requirements Engineering 39

Actions in Transitions

• Action in a transition:
– An executable atomic computation that may directly act on the
object that owns the statechart, and indirectly on other objects that
are visible to this object
– An action may include: operation calls, creation or destruction of
another object, assignment, sending of a signal to an object

• Atomicity: cannot be interrupted by an event and therefore runs
to completion

• Event syntax:
event(arguments) [guard condition] / action(arguments)

Example: class Campaign

SYSC-3120—Software Requirements Engineering 40

Commissioned
authorized(authorizationCode)
[contractSigned]
/setCampaignActive()

/assignManager();
 assignStaff()

Active

Completed

Paid

campaignCompleted()
/prepareFinalStatement()

paymentReceived(payment)
[paymentDue - payment > zero]

paymentReceived(payment)
[paymentDue – payment <= zero]

archiveCampaign()
/unassignStaff();
 unassignManager()

Action-expression
assigning manager and
staff on object creation

Guard condition
ensuring complete

payment before
entering Paid

Transition models any
payment event that does
not reduce the amount
due to zero or beyond

Example: revised statechart for class Campaign

SYSC-3120—Software Requirements Engineering 41

Commissioned
authorized(authorizationCode)
[contractSigned]
/setCampaignActive()

/assignManager();
 assignStaff()

Active

Completed

Paid

campaignCompleted()
/prepareFinalStatement()

paymentReceived(payment)
[paymentDue - payment > zero]

paymentReceived(payment)
[paymentDue – payment = zero]

archiveCampaign()
/unassignStaff();
 unassignManager()

paymentReceived(payment, client)
[paymentDue - payment < zero]
/client.generateRefund()

Overpayment is now to
result in a refund

State-Based Modeling

• State-Based Behaviour?

• States

• Transitions
– Triggering events and Guards

– Execution semantics

– Actions and activities

• Substates

• More on events on transitions

• Guidelines

 SYSC-3120—Software Requirements Engineering 42

Actions in State

A state can have:
• An entry action, executed when entering the state
• An exit action, executed when exiting the state

– If a signal is discarded, no exit action triggered (as if the signal never
happened)

This helps:
• Dispatching the same action whenever we enter (resp. exit) a

state, no matter which transition led us there (resp. away)

SYSC-3120—Software Requirements Engineering 43

StateName
entry / entryAction

exit / exitAction

Playing

entry / find start of track,
lower head
exit / raise head

SYSC-3120—Software Requirements Engineering 44

The Order of Action Executions

State
entry / actionA
exit / actionB

event1 / actionC

event2 / actionD

event3 / actionE

Sequence of events received
event1, event2, event3

Actions executed
actionC, actionA, actionB, actionD,
actionA, actionB, actionE

SYSC-3120—Software Requirements Engineering 45

Example

evt1/a1 evt2/a2
StateA
entry/A
exit/B

Result if sequence evt1,evt3,evt2
is received

• a1, A, B, a2 (evt3 is ignored)

• a1, A, B, a3, A, B, a2

evt3/a3

evt1/a1 evt2/a2
StateA
entry/A
exit/B

Example—Parsing

• Statechart for parsing a simple language such as: ‘<’ string ‘>’
string;
– Do not do anything until character ‘<‘ is found
– Add the string between ‘<‘ and ‘>’ to a token string:

• token.init() empties the string
• token.append(c) appends character c to string token

– Add the string after the ‘>’ (but before ‘;’) to a body string
• We model a reactive class:

– The class only waits for signal events to trigger behaviour, i.e., state
changes

– The event is (a <<signal>> class) called NewChar with one attribute
– Recall the discussion on sequence diagrams:

• the trigger can be the name of the signal (class) with arguments which
match the attributes of the class definition

• Such arguments are available to the guard condition, as well as to actions

SYSC-3120—Software Requirements Engineering 46

Example—Parsing (cont.)

SYSC-3120—Software Requirements Engineering 47

NewChar(c) [c<>‘<‘]

NewChar(c) [c=‘<‘]
/ token.init()

NewChar(c) [c<>‘>‘] / token.append(c)

NewChar(c) [c<>‘;‘]
/ body.append(c)

NewChar(c) [c=‘;‘]

NewChar(c) [c=‘>‘] / body.init()

Waiting

GettingToken

GettingBody

Questions:
• Where else may token.init() be placed?
• Where else may token.append(c) be placed?
• Where else may body.init() be placed?
• Where else may body.append(c) be placed?

Note: NewChar can also be a
call event, without changing
the state machine

Example—Parsing (cont.)

• Same behaviour to model
• We model a class which, once started, can handle parsing by

itself:
– It does not need to wait for signals
– It can get characters, one at a time, using action getChar(c)

SYSC-3120—Software Requirements Engineering 48

Example—Parsing (cont.)

SYSC-3120—Software Requirements Engineering 49

[c<>‘<‘]

[c=‘<‘] / token.init()

[c<>‘>‘] / token.append(c)

[c<>‘;‘] / body.append(c)

[c=‘;‘]

[c=‘>‘] / body.init()

Waiting
entry / getChar(c)

GettingToken
entry / getChar(c)

GettingBody
entry / getChar(c)

Questions:
• Where else may token.init() be placed?
• Where else may token.append(c) be placed?
• Where else may body.init() be placed?
• Where else may body.append(c) be placed?
• Where else may getChar(c) be placed?

State Activity

• State Activity: models an ongoing work in a state.
– The object does some work

• that will begin after the entry action is finished,
• that continues until it is interrupted by an event,
• or that terminates (if not interrupted) before the exit action is triggered .

• A state activity can be interrupted by an event

SYSC-3120—Software Requirements Engineering 50

State
entry/ the entry action(s)

do/ activity1; activity2
exit/ the exit action(s)

SYSC-3120—Software Requirements Engineering 51

Example

State
entry/ A
do/ B
exit/ C

evt1 evt2

• Event evt2 is received after
completion of activity B

 A, B, C

• Event evt2 is received before
completion of activity B

 A, part of B, C

Event evt1 is first received and

Example—Elevator

A statechart for an elevator. The elevator starts at the first floor. It
can be moving up and down. If the elevator is idle on one floor, a
time-out event occurs after a period of time and moves the elevator
back to the first floor.

SYSC-3120—Software Requirements Engineering 52

OnFirstFloor

Idle
entry/timer = 0

do/increase timer

MovingUp
do/moving to floor

MovingDown
do/moving to floor

go up (floor)

arrived
go down (floor)

when(timer = time-out)/go down (first floor)

arrived

go up (floor)

SYSC-3120—Software Requirements Engineering 53

Example—Elevator (cont.)

OnFirstFloor

Idle
entry/timer = 0

do/increase timer

Moving
do/moving to floor

go up (floor)

arrived
go down (floor)

when(timer = time-out)/go down (first floor)

go up (floor)

Two states are merged

Completion Event

• A completion event is generated when all entry and do (activity)
behaviors within the state are complete.

• If the state is connected to another state by a transition that has
no label, then this transition (a.k.a., completion transition) fires.
– the object automatically makes a transition to the state that comes

after executing any exit action.
– A completion transition can have a guard, actions.

• Recall the parsing example.

SYSC-3120—Software Requirements Engineering 54

State-Based Modeling

• State-Based Behaviour?

• States

• Transitions
– Triggering events and Guards

– Execution semantics

– Actions and activities

• Substates

• More on events on transitions

• Guidelines

 SYSC-3120—Software Requirements Engineering 55

SYSC-3120—Software Requirements Engineering 56

Substates

• A substate is a state nested inside another state
– A simple state is a state without any substate
– A state with substates is a composite state

• There are two different kinds of substates (i.e., composite states):
– Sequential substates
– Concurrent substates

• Common features
– Substates must have a default starting (initial) substate, and

one or several final (terminating) substates
– All substates fulfill the state invariant from their parent state

• The invariant of the sub-sate implies the invariant of the parent state

– All substates inherit outgoing transitions from their parent
• Same responses

– But: incoming transitions for parents are not inherited

SYSC-3120—Software Requirements Engineering 57

Sequential substates

• An object in a composite state can only be in one of that state’s
substates at the same time (mutually exclusive, distinguishable)

• Sequential Substates are also called ‘OR‘ states, disjoint
substates Composite

state

Initial
substate

Sequential
substate

Entry and Exit actions for
state Active

Validating

Selecting Processing

Printing

[continue]

[not continue]

entry/readCard
exit/ejectCard

Active

Idle

Maintenance

maintain

cardInserted

cancel

SYSC-3120—Software Requirements Engineering 58

Sequential substates (cont.)

• The state machine is either in Idle, Maintenance, or Active (composite
state)

• While in Active, the state machine is either in Validating, Selecting,
Processing, or Printing (sequential substates)

• Overall, the state is either Idle, Maintenance, (Active)Validating,
(Active)Selecting, (Active)Processing, or (Active)Printing

Validating

Selecting Processing

Printing

[continue]

[not continue]

entry/readCard
exit/ejectCard

Active

Idle

Maintenance

maintain

cardInserted

cancel

SYSC-3120—Software Requirements Engineering 59

Sequential substates (cont.)

• If, while in Idle, event cardInserted is received, the new state is the initial
state in composite state Active, leading to state (Active)Validating

• If, while in Active, event cancel is received, the new state is Idle
– Being in Active means being in either Validating, Selecting, …
 If, while in Validating, Selecting, …, event cancel is received, the new state is

Idle
• After finishing Printing, the new state is Idle (after ejecting the card)

Validating

Selecting Processing

Printing

[continue]

[not continue]

entry/ readCard
exit/ejectCard

Active

Idle

Maintenance

maintain

cardInserted

cancel

Initial state of Composite State

SYSC-3120—Software Requirements Engineering 60

Advert Preparation

campaignCompleted()
/prepareFinalStatement()

Running Adverts Scheduling
confirmSchedule()

extendCampaign()
/modifyBudget()

advertsApproved()
/authorize()

Active

The transition from the initial state should not be labelled
with an event but may be labelled with an action

A transition to the final state represents the completion
of the enclosing (Active) state, and a transition out of

this (Active) state triggered by a completion event.

SYSC-3120—Software Requirements Engineering 61

Concurrent substates

• If an object can be in a composite state but can also be in more
than one of that state’s substates at the same time
– Subtates active simultaneously

• Concurrent Substates are also called ‘AND‘ states, orthogonal
substates

Composite state Concurrent substates

TestingDevices SelfDiagnosis

Waiting Command

[continue]

keyPress

Maintenance
Testing

Commanding

[not continue]

Idle

maintain

SYSC-3120—Software Requirements Engineering 62

Concurrent substates (cont.)

• While in state Maintenance, the state machine is at the same
time in states Testing and in state Commanding

• While in state Testing, the state machine is either in
TestingDevices or SelfDiagnosis

TestingDevices SelfDiagnosis

Waiting Command

[continue]

keyPress

Maintenance
Testing

Commanding

[not continue]

Idle

maintain

SYSC-3120—Software Requirements Engineering 63

Example

Incomplete

Passed

Failed

Lab1 Lab2
lab
done

lab
done

Term
Project

project done

Final
Test

completed [pass]

completed [fail]

Taking Class

SYSC-3120—Software Requirements Engineering 64

Concurrent States—Initial state

• A transition to a composite state made of concurrent substates is
equivalent to a simultaneous transition to the initial states of each
concurrent statechart

• An initial state must be specified in both nested (concurrent) state
machines in order to avoid ambiguity about which substate
should first be entered in each concurrent region

Concurrent States—Initial state

• While in state Idle, if event maintain is received, the new state is
Maintenance.

• This means entering simultaneously into Testing and
Commanding

• Which means being simultaneously in TestingDevices and
Waiting

SYSC-3120—Software Requirements Engineering 65

TestingDevices SelfDiagnosis

Waiting Command

[continue]

keyPress

Maintenance
Testing

Commanding

[not continue]

Idle

maintain

SYSC-3120—Software Requirements Engineering 66

Concurrent States—Concurrent Beheviour

• Once the composite states is entered a transition may occur
within
– either one of the concurrent regions without having any effect on the

state in the other concurrent region
– in all concurrent regions at the same time

• If the current state is TestingDevices+Waiting, the next state may
be TestingDevices+Command.

TestingDevices SelfDiagnosis

Waiting Command

[continue]

keyPress

Maintenance
Testing

Commanding

[not continue]

Idle

maintain

SYSC-3120—Software Requirements Engineering 67

The Active State with Concurrent Substates

Advert Preparation

Running Adverts Scheduling confirmSchedule()

extendCampaign()
/modify Budget()

advertsApproved()
/authorize()

Active

Survey

Evaluation

surveyComplete()

runSurvey()

Running

Monitoring

campaignCompleted()
/prepareFinalStatement()

Composite State—Entry/Exit

• A composite state can have an entry action, an exit action
– A composite state does not have a do activity
(The behaviour while in the composite state is specified by its substates!)

• Each substate can have an entry action, an exit action

• Entering a composite state:
– entry action of the composite state first
– entry actions of substates in order of nesting

• Exiting a composite state:
– exit action of the substates in (reverse) order of nesting
– exit action of the composite state

SYSC-3120—Software Requirements Engineering 68

State-Based Modeling

• State-Based Behaviour?

• States

• Transitions
– Triggering events and Guards

– Execution semantics

– Actions and activities

• Substates

• More on events on transitions

• Guidelines

 SYSC-3120—Software Requirements Engineering 69

SYSC-3120—Software Requirements Engineering 70

Events Triggered

• Transitions are triggered by events (see previous slides)
• Transitions can also send signals as specified in the send clauses,

specified after actions and a ‘^’ separator.
• Syntax of a transition:

eventReveived(args) [condition] / [target.]action(s), … ^
[target.]signalSent(args), …

A B

C D

evt1/^s2

evt2/^s1

E

SYSC-3120—Software Requirements Engineering 71

Semantics of Send Clauses

• An object can send a signal to any set of objects which it knows
about

• May have a designation string (target), e.g., OCL navigation
expression, that that indicates the object or class that will receive
the signal

^target.signal(arglist)

• Must have a name or identifier string that represents the name of
a signal

• May have an argument list (actual parameters)
• May refer to parameters of the triggering event and to attributes

and links of the object that owns the statechart

SYSC-3120—Software Requirements Engineering 72

Sent Signals versus Actions

• Sent clauses result into the asynchronous sending of signals to
other objects whereas actions are synchronous

• The “asynchronous” property is the main difference with actions
on transitions. Actions on transitions, entry, and exit must be
completed before entering the new state. In the send clauses,
signals are sent and the resulting operations are executed in an
asynchronous manner.

SYSC-3120—Software Requirements Engineering 73

Substate Example

Partial Dial
entry / nb.appendNumber (n)

Start
do / play dial tone

digit(n) [nb is valid]

/ ^dialedNumber(nb)

Dialing

/nb := “ “

digit(n)

Dialing Connecting Idle
lift receiver dialedNumber(nb)

SYSC-3120—Software Requirements Engineering 74

Sending Events Between state machines

Off On
toggle power

toggle power

Off On
toggle power

toggle power

Controlling
TV “TV”

“VCR”
Controlling

VCR

powered_up/
^television.togglePower

VCR

Remote Control

Television

powered_down/
^VCR.togglePower

SYSC-3120—Software Requirements Engineering 75

Creating and Destroying Objects

• Creating/Destroying an object:
– regarded as sending an event to the class itself

• Comments:
– the event arguments serve to initialize the object
– new objects begin in an initial state from where they receive

the creation event as their first event
– a class could have multiple possible “birth” events
– an object ceases to exist (is destroyed) when it reaches a

top-level terminal state
– as part of this transition it can send an event
– the action and event expression can be attached directly to

the terminal state

SYSC-3120—Software Requirements Engineering 76

Creating and Destroying Objects

State1

• Statechart for class A, who ‘knows’ class B

constructorForA(…)
B.create(…)

State-Based Modeling

• State-Based Behaviour?

• States

• Transitions
– Triggering events and Guards

– Execution semantics

– Actions and activities

• Substates

• More on events on transitions

• Guidelines

 SYSC-3120—Software Requirements Engineering 77

SYSC-3120—Software Requirements Engineering 78

Guidelines for Developing state machines

• A state must reflect an identifiable situation or an interval of time
when something is happening in the system. A state name is
often an adjective (Initial) or a phrase with an adjective (Elevator
idle).

• Each state must have a unique name.
• It must be possible to exit from every state. It is often the case

that state machines do not have a terminating state.
• Do not confuse events and actions. An event cause a state

transition. The action is the effect of a state transition.
• Events indicate that something just happened whereas actions

are commands.

SYSC-3120—Software Requirements Engineering 79

Guidelines for Developing state machines II

• An action executes “instantaneously”. An activity executes
throughout a given state.

• You may have more than one action associated with a transition.
• All these actions conceptually execute simultaneously; hence no

assumptions can be made about the order in which the actions
are executed. Consequently, no interdependencies should exist
among the actions or you need to introduce an intermediate
state.

• If a state transition is labeled event[condition], a state transition
takes place only if, at the moment the event happens, the
condition is true.

• Actions, activities, and conditions are optional. Use them only
when necessary.

	SYSC-3120—Software Requirements Engineering
	State-Based Modeling
	Different Kinds of Object Behaviours�[Douglas, Wagner et al]
	Purpose
	State Machine
	State-Based Modeling
	Notion of State in a Finite State Machine
	State
	State (example 1)
	State (example 2)
	State vs. Class Invariant
	State and Class Invariant Specification
	Class vs. State Invariant
	UML Symbols for States
	Bottle States
	Finite State Machine
	A Simple Finite State Machine
	State-Based Modeling
	Event
	Example: state of a rental object
	Transitions and Events
	Call Events
	Signals
	Signal Events
	Elapsed-Time / Timeout transition
	Change Events
	Example: elapsed-time and change events
	Class GradeRate states
	Transitions
	Guard Condition
	Example: Phone call statechart
	State-Based Modeling
	Execution Semantics
	Execution Semantics (cont.)
	Execution Semantics (cont.)
	Execution Semantics (cont.)
	Abstract Example
	State Transition Table
	Actions in Transitions
	Example: class Campaign
	Example: revised statechart for class Campaign
	State-Based Modeling
	Actions in State
	The Order of Action Executions
	Example
	Example—Parsing
	Example—Parsing (cont.)
	Example—Parsing (cont.)
	Example—Parsing (cont.)
	State Activity
	Example
	Example—Elevator
	Example—Elevator (cont.)
	Completion Event
	State-Based Modeling
	Substates
	Sequential substates
	Sequential substates (cont.)
	Sequential substates (cont.)
	Initial state of Composite State
	Concurrent substates
	Concurrent substates (cont.)
	Example
	Concurrent States—Initial state
	Concurrent States—Initial state
	Concurrent States—Concurrent Beheviour
	The Active State with Concurrent Substates
	Composite State—Entry/Exit
	State-Based Modeling
	Events Triggered
	Semantics of Send Clauses
	Sent Signals versus Actions
	Substate Example
	Sending Events Between state machines
	Creating and Destroying Objects
	Creating and Destroying Objects
	State-Based Modeling
	Guidelines for Developing state machines
	Guidelines for Developing state machines II

