
SYSC-3120—Software Requirements Engineering 1

SYSC-3120—Software Requirements Engineering

Part III - Object-Oriented Analysis

SYSC-3120—Software Requirements Engineering 2

SYSC-3120—Software Requirements Engineering

• Overview
• Analysis Concepts

– Modeling structure: class diagram
– Modeling interaction: sequence diagram
– Modeling state-based behavior: state machine diagram

• Analysis Process
– Finding objects/classes (heuristics)
– Finding relationships: associations and attributes (heuristics)
– Interactions/behavior (heuristics)
– Responsibilities
– Analysis review

SYSC-3120—Software Requirements Engineering 3

Overview

• Transform the specifications of the system into a form suitable to
designers, from the requirement elicitation results (use case
model)

• Systematic procedure, heuristics
• Analysis of problem domain, as opposed to solution domain

(Design)
• Model composed of static and dynamic UML models

– Static model: classes relationships attributes (modeling system
structure)

– Dynamic model: object behavior, interactions between objects
(modeling system behavior)

• The result is a model that is (expected to be) correct, complete,
consistent and verifiable.

SYSC-3120—Software Requirements Engineering 4

Overview (Bruegge and Dutoit, 2000)

System
Design

system model
:Model

requirements
specification

:Model

analysis model
:Model

Requirements
Elicitation

Analysis

SYSC-3120—Software Requirements Engineering 5

Object-Oriented, UML-based
Analysis Model (Bruegge and Dutoit, 2000)

analysis
model:Model

dynamic
model:Model

object
model:Model

functional
model:Model

use case
diagram:View

class
diagram:View

statechart
diagram:View

sequence
diagram:View

Notice that the analysis model
includes (possibly refining) the
result of requirement elicitation. dataDictionary:

Model

Including:
- Operation’s pre- and post-conditions
- Class invariants

state machine

Ideally automatically generated

Analysis Model
(alternative to Object-Oriented, UML-based)

• Structured Analysis: data and processes manipulating data are
considered separately
– Data objects are modeled with attributes and relationships

• E.g., with an Entity Relationship (ER) diagram
– Processes are modeled to show how they transform data

• E.g., Data Flow (DF) model, Control Flow (CF) model, lead to functional
decomposition of the system’s responsibilities

• Related development processes:
– Structured analysis, structured design (SA/SD)
– Structured analysis design technique (SADT)

SYSC-3120—Software Requirements Engineering 6

SYSC-3120—Software Requirements Engineering 7

Analysis Model
(alternative to Object-Oriented, UML-based)

analysis
model:Model

dynamic
model:Model

object
model:Model

functional
model:Model

use case
diagram:View

ER
diagram:View

statechart
diagram:View

DF + CF
diagram:View

Notice:
• The analysis model is not specific to

OO analysis or Structured analysis.
• The analysis model is not specific to

programming languages (e.g.,
C++/Java for OO analysis, C for
Structured analysis)

dataDictionary:
Model

state machine

Ideally automatically generated

SYSC-3120—Software Requirements Engineering 8

SYSC-3120—Software Requirements Engineering

• Overview
• Analysis Concepts

– Modeling structure: class diagram
• Modeling classes
• Different kinds of relationships
• OCL: Better specifying operations/classes, constraining class diagram
• Liskov substitution principle

– Modeling interaction: sequence diagram
– Modeling state-based behavior: state machine diagram

• Analysis Process
– Finding objects/classes (heuristics)
– …

SYSC-3120—Software Requirements Engineering 9

Class Definition

• UML definition: “description of a set of objects that share the
same attributes, operations, and relationships [OMG UML Guide,
1999]

• Class structure: a 3-part box
– Attribute: name, type, visibility
– Operation: name, parameter list (name, type, direction), return type,

visibility

• Class name in italic = abstract class

ClassName

- attribute : Type

+ operation(paramList) : returnType

Class Definition

An attribute
• has a name
• has a type:

only primitive types allowed
Boolean, String, Integer, Real

• has a visibility
+ name: type a public attribute (default)
- name: type a private attribute
name: type a protected attribute
~ name: type a package-visible

attribute

• class vs. object scope (i.e., static)
Class scope = underlined definition
Implementation: class ≈ static

An operation
• has a name
• has a return type (optional)
• has a visibility
• class vs. object scope
• has parameters (optional)

– name (optional)
– type: primitive types, class types
– direction: in/out/inout

• in = passed by caller (default
when omitted)

• out = like a returned value
• inout = both

• E.g.: + setSize(in name:String)
 + getSize(): Rectangle

SYSC-3120—Software Requirements Engineering 10

Class Definition—Example

SYSC-3120—Software Requirements Engineering 11

Account
- numberOfAcounts: Integer
- userName: String
- firstName: String
- lastName: String
- accountNumber: Integer

+ getUsername()
+ verifyUser()
- validateNames()
+ setName(first: String, last: String)
+ setName(in fullName: String)
+ createOrder(): Order
+ matchesOrder(in o: Order): Boolean
+ mergeOrders(inout o: Order)

All private attributes

An attribute at scope class
(static in implementation)

Only primitive types

Omitted return type
means void

Another class in the class
diagram can be a parameter
or return type: not restricted
to primitive types Omitted direction = in

inout =
Value provided by caller
+
Value modified by this operation

SYSC-3120—Software Requirements Engineering 12

Class/Object Taxonomy

• Objectives:
– facilitate the identification of classes/objects’ responsibilities

• Result: classification of classes
– Entity Class/Object

• Represents the persistent information tracked by the system (Application
domain objects, “Business objects”)

– Control Class/Object
• Represents the control tasks performed by the system, contains the logic

and determines the order of object interactions
• Implements the logic of use cases

– Boundary Class/Object
• Represents the interaction between the actors and the system: user

interface object, device interface object, system interface object
• Only transmits data, without change of semantics, possibly with change of

format

• There are other class taxonomies

SYSC-3120—Software Requirements Engineering 13

Use of Class/Object Taxonomy

• Model that is more resilient to change.
– The boundary objects are more likely to change than the control
– The control objects are more likely to change than the application

logic and entity objects
– Limit impact (propagation) of changes when errors are corrected or

requirements change
• Helps identify classes/objects and clearly identify responsibilities
• Helps read class diagram (using stereotypes)

– Use string <<Boundary>> before the class name
– Use string <<Control>> before the class name
– Use string <<Entity>> before the class name

• Helps verification:
– Clear responsibilities
– bypass the boundary classes

• Clarify object interactions in sequence diagrams (see later)

Class Taxonomy

SYSC-3120—Software Requirements Engineering 14

User-defined Types

• Primitive Types
– you can define your own

primitive type

• Data Types
– structured type

• Enumeration

• These can be used as attribute types, in addition to the
previously mentioned primitive types. No other class allowed!

SYSC-3120—Software Requirements Engineering 15

<<primitive>>
Weight

<<datatype>>
Address

street: String
number: Integer

<<enumeration>>
AccountType

savings
checking

SYSC-3120—Software Requirements Engineering 16

SYSC-3120—Software Requirements Engineering

• Overview
• Analysis Concepts

– Modeling structure: class diagram
• Modeling classes
• Different kinds of relationships

– Association
– Generalization and Realization
– Dependency

• OCL: Better specifying operations/classes, constraining class diagram
• Liskov substitution principle

– Modeling interaction: sequence diagram
– Modeling state-based behavior: state machine diagram

• Analysis Process
– Finding objects/classes (heuristics)
– …

SYSC-3120—Software Requirements Engineering 17

Association

• Models the possibility of links between instances of two or more
(associated) classes
– Describes a group of links (between instances) with common

structure and semantics
– Mathematically correspond to a set of tuples (relations)

• Multiplicities indicate the size of tuples
• Different kinds of associations:

– Plain association
– Aggregation
– Composition

• Can have a name (not that useful)
• Can have rolename on each end (very useful)
• Can have a direction (rather a design decision)

SYSC-3120—Software Requirements Engineering 18

Associations—Other Examples (the FRIEND system)

FieldOfficer IncidentReport
* *

FireUnit FireTruck
* 1

PoliceOfficer
1 1

owner property

author report

BadgeNumber

writes

multiplicity

rolename name

Association: kinds and direction

SYSC-3120—Software Requirements Engineering 19

We will discuss
semantics differences
later

Association: name

SYSC-3120—Software Requirements Engineering 20

• An association can have a name.
• A name is optional.
• When using a name, add an indication (triangle) to help “read”

the association.
• The association name appears in the middle between the two

classes

Association: multiplicities

• Models the possibility of links between instances of two or more
(associated) classes
– Describes a group of links (between instances) with common

structure and semantics
– Mathematically correspond to a set of tuples (relations)

• Multiplicities indicate the size of tuples

• Multiplicities at both ends of the association (line).
• Multiplicities are strongly recommended!

– See later
• The default (omitted) multiplicity is 1.

– See alternatives next
• They specify the number of instances of the classes at each end

of the association that can be linked at runtime. (Not at any instant
in time though: see later)

SYSC-3120—Software Requirements Engineering 21

Association: multiplicities

SYSC-3120—Software Requirements Engineering 22

A B Between operation executions (when objects are idle), an instance
of A is linked to 0 or 1 (not more) instance of B

0..1

A B Between operation executions (when objects are idle), an instance
of A is linked to exactly 1 instance of B

1

A B Between operation executions (when objects are idle), an instance
of A is linked to 0 or any arbitrary number of instances of B

*

A B Between operation executions (when objects are idle), an instance
of A is linked to at least 1 instance of B, and possibly any arbitrary
number of instances of B

1..*

A B Between operation executions (when objects are idle), an instance
of A is linked to at least 3 but no more than 7 instances of B

3..7

Association: multiplicities

SYSC-3120—Software Requirements Engineering 23

Course 1 teaches
Professor *

Professor

Course

SWEN5232

CSCI3233 SWEN5233

Dr. Smith

Dr. White
Dr. Brown

Dr. Jones

CSCI4432

Dr. White CSCI3233

Dr. Smith CSCI4432

Dr. Brown SWEN5232

teaches

Dr. Brown SWEN5233

Semantics of one association: SET
i.e., no duplicate

This is one instance
of the association

Association Multiplicities—Exercise

SYSC-3120—Software Requirements Engineering 24

ok

ok

ok

Multiplicities have Semantics

• A Job instance is linked to 0 or more Cab instances.
• A Cab instance is linked to exactly 1 Job instance.
• An ImmediateJob instance is linked to exactly one Cab instance.
• A Cab instance is linked to 0 or 1 (but not more) ImmediateJob instance.
• …
• At what time during the execution of instances/objects do these

conditions hold?

SYSC-3120—Software Requirements Engineering 25

ImmediateJob Driver
1 *

Job Cab
* 1

dispatchedTo
bookedCab

performs

currentDriver

0..1

0..1 currentJob
performedBy

1

0..1

Multiplicities have Semantics (cont.)

• A Cab instance is linked to exactly 1 Job instance.
• A Cab instance is linked to 0 or 1 (but not more) ImmediateJob instance.
• When?

– At the end of the construction of a Cab instance.
– Before and after the execution of any public operation of Cab.

• But not (necessarily)
– During the execution of the constructor or any public operation of Cab.
– Before and after the execution of non-public operations of Cab.

SYSC-3120—Software Requirements Engineering 26

ImmediateJob Driver
1 *

Job Cab
* 1

dispatchedTo
bookedCab

performs

currentDriver

0..1

0..1 currentJob
performedBy

1

0..1

Multiplicities have Semantics (cont.)

• Multiplicities have huge consequences and can easily be wrong.
• An ImmediateJob is linked to exactly one Cab instance
• An ImmediateJob is linked to exactly one Driver instance

– A Driver instance is linked to 0 or 1 Cab.
– i.e., a Driver instance may not be linked to any Cab.

• Path ImmediateJobDriverCab specifies that
– An ImmediateJob is performed by a Driver but the Driver may not be in a

Cab!
– There is a problem!

• Different paths, when having the same semantics, must be consistent
– We can call these paths redundant paths

• During Analysis: avoid redundant paths!
SYSC-3120—Software Requirements Engineering 27

ImmediateJob Driver
1 *

Cab

performs

currentDriver

0..1

0..1
currentJob performedBy

1

0..1

Multiplicity: Snapshot versus History ?

• What is the scope of multiplicity constraints ?
• Should they cover past, present and future or just present ?
• Answer depends on the context, and what you want to model

SYSC-3120—Software Requirements Engineering 28

Woman Man married_to

Woman Man married_to

=> when a history of marriages is useful (e.g., police)

=> when only current marital status needed (e.g., bank)

0..* 0..*

0..1 0..1

Rolename == Attribute (during implementation)

• Class ImmediateJob has (implementation) an attribute of type Cab
named performedBy.

• Class Cab has an attribute of type ImmediateJob named currentJob.
• Class Job has an attribute named bookedCab. Its type is a collection

type (a Set). Due to multiplicity *.
• Class Cab does not have an attribute of class Job (due to the navigation

of the association)

 SYSC-3120—Software Requirements Engineering 29

ImmediateJob Driver
1 *

Job Cab
* 1

dispatchedTo
bookedCab

performs

currentDriver

0..1

0..1 currentJob
performedBy

1

0..1

Rolename == Attribute (during implementation)

• Class Cab has
– An attribute called currentJob (of type ImmediateJob) as part of its definition
– An attribute called currentJob (of type ImmediateJob) because of its

association with class ImmediateJob
– There is duplication of information!

• Recall: attributes can only have primitive types (or enumeration, …
types). No other user-defined class types.

SYSC-3120—Software Requirements Engineering 30

ImmediateJob

Cab

currentJob performedBy

1

0..1

currentJob:ImmediateJob

SYSC-3120—Software Requirements Engineering 31

Association Classes (Fowler)

Student
* 2..*

Lecture
attends

One wants to model the fact that students are more or less attentive.
Is this a property (attribute) of class Student?
• No: attentiveness depends on lectures
Is this a property (attribute) of class Lecture?
• No: attentiveness depends on students
Attentiveness is a property of the association Student—Lecture

attends
Student

* 2..*
Lecture

Attendance
-attentiveness Association class

Student 1
1

Lecture

Attendance
-attentiveness

* 2..*

Without using an association class

SYSC-3120—Software Requirements Engineering 32

Whole-Part Class Relationship

Four semantics possible
• ExclusiveOwns (e.g. Book has Chapter)

– Existence-dependency (deleting a composite ⇒ deleting the
components)

– Transitivity
– Asymmetry
– Fixed property

• Owns (e.g. Car has Tire)
– No fixed property

• Has (e.g. Division has Department)
– No existence dependency
– No fixed property

• Member (e.g. Meeting has Chairperson)
– No special properties except membership

Composition

Aggregation
(shared in UML 2)

SYSC-3120—Software Requirements Engineering 33

Whole-Part Class Relationship

• Finding the right whole-part class relationship between class A
and class B is context dependent

– Depends on the specifics of your application

• For instance: Class Car is associated with class Tire

– You have to build a software for a company building cars
• From the point of view of this company, once the car is built, the link Car-

Tire does not change
 ExclusiveOwns

– You have to build a software for a company recycling cars
• Tires in good shapes can be reused.
 Has

Association vs. Action

• A common mistake is to represent actions as if they were associations

SYSC-3120—Software Requirements Engineering 34

*

LibraryPatron

borrow Loan

borrowedDate
dueDate
returnedDate

Bad, due to the use of associations
that are actions

* * * *

*

return

CollectionItem

*

*

LibraryPatron

CollectionItem

*

*

Better: The borrow operation creates a Loan , and
the return operation sets the returnedDate
attribute.

Reflexive associations

• It is possible for an association to connect a class to itself

SYSC-3120—Software Requirements Engineering 35

Course * isMutuallyExclusiveWith

*

*

prerequisite

successor *

Rolename mandatory in context

SYSC-3120—Software Requirements Engineering 36

Team Person
members

manager 1
1..*

Constraining Associations: ordered

• Many different ways to specify a constraint on an association.
• One important one (see discussion on OCL): {ordered}

– Specifies that the instances are ordered
– Note: there is a difference between ordered and sorted

• Sorting requires a sorting criterion (e.g., alphabetical)
• Ordered simply means we have a first, second, … last element.

SYSC-3120—Software Requirements Engineering 37

FieldOfficer IncidentReport
* *

author report

{ordered}

• A FieldOfficer instance is linked to 0 or more IncidentReport instances,
i.e., a set of IncidentReport instances.

• That set is ordered, i.e., it is a sequence and we can identify/access the
first element of the set, the second, … the last.

• No sorting criterion!

Constraining Associations: subsets

• Syntax <end-name1> {subsets <end-name2>}
– placed near an association end <end-name1> (the subsetting end) indicates that

it subsets <end-name2> (the subsetted end)
• Effect: the set of instances of an association is a subset of the set of

instances of another association.
– inclusion constraint between the subsetted and the subsetting associations
– population of the subsetting end must be included in that of the subsetted end.

SYSC-3120—Software Requirements Engineering 38

Association subsetting notation

• aaaa

SYSC-3120—Software Requirements Engineering 39

SYSC-3120—Software Requirements Engineering 40

SYSC-3120—Software Requirements Engineering

• Overview
• Analysis Concepts

– Modeling structure: class diagram
• Modeling classes
• Different kinds of relationships

– Association
– Generalization and Realization
– Dependency

• OCL: Better specifying operations/classes, constraining class diagram
• Liskov substitution principle

– Modeling interaction: sequence diagram
– Modeling state-based behavior: state machine diagram

• Analysis Process
– Finding objects/classes (heuristics)
– …

SYSC-3120—Software Requirements Engineering 41

Generalization / Specialization

• The UML terminology for inheritance (almost)
• Common features abstracted into a more generic class
• Subclasses inherit (reuse) superclass features

– Attributes
– Operations

• Substitutability
– Subclass object is a legal value for a variable whose type is the

superclass
• Polymorphism

– The same operation can have different implementations in different
classes

• Abstract operation
– Implementation provided in subclasses

• Abstract class
– Class with no direct instance objects
– A class with an abstract operation is abstract

SYSC-3120—Software Requirements Engineering 42

FRIEND Example

Incident

LowPriority Emergency Disaster

EarthQuake ChemicalLeak CatInTree

TrafficAccident BuildingFire

Parent class

Child classes

Descendant classes

Interface and Realization

SYSC-3120—Software Requirements Engineering 43

<<interface>>
Person

Has operations
May have attributes!

Employee

CEO

realization

SYSC-3120—Software Requirements Engineering 44

SYSC-3120—Software Requirements Engineering

• Overview
• Analysis Concepts

– Modeling structure: class diagram
• Modeling classes
• Different kinds of relationships

– Association
– Generalization and Realization
– Dependency

• OCL: Better specifying operations/classes, constraining class diagram
• Liskov substitution principle

– Modeling interaction: sequence diagram
– Modeling state-based behavior: state machine diagram

• Analysis Process
– Finding objects/classes (heuristics)
– …

SYSC-3120—Software Requirements Engineering 45

Dependency

• Use a dependency when
1. A client class needs to call services on a server class
2. You do not have (i.e., need) an association (i.e., attribute) between

the client and the server
• i.e., the interaction is transient

• In other words, there is no need for an association but instances
of the two classes need to communicate with one another
anyway.

MyClass

MyOtherClass

Association vs. Dependency

• When do one needs an association?
• When do one needs a dependency?

• Association:

– When a link between two objects has to survive the end of execution
of an operation.

• Dependency:
– When a link between two objects does not need to survive the

execution of an operation (transient).

SYSC-3120—Software Requirements Engineering 46

SYSC-3120—Software Requirements Engineering 47

SYSC-3120—Software Requirements Engineering

• Overview
• Analysis Concepts

– Modeling structure: class diagram
• Modeling classes
• Different kinds of relationships
• OCL: Better specifying operations/classes, constraining class diagram
• Liskov substitution principle

– Modeling interaction: sequence diagram
– Modeling state-based behavior: state machine diagram

• Analysis Process
– Finding objects/classes (heuristics)
– Finding relationships : associations and attributes (heuristics)
– …

SYSC-3120—Software Requirements Engineering 48

Constraints: Motivations

• Constraints on UML model elements: conditions that must be
true about some aspect of the system
– Recall the ImmediateJob/Driver/Cab example

• Examples:
– Precisely specifying operations

• An operation’s input must satisfy a specific condition
– Precisely specifying conditions in other diagrams

• Conditions in sequence diagrams, in state machine diagrams
– Constraining class diagram

• In the CarMatch system, an individual may not have more than 10
agreements for car sharing

• When an ImmediateJob is created, it is linked to a Car instance and that
Car instance must be linked to a Driver instance.

SYSC-3120—Software Requirements Engineering 49

Constraints: Motivations

• Precise constraints make the analysis (and design) more precise
and rigorous

• Complement the UML graphical notation by associating
properties with model elements
– e.g., methods, classes, transitions

• Help verification and validation of models

• Different types of constraints
– Contracts for operations
– Conditions in sequence diagrams (see later)
– Guard conditions in state machine diagrams (see later)
– Class and state invariants in state machine diagrams (see later)

Analysis (and Design) by Contract

• Specifying software ≈ specifying operation-to-operation
communications

• What are the responsibilities and rights of communicating
operations?

• Formalized by Design by Contract (DbC)
– Operation’s precondition:

• binds the client,
• defines the responsibility of any (other) operation calling this operation.
• defines the rights of the operation being called, i.e., it has the right to

expect that the condition(s) stated in its precondition hold
– Operation’s postcondition:

• binds the method being specified,
• defines the conditions that must be ensured by this operation at the end

of its execution.
• defines the rights of the calling operation, i.e., it has the right to expect

that, assuming the condition(s) stated in the precondition of the called
operation were satisfied, the conditions stated in the called operation’s
postcondition hold

SYSC-3120—Software Requirements Engineering 50

SYSC-3120—Software Requirements Engineering 51

Design by Contract (Rights and Responsibilities)

SYSC-3120—Software Requirements Engineering 52

Design by Contract (Rights and Responsibilities)

Obligations Benefits

Client

Contractor

Call put only on a
non-full table

Get modified table
in which x is
associated with key

Insert x so that it
may be retrieved
through key

No need to deal with
the case in which the
table is full before
insertion

Contractor :: put (element: T, key: STRING)

-- insert element x with given key

Before

Postcondition
(change that has occurred)

Precondition
(what must be true before)

After

Design by Contract (Rights and Responsibilities)

• Precondition: what must be true before
– In terms of parameter values
– In terms of system state

• E.g., other objects’ attribute’s values
• E.g., links between objects

– In terms of relations between those
• Postcondition: what must be true after / changes that occurred

– In terms of return value
– In terms of out/inout parameters
– In terms of system state
– In terms of relations between those
– In terms of relations to what was true before

SYSC-3120—Software Requirements Engineering 53

Design by Contract (constraining object relations)

• Class diagram notation insufficient to specify everything we need to
specify

• Recall the ImmediateJob-Cab-Driver example
– Multiplicities are adequate: a Cab may not have a Driver (lower bound of 0)
– But a legal instantiation (according to multiplicities) does not necessarily

make sense: an ImmediateJob is linked to a Cab, which is linked to no Driver.
• No UML class diagram notation to specify that:

– When a Cab is linked to an ImmediateJob, then it must also be linked to a
Driver.

SYSC-3120—Software Requirements Engineering 54

ImmediateJob Driver

Cab

currentDriver

0..1

0..1
currentJob performedBy

1

0..1

Design by Contract (constraining object relations)

• No UML class diagram notation to specify that:
– When a Cab is linked to an ImmediateJob, then it must also be linked

to a Driver.
• What is this property?

– This is not a property (pre/post) of any operation in those classes
– This is a property of any instance of Cab
– This is a property of class Cab: an (class) invariant

SYSC-3120—Software Requirements Engineering 55

ImmediateJob Driver

Cab

currentDriver

0..1

0..1
currentJob performedBy

1

0..1

SYSC-3120—Software Requirements Engineering 56

Class Invariant

• Condition that must always be met by all instances of a class
• Described using a Boolean expression that evaluates to true if

the invariant is met
• Invariants must be true all the time,

– except during the execution of an operation where the invariant can
be temporarily violated.

• If the pre- and post-conditions are satisfied, then the class
invariant must be preserved by an operation

• A violated invariant suggests an illegal system state

• Note: multiplicities are in fact invariants.

SYSC-3120—Software Requirements Engineering 57

Usage of Contracts/Constraints

• Analysis/Design:
– Understand and document clearly operations’ intent and purpose
– Understand and document clearly class characteristics

• Coding:
– Guide programmer to an appropriate implementation (i.e. method)
– Black-box specification of methods

• System robustness:
– Check invariants and pre-conditions at run time before the execution

of operations, possibly raise exceptions and display error messages.
– Check invariants and post-conditions at the end of method

executions.
• Testing:

– Verify that the method does what was originally intended
– Help debugging.

SYSC-3120—Software Requirements Engineering 58

Object Constraint Language (OCL)

• Part of the UML standard
• Formal, mathematical language
• Inspired by the work on formal specification methods
• Not a programming language but a typed, declarative language
• OCL contains set operators and logic connectives.

– Based on Set theory and first order logic

OCL Expression—Context

• An OCL expression needs a context
– Determines the model element being constrained
– Determines the scope of the expression
– Determines what (named model element) can be accessed in the

expression.
• We will consider two kinds of context

– A class, to define an invariant
• Rather: any instance of the class

– An operation, to define a precondition, a postcondition
• Syntax: (Class name can be fully qualified to account for package information.)

context ClassName
inv: OCL-expression

context ClassName::operationName(…)
pre: OCL-expression
post: OCL-expression

SYSC-3120—Software Requirements Engineering 59

OCL Expression—Context

• An OCL expression needs a context
– What (named model element) can be accessed in the expression?

SYSC-3120—Software Requirements Engineering 60

Class context (rather instance context)
• Class scope attributes
• Instance scope attributes
• Rolenames of associations
• Including what is inherited
• Navigation through the class (rather

instance) diagram
• Other class names

Operation context
• Class scope attributes
• Instance scope attributes
• Rolenames of associations
• Including what is inherited
• Navigation through the class

(rather instance) diagram
• Other class names
• Operation parameters
• Values the above had before

the execution of the operation
• Operation return value

Class/Instance Scope Model Element

• Context (either class or operation) gives access to
– Class scope attributes
– Instance scope attributes
– Rolename of associations (at the other end of the associations from the context)

– Including what is inherited
• self refers to the instance of the context

context SavingsAccount
inv: self.balance>0 and self.balance<25000

context Adult
inv: self.age>=18

context Person
inv: self.theSavings = …

SYSC-3120—Software Requirements Engineering 61

SavingsAccount

- balance: Integer

Person

- age: Integer

Adult

theSavings 1

OCL Types

• OCL is a typed language
• Available types?

– Primitive types: Boolean, Real, Integer, String
– Collection types: Set, OrderedSet, Bag, Ordered Bag

• Set: cannot contain duplicate items
• Bag: can contain duplicate items
• OrderedSet: elements of a set are ordered, cannot contain duplicate

items (recall the {ordered} constraint)
• OrderedBag, a.k.a., Sequence, elements of a bag are ordered, can

contain duplicate items (recall the {ordered} constraint)
– Any user-defined class from the class diagram

• Predefined types (primitives and collection types) have
predefined operations

SYSC-3120—Software Requirements Engineering 62

Boolean Type

• The ‘=‘ is a first order logic equality, not the assignment ‘=‘ of
programming languages.

SYSC-3120—Software Requirements Engineering 63

a b a = b a <> b a and b a or b a xor b a implies b
(not (a) or b)

not(a)

true true true false true true false true false

true false false true false true true false false

false true false true false true true true true

false false true false false false false true true

Collection Types

SYSC-3120—Software Requirements Engineering 64

Operation Description

size The number of elements in the collection
count(object) The number of occurrences of object in the collection.
includes(object) True if the object is an element of the collection.
includesAll(collection) True if all elements of the parameter collection are present in the

current collection.
isEmpty True if the collection contains no elements.
notEmpty True if the collection contains one or more elements.
iterate(expression) Expression is evaluated for every element in the collection.
sum The addition of all elements in the collection.
exists(expression) True if expression is true for at least one element in the collection.
forAll(expression) True if expression is true for all elements.

• When using a collection operation, use the invocation operator “->”
– e.g., aColl->size() > 0
– e.g., aColl->isEmpty = false

Collection Types

SYSC-3120—Software Requirements Engineering 65

Operation Set OrderedSet Bag Sequence Description
=, <> X X X X Equal, not equal

- X X - - {1,4,6} - {4,5}={6}

symetricDifference(coll) X - - - {1,4,6} symDiff {4,5}={1,5,6}

append(object), prepend(object) - X - X Self-explanatory

asBag() X X X X Results in a bag collection

asOrderedSet() X X X X Removes duplicates, order is
random

asSequence() X X X X Order is random

asSet() X X X X Removes duplicates

excluding(object) X X X X Removes the object from the
collection (set) or any
duplicate of it (bag)

first(), last() - X - X Self-explanatory

including(object) X X X X Adding an element

at(index), insertAt(index, object) - X - X Self-explanatory

intersection(coll) X - X - Self-explanatory

union(coll) X X X X Self-explanatory

Navigation Expression

• Navigation is the process whereby you follow links from a source
object to one or more target objects.

• OCL navigation expressions can refer to any of the following:
– Classes and interfaces
– Attributes
– Association ends
– Query operations

• these are operations that have the property isQuery set to true.
• they do not change attribute values, contents of collection, …
• i.e., no side effect when calling them.
• e.g., getName()

SYSC-3120—Software Requirements Engineering 66

Navigation Expression

• To navigate associations, use:
– Class name or rolename
– Using the dot notation

• e.g., self.roleName1.roleName2
• No difference between composition, aggregation and

associations as far as navigation expressions are concerned
• No difference whether association is navigable or not

– We specify a condition/constraint on instances
• No difference whether attributes are private or not
• Can traverse several associations in one expression

SYSC-3120—Software Requirements Engineering 67

Navigation—Simple Examples

context SavingsAccount
inv: self.balance>0 and self.balance<25000

context Adult
inv: self.age>=18

context Person
inv: self.theSavings -> size()=1

context Person
inv: self.theSavings.balance > 0 and …

SYSC-3120—Software Requirements Engineering 68

SavingsAccount

- balance: Integer

Person

- age: Integer

Adult

theSavings 1

self

self.theSavings

self.theSavings.balance

Navigation Expressions

SYSC-3120—Software Requirements Engineering 69

A

- a1
- op1()

B

- a1
- op1()

rName

Context Navigation
expression

Semantics

A self The contextual instance, an instance of class A.

self.a1 The value of attribute a1 of the contextual instance

self.op1() The result of invoking op1() on the contextual instance.
Must not have any side effect.

self.rName The instance of class B linked to the contextual instance.
One (and only one) instance of B because of multiplicity 1.

self.B Same as self.rName. (Requires that we have only one
association between A and B.)

self.rName.a1 The value of attribute a1 of the B instance linked to the
contextual instance.

self.rName.op1() The result of invoking op1() on the B instance linked to the
contextual instance. Must not have any side effect.

self.rName.roleN The instance of C linked to the instance of B linked to the
contextual instance. One (and only one) instance of C
because of multiplicities 1.

1

C

- a1
- op1()

roleN 1

Result of Navigation—Collection

• The result of a navigation is:
– An instance if navigating associations with multiplicity

one only
– A collection otherwise

• Navigating only one association: a Set or an OrderedSet
• Navigating two (or more) associations: a Bag or a

Sequence

SYSC-3120—Software Requirements Engineering 70

A

- a1:Integer

B

- a1: Real

rName *

C

- a1: Boolean

roleN *

Context Navigation expression Resulting type
A self An instance of A

A self.a1 One integer value

A self.rName An OrderedSet of B instances

B self.roleN A Set of C instances

A self.rName.a1 A Sequence of Real values

A self.rName.roleN A Bag of C instances

{ordered}

Result of Navigation—Collection

SYSC-3120—Software Requirements Engineering 71

A

- a1:Integer

B

- a1: Real

rName *

C

- a1: Boolean

roleN *

{ordered}

A1 (5) B1 (12.1)

B2 (10.0)

B3 (15.15)

first

second

third

Navigation expression Result Resulting type
self A1 An instance of A

self.a1 5 One integer value

self.rName {B1, B2, B3,
B4}

An OrderedSet (no duplicate) of B
instances

self.rName.a1 {12.1,10.0,15.
15,12.1}

A Sequence (may have duplicates) of
Real values

B4 (12.1) fourth

Result of Navigation—Collection

SYSC-3120—Software Requirements Engineering 72

A

- a1:Integer

B

- a1: Real

rName *

C

- a1: Boolean

roleN *

{ordered}

A1 (5) B1 (12.1)

B2 (10.0)

B3 (15.15)

Navigation expression Result Resulting type
self.rName.roleN {C1, C1, C2, C3,

C1, C4}
A Bag (no order, can have
duplicates) of C instances

B4 (12.1)

C2 (true)

C3 (false)

C4 (false)

C1 (true)

self.rName.roleN = B1.roleN U B2.roleN U B3.roleN U B4.roleN
 = {C1} U {C1, C2, C3} U {C1, C4}
(Not the OCL notation!)

If you want to remove duplicates: self.rName.roleN->asSet()

Navigating—Association Classes, Generalizations,
Enumerations

• How to navigate to/from an association class?
Context Student

self.attends …
self.Attendance … (collection of instances)

Context Attendance
self.Student … (one instance)
self.Lecture … (one instance)
self.attends … (one instance)

SYSC-3120—Software Requirements Engineering 73

attends
Student

*

2..*
Lecture

Attendance
-attentiveness

Navigating—Association Classes, Generalizations,
Enumerations

• How to navigate to descendants?
Context SavingsAccount

self.Person
(the collection of Person instances linked to this SavingsAccount,
including Adult instances)

self.Adult
(the collection of Adult instances which are in the self.Person
collection—subset)

SYSC-3120—Software Requirements Engineering 74

SavingsAccount

- balance: Integer Person

- age: Integer

Adult

theSavings

1

Navigating—Association Classes, Generalizations,
Enumerations

• How to use enumeration values in an OCL expression?
context Customer inv :

gender = Gender::male implies title = ‘Mr.‘

SYSC-3120—Software Requirements Engineering 75

Customer
gender: Gender
name: String
title: String
dateOfBirth: Date

<<enumeration>>
Gender

male
female

Example Class Diagram

context Department inv:
 staff.Contract.Grade.salary->sum()

context Department inv:
 staff.Contract.Grade->asSet()->size()

SYSC-3120—Software Requirements Engineering 76

Department 1 *

Person

- name:String
- age: Integer
+ age():Integer

* staff

0..1

*

manager
1..*

employee
Company

1

employer

1

1

Grade

- salary:Real

*

1
Contract

- start:Date
*

The total amount of money spent on
salaries in the department.

The total number of different salary
grades for the personnel in the
department.

Subset Selection

• Sometimes necessary to consider only a subset of objects
returned by a navigation

navigationExpression->select (contextForExpression | BooleanExpression)

• Operation “select” applies a Boolean expression to each object of
a collection and returns those objects for which the expression is
true

• Declaration of local variable: Context for navigation in the
Boolean expression.

• Alternative: rejecting some instances
navigationExpression->reject (contextForExpression | BooleanExpression)

SYSC-3120—Software Requirements Engineering 77

Subset Selection

context Company
self.employee->select(p:Person | p.Contract.Grade.salary > 50000)

context Company
employee->select(p:Person | p.Contract.Grade.salary > 50000).manager->asSet()

SYSC-3120—Software Requirements Engineering 78

Department 1 *

Person

- name:String
- age: Integer
+ age():Integer

* staff

0..1

*

manager
1..*

employee
Company

1

employer

1

1

Grade

- salary:Real

*

1
Contract

- start:Date
*

Which employees are paid that much?

Which managers allowed such salaries? 

Subset Selection

The context in the select operation is optional.
But it is strongly recommended to have it.

context Company
self.employee->select(Contract.Grade.salary > 50000)

context Company
employee->select(Contract.Grade.salary > 50000).manager->asSet()

SYSC-3120—Software Requirements Engineering 79

Subset Selection

Select vs. Reject

context Company
self.employee->select(Contract.Grade.salary > 50000)

context Company
self.employee->reject(not (Contract.Grade.salary > 50000))

context Company
self.employee->reject(Contract.Grade.salary <= 50000)

SYSC-3120—Software Requirements Engineering 80

Creating a Collection

• Sometimes necessary to create a collection of objects by
collecting data from an existing collection

navigationExpression->collect (contextForExpression | navigationExpression)

• Takes a navigation expression as argument and returns a bag
consisting of the values of the expression for each object in the
original collection

 context Department inv:
 self.staff->collect(p:Person | p.age())

• Expression can perform additional calculations
 context Company inv:
 self.Contract.Grade->collect(g:Grade | salary*1.1)

 ->sum()

SYSC-3120—Software Requirements Engineering 81

Creating a Collection

context Department
self.staff->collect(p:Person | p.age())

context Company
self.Contract.Grade->collect(g:Grade | salary*1.1)->sum()

SYSC-3120—Software Requirements Engineering 82

Department 1 *

Person

- name:String
- age: Integer
+ age():Integer

* staff

0..1

*

manager
1..*

employee
Company

1

employer

1

1

Grade

- salary:Real

*

1
Contract

- start:Date
*

The bag of age values for the staff of the
department.

The expression within the collect(…) can
perform a computation.

Checking Collection Contents: includes(), includesAll()

• Checking whether an object is part of a collection
navigationExpression1->includes (navigationExpression2)
Returns true if the result (one object) of navigationExpression2 is in the
collection resulting from navigationExpression1

• Checking whether a collection of objects is part of a collection
navigationExpression1->includesAll (navigationExpression2)
Returns true if the result (a collection) of navigationExpression2 is in
the collection resulting from navigationExpression1

SYSC-3120—Software Requirements Engineering 83

context Flight inv:
 self.crew -> includes (self.pilot)
context Flight inv:
 self.crew -> includesAll (self.flightAttendants)

Flight Person

pilot

flightAttendant

crew

0..*
1..*

1

Examples of Basic Constraints

context Person inv:
 self.employer = self.Department.Company
context Company inv:
 self.employee->select(p:Person|p.age() < 18)->isEmpty()
context Person inv:
 self.employer.Grade->includes(self.contract.grade)
context Department inv:
 self.Company.employee->includesAll(self.staff)

SYSC-3120—Software Requirements Engineering 84

Department 1 *

Person

- name:String
- age: Integer
+ age():Integer

* staff

0..1

*

manager
1..*

employee
Company

1

employer

1

1

Grade

- salary:Real

*

1
Contract

- start:Date
*

SYSC-3120—Software Requirements Engineering 85

Examples of Basic Constraints

Customer
name: String
title: String
age: Integer
isMale: Boolean

context Customer
 inv: title = if isMale then ‘Mr.’ else ‘Ms.’ endif
 inv: age >= 18 and age < 66
 inv: name.size < 100

context Person inv:
 self.age() > 50 implies self.Contract.Grade.salary > 25000

Checking Constraint on the Elements of a Collection

• Apply a Boolean expression to every element in a collection and
return a Boolean value

• forAll returns true if the specified Boolean expression is true
for every member of the collection

• exists returns true if the specified Boolean expression is true
for at least one member of the collection

• When a condition has to be true for every instance of a class use:
 ClassName.allInstances

SYSC-3120—Software Requirements Engineering 86

Checking Constraint on the Elements of a Collection

context Company inv:
 self.Grade->forAll(g:Grade | not g.contract->isEmpty())

context Department inv:
 staff->exists(e:Person | e.manager->isEmpty())

SYSC-3120—Software Requirements Engineering 87

Department 1 *

Person

- name:String
- age: Integer
+ age():Integer

* staff

0..1

*

manager
1..*

employee
Company

1

employer

1

1

Grade

- salary:Real

*

1
Contract

- start:Date
*

Each Grade instance of the Company is linked to at
least one Contract instance. Shouldn’t the multiplicity
be 1..* instead of * then?

In a Department, there is one staff member who does not
have a manager. Would that be the manager?

Checking Constraint on the Elements of a Collection

context Grade inv:
 Grade.allInstances->forAll(g : Grade |

 g <> self implies g.salary <> self.salary)

SYSC-3120—Software Requirements Engineering 88

Department 1 *

Person

- name:String
- age: Integer
+ age():Integer

* staff

0..1

*

manager
1..*

employee
Company

1

employer

1

1

Grade

- salary:Real

*

1
Contract

- start:Date
*

In the system, no two different Grade instances have
the same salary attribute value.

context Grade inv:
 Grade.allInstances->forAll(g1, g2 | g1 <> g2 implies g1.salary <> g2.salary)

Checking Constraint on the Elements of a Collection

context Grade inv:
 salary > 20000

context Grade inv:
 Grade.allInstances->forAll(g:grade | g.salary >20000)

SYSC-3120—Software Requirements Engineering 89

Department 1 *

Person

- name:String
- age: Integer
+ age():Integer

* staff

0..1

*

manager
1..*

employee
Company

1

employer

1

1

Grade

- salary:Real

*

1
Contract

- start:Date
*

Two equivalent expressions.
A constraint on a class applies to all the instances of
that class.

Postcondition—A Specific Notation

• In a postcondition, we usually want to relate the value of an
attribute (or link, or inout parameter) to its value before the call.
– E.g., balance has been reduced by the amount of the withdrawal.
– new_balance = old_balance – amount

• Use postfix notation @pre to refer to a value before the execution
of a method.

context SavingsAccount::withdraw(amt)
 pre: amt < balance
 post: balance = balance@pre - amt

SYSC-3120—Software Requirements Engineering 90

A more Complex Example—A Library System

SYSC-3120—Software Requirements Engineering 91

LoanCopy
loanType : String

ReferenceCopy

Book
isbn : String
author : String
title : String

Copy
copyId : Integer

0..*

1

+copy 0..*

+book 1

Library
date : Date
name

borrowCopy(uid: Integer, cid: Integer)
renewCopy(uid: Integer, cid: Integer)
returnCopy(uid: Integer, cid: Integer)
register(name: String)
removeUser(uid: Integer)
addCopy(cid: Integer)
deleteCopy(cid: Integer)

0..*

+stock

0..*

+library

1

OnLoan
return : Date
onhold : Boolean = FALSE
renewed : Integer
renewlimit : Integer = 5

User
userid : Integer
name : String
address : String
copylimit : Integer = 5
numberofcopy : Integer

0..*

1

+user 0..*

+library 1

0..* 1

+issued

0..*

+user

1

OnShelf

Contracts for Library::borrowCopy

context Library::borrowCopy(uid, cid)
pre :

self.user->exists(user : User | user.userid = uid and not
user.numberofcopy = user.limit)

and
self.OnShelf->exists(onshelf : OnShelf | onshelf.copyid = cid)

post :
not self.OnShelf->exists(onshelf : OnSelf | onshelf.copyId = cid)
and
self.OnLoan->exists(onloan : OnLoan | onloan.copyId = cid)
and
self.user->exists(user : User | user.userid = uid

and user.numberofcopy = user.numberofcopy@pre + 1
and user.OnLoan->exists(onloan : Onloan | onloan.copyId = cid))

SYSC-3120—Software Requirements Engineering 92

SYSC-3120—Software Requirements Engineering 93

SYSC-3120—Software Requirements Engineering

• Overview
• Analysis Concepts

– Modeling structure: class diagram
– Modeling interaction: sequence diagram
– Modeling state-based behavior: state machine diagram

• Analysis Process
– Finding objects/classes (heuristics)
– Finding relationships : associations and attributes (heuristics)
– …

SYSC-3120—Software Requirements Engineering 94

Modeling Interactions

• Interaction diagrams are used to illustrate how objects interact
via messages.
– They are used for dynamic object modeling.

• Two types of interaction diagrams
– Sequence Diagram

• Show an exchange of messages between objects arranged in a time
sequence

– Collaboration Diagrams
• Emphasize the relationships between objects along which the messages

are exchanged
• More useful in design

– Sequence and collaboration diagrams can be used interchangeably
• Some CASE tools allow (automatically) creating one from the other.
• Collaboration diagram used for structuring, used mostly during design

• Can be used to determine operations in classes

The name of the participant can be:
• A named instance (like here)
• An anonymous instance (no object name,

but class name required)
• A class if interaction through class

operations (class scope): not underlined

Sequence Diagram Notation

SYSC-3120—Software Requirements Engineering 95

anObjectName:MyClass otherObjectName:MyOtherClass

Interaction between
participating objects

The object’s lifeline
(time flows downward)

Execution occurrence:
something executes with
a start and an end.
Also called execution
bar.

Interaction through
message passing

Send event: the
message is sent

Receive event: the
message is received

message

Message label

Return message (optional)

Notice the colon
separating the
object name from
the class name

Sequence Diagram Notation (cont.)

SYSC-3120—Software Requirements Engineering 96

o1:Class1 o2:Class2

o3:Class1

message
selfMessage

<<create>>

<<destroy>>

otherMessage

Arrow head indicates an
asynchronous message

Arrow head indicates a
synchronous message

An object is created

The object is destroyed.
Can have an execution occurrence.
Lifeline shortened.

The object sends a message to
itself: two execution occurrences

The sender is not
specified

Sequence Diagram Notation (cont.)

• The sequence diagram is read as follows:
– The message makePayment is sent to an instance of a Register. The

sender is an actor.
– The Register instance sends the makePayment message to a Sale

instance.
– The Sale instance creates an instance of a Payment.

SYSC-3120—Software Requirements Engineering 97

:Register :Sale

:Payment <<create>>
makePayment

makePayment

Notice how the execution occurrence of
the sender extends after (downward) the
one of the receiver.
For synchronous messages only.

Customer

The sender, initiating the
sequence, is an actor.
No execution occurrence
on the actor lifeline!

Example of Sequence & Communication Diagrams

SYSC-3120—Software Requirements Engineering 98

:A myB:B
doOne

doTwo

doThree
Sequence
diagram

Equivalent
communication diagram

:A

myB:B

1: doOne

2: doTwo

3: doThree

What might this represent in
code? e.g. java
public class A {

 private B myB = new B();

 public void doOne() {

 myB.doTwo();

 myB.doThree();

 }

 // ...

}

Lifelines: Reply or Returns

• There are two ways to show the return result from a message:
– Using the message syntax returnVar = message(parameter)
– Using a reply (or return) message line at the end of an

execution specification bar.
• Both are common in practice. The first one is preferred because

it is less effort and the diagram is not cluttered.

SYSC-3120—Software Requirements Engineering 99

:Register :Sale

d = getDate()

getDate()

aDate

Message Label

• General syntax
aNamedVariable = signal_or_operation_name (arguments) :

return_value

SYSC-3120—Software Requirements Engineering 100

Optional: where the result is stored.
Can be:
- A local variable of the interaction (execution

occurrence initiating the message.
- An attribute of the initiating lifeline.

Operation to be invoked or
signal to be emitted

Coma-separated list
Argument can be:
- a parameter of the sending execution occurrence,
- an attribute,
- a local variable from assigned by a previous message.

Optional
Value being returned (not
the variable being assigned)

SYSC-3120—Software Requirements Engineering 101

Different categories of Messages

• Message can denote the following interactions:
– Call

• Denotes (Usually) synchronous invocation of an operation
– The return message can return some values to the caller or it can just

acknowledge that the operation completed
– The return message is optional

• May also be an asynchronous invocation
– The sender continues without waiting
– No return message

– <<create>>
– <<destroy>>
– Signal

• Denotes asynchronous inter-object communication
• The sender continues executing after sending the signal message

<<create>>

<<destroy>>

Call vs. Signal

SYSC-3120—Software Requirements Engineering 102

objOne : ClassA objTwo : ClassB

opCall()

SignalName (value1, value2)

opCall() is necessarily an operation
defined in class ClassB

ClassB
- attribute : Type
+ opCall()

SignalName is a signal class (stereotype
<<signal>>).
ClassB does not have any operation named
SignalName. It will have a behaviour to
respond to that signal though.

<<signal>>
SignalName

- attr1 : Type1
- attr2 : Type2 Values assigned to the attributes of

the signal object.

SYSC-3120—Software Requirements Engineering 103

Signal Hierarchy

SYSC-3120—Software Requirements Engineering 104

Example - ATM

CardReader
:CardReaderBoundary :ATMControl :CashDispenser :BankSystem

1:cardInserted()
1.1:cardInserted()

1.1.1: bID=bankID()

1.1.2:ePIN=encryptedPIN()

1.1.3:aNum=accountNumber()
1.1.4:validate(bID,aNum)

1.1.5:insertPIN()

2:enterPIN(p)
2.1:setPIN(p)

2.1.1:validatePIN(p)

:ClientBoundary

1.1.5.1:insertPIN()

2.1.1.1:selectTransaction()

3:fastCash()
3.1:fastCah()

3.1.1:provideAmount()
3.1.1.1:provideAmount()

4:withdrawal(amount)
4.1:withdrawal(amount)

4.1.1:withdrawal(amount)

4.1.2:dispenseCash(amount)

4.1.3:transactionPerformed()

4.1.4:ejectCard()
4.1.4.1:ejectCard()

Message numbering is UML 1.x

Sequence Diagram’s Frame

SYSC-3120—Software Requirements Engineering 105
Diagram’s content area

buyersBank: Bank ledger:AccountLedger

retrieveAccount(accountNumber)

getBalance()

buyersAccount:CheckingAccount

buyersAccount

balance

balance

getBalance(accountNumber)

sd BalanceLookup (int accountNumber): int

Diagram’s label

Means sequence (s) diagram (d)

Name of the sequence diagram

Input parameter

Return type

Other Frames—Control Flow

• To support conditional and looping constructs (among many
other things), the UML 2.0 uses frames.

• Frames are regions or fragments of the diagrams; they have an
operator or label (such as loop) and guard (conditional clause).

• Different kinds of frame exist (not exhaustive list):
– alt: At most one operand’s condition will evaluate to true. If there is an else

operand and none of the other operands have executed, then the else will be
executed.

– loop: Fragment will be executed repeatedly. That is, loop fragment while
guard is true. Can also write loop(n) to indicate looping n times

– opt: A choice in which either this fragment will execute or it will not,
depending on whether the guard is true or not

– par: Operands execute in parallel. Any interleaving between operands is
possible; order within operands maintained

– break: A fragment with a condition which, if it is true, will be executed and
will break out of the enclosing fragment

– ref: a sequence diagram is invoked within another sequence diagram

SYSC-3120—Software Requirements Engineering 106

Other Frames—Control Flow (cont.)

SYSC-3120—Software Requirements Engineering 107

objOne : ClassA objTwo : ClassB

opCall1()

alt
opCall2()

opCall3()

opCall5()

[conditionOne]

Corresponds to an
if-then-else opCall4() [else]

Other Frames—Control Flow (cont.)

SYSC-3120—Software Requirements Engineering 108

objOne : ClassA objTwo : ClassB

opCall1()

alt
opCall2()

opCall3()

opCall6()

[conditionOne]

opCall4() [conditionTwo]

[else] opCall5()

Other Frames—Control Flow (cont.)

SYSC-3120—Software Requirements Engineering 109

objOne : ClassA objTwo : ClassB

opCall1()

loop
opCall2()

opCall3()

opCall4()

[more items]

opCall2() and opCall3() are
repeated as long as there are
“more items”.
But after opCall1() and before
opCall4().

Other Frames—Control Flow (cont.)

SYSC-3120—Software Requirements Engineering 110

objOne : ClassA objTwo : ClassB

opCall1()

opt
opCall2()

opCall3()

opCall4()

[condition]

opCall2() and opCall3() are sent
only if “condition” is true.

Other Frames—Control Flow (cont.)

SYSC-3120—Software Requirements Engineering 111

objOne : ClassA objTwo : ClassB

opCall1()

par
opCall2()

opCall3()

opCall5()

opCall2() followed by
opCall3() happens in parallel
to opCall4().
Different message
interleaving are possible.
More than two parallel
compartments are possible.

opCall4()

Other Frames—Control Flow (cont.)

SYSC-3120—Software Requirements Engineering 112

objOne : ClassA objTwo : ClassB

opCall1()

break
opCall2()

opCall3()

opCall4()

[condition]

opCall2() and opCall3() are sent
only if “condition” is true, and
then this terminates the
“enclosing” interaction, i.e., the
sequence diagram.

Other Frames—Control Flow (cont.)

SYSC-3120—Software Requirements Engineering 113

Frames can be nested.

objOne : ClassA objTwo : ClassB

opCall1()

opt
opCall2()

opCall3()

opCall4()

[conditionOne]

loop [conditionTwo]

Other Frames—Control Flow (cont.)

SYSC-3120—Software Requirements Engineering 114

BalanceLookUp is a sequence
diagram we defined earlier.
It is invoked here with an input
parameter. The interaction
specified in BalanceLookUp
returns a value, assigned to var.

objOne : ClassA objTwo : ClassB

checkAccount(accountNumber)

opCall2()

opCall4(var)

ref
var = BalanceLookUp(accountNumber)

SYSC-3120—Software Requirements Engineering 115

SYSC-3120—Software Requirements Engineering

• Overview
• Analysis Concepts

– Modeling structure: class diagram
– Modeling interaction: sequence diagram
– Modeling state-based behavior: state machine diagram

• Analysis Process
– Finding objects/classes (heuristics)
– Finding relationships : associations and attributes (heuristics)
– …

Different Kinds of Object Behaviours
[Douglas, Wagner et al]

• Simple behaviour: object performs services on request and
keeps no memory of previous services
– e.g., a simple math function such as sine, or square root
– returns the value measured from a sensor at a given instant in time
– returns value of object attribute.

• State behaviour (a.k.a., state-driven, reactive): the way the
object performs services depends on what happened in the past
(memory), i.e., what other services have occurred before
– e.g., a cruise control
– an elevator control

• Continuous behaviour: current output depends on the previous
history in a way that does not lend itself to discretization (as in
state behaviour)
– e.g., digital filter

SYSC-3120—Software Requirements Engineering 116

Notion of State in a Finite State Machine

• State = information about past history.
 condition that persists for a significant period of time
• All states represent all possible situations in which the state

machine may ever be.
• Contains a kind of memory: how the state machine can have

reached the present situation.
• As the application runs the state changes from time to time, and

outputs may depend on the current state as well as on the inputs.
• States are distinguishable: i.e., they observably differ from one

another in either one (or several) of:
– The events they accept
– The transition they take as a result of accepting those events

• A transition is a response to an event that causes a state change
– The actions they perform.

 SYSC-3120—Software Requirements Engineering 117

State = Condition: Condition on What?

• The current state of an object is determined by:
– the current value of the object’s attributes (state variables)
– the current value (and contents) of links that it has with other objects

• Possibly the current value of other (linked) objects’ attributes
• Example:

– class StaffMember has an attribute startDate
– startDate determines whether a StaffMember object is in the

probationary state:
• The StaffMember object is in the Probationary state for the first six

months of employment.
• While in this state, a staff member has different employment rights.

• Some attributes and links of an object are significant for the
determination of its state while others are not.
– staffName and staffNo attributes of a StaffMember object have no

impact upon its state
• Often: several attributes’ and links’ values are used to define a

state

SYSC-3120—Software Requirements Engineering 118

State Conditions are Distinguishable

• Since any two different states are distinguishable
 Since a state defines a condition
 Then, conditions are distinguishable

• Consider a data structure that has a maximum capacity.
• One can define three states:

– The data structure is empty: numberOfElements=0
– The data structure is full: numberOfElements=maxCapacity
– The data structure is partially full:
 numberOfElements>0 and numberOfElements<maxCapacity

• Conditions are distinguishable since numberOfElements can only
satisfy one (and only one) of the three conditions.

SYSC-3120—Software Requirements Engineering 119

State vs. Class Invariant

• State condition = State invariant
– i.e., a condition that does not vary (invariant) while the object is in the

state
• Class invariant = what states an object can be in

• Consider a data structure that has a maximum capacity.
• State invariant for state Empty: numberOfElements=0
• Class invariant: the object is either Empty, Full or PartiallyFull.

SYSC-3120—Software Requirements Engineering 120

State vs. Class Invariant

• Often useful to add a state attribute to the class

• Consider a data structure that has a maximum capacity.
• State invariant for state Empty:

state=DataStructureState.Empty  numberOfElements=0
• Class invariant:

 state=DataStructureState.Empty
 xor state=DataStructureState.PartiallyFull
 xor state=DataStructureState.Full

SYSC-3120—Software Requirements Engineering 121

DataStructure
- state: DataStructureState

<<enumeration>>
DataStructureState

Empty
PartiallyFull
Full

Finite State Machine

• The object (or component) being modeled can only assume a
finite number of existence conditions called states

• The object behaviour in a given state is (distinguishable from
other states’ behaviour) defined by:
– The messages and events accepted
– The actions associated with each incoming event
– The state’s reachability graph (i.e., how state can change)
– The set of transitions

• An object spend all its time in states
– I.e., transitions take (approximately) zero time

• The object may change state only in a finite number of well-
defined ways, called transitions

• Transitions are enabled by events: a response to an event that
causes a change in state

• An object cannot be in two different states at the same time.
– One (and only one) state condition holds at a given instant

SYSC-3120—Software Requirements Engineering 122

A Simple Finite State Machine

A control system has to count the amount of money dropped into a
vending machine. Only 5 and 10 cent coins are accepted. The
correct, recognized sum (e.g., to deliver a stamp) is 25 cents.

SYSC-3120—Software Requirements Engineering 123

start

five
5

ten

5 5

10

fifteen
10

twenty

5

10

vend

10

5

Idea of past (history) defined by successive
inputs: 5+5+5 or 5+10 or 10+5.

SYSC-3120—Software Requirements Engineering 124

Transitions and Events

• Transition: the act of changing state
• A transition is initiated by an event.
• Four kinds of events in UML:

– Signal event:
• An occurrence of interest arising asynchronously from outside the scope

of the state machine
– Call event:

• An explicit synchronous notification of an object by another
– Change event:

• An event based on the changing of an attribute value
– Time event:

• Either the elapse of a specific duration or the arrival of an absolute time

• Warning: an event is just that
– Something that occurs at a particular instant

• Recall: transitions take (approximately) zero time

SYSC-3120—Software Requirements Engineering 125

SYSC-3120—Software Requirements Engineering

• Overview
• Analysis Concepts

– Modeling structure: class diagram
– Modeling interaction: sequence diagram
– Modeling state-based behaviour: state machine diagram

• Analysis Process
– Finding objects/classes (heuristics)
– Finding relationships : associations and attributes (heuristics)
– Interactions/behavior (heuristics)
– Responsibilities and consistency
– Analysis review

SYSC-3120—Software Requirements Engineering 126

Object Modeling

• Steps during object modeling
1. Class identification
2. Find the attributes
3. Find the methods
4. Find the associations between classes
5. Review (iterate, iterate, iterate)

• Order of steps
– Order of steps secondary, only a heuristic
– Iteration is important
– Static model will be refined when devising dynamic models

SYSC-3120—Software Requirements Engineering 127

Class Modeling during Analysis

• Classes, their invariant, associations, and attributes are
determined at this stage

• Associations among classes
• Attributes of classes
• But also system operations and their contracts, i.e., pre- and

post-conditions
• Invariant: condition that must remain true under any

circumstances for an instance of the class
• Pre-condition: condition that must be true for the operation to

execute correctly
• Post-condition: the effect of executing the operation in terms of

system state change and outputs

SYSC-3120—Software Requirements Engineering 128

Finding classes (I)

• Identify participating objects in each use case
– Pick one (there are many, so prioritize!)

• They will correspond to the main concepts of the application domain
– Always use application domain terms

• They are named, described, consolidated into the data dictionary (glossary)
– If two use cases refer to the same concept, the corresponding object should be the

same.
– If two objects share the same name and do not correspond to the same concept, one or

both concepts are renamed to acknowledge and emphasize their difference.
• Benefits of a data dictionary:

– consistent set of definitions for all developers
– single term for each concept
– precise and clear official meaning

• Definitions of objects and attributes may be reviewed by the users
• Initial Analysis model, several iterations

SYSC-3120—Software Requirements Engineering 129

Finding classes (II)

• General Advice
– Find the nouns in the use cases (e.g., Incident)

• Systematic Processes

– Abbott’s Textual Analysis
– CRC cards (Class-Role-Collaboration)

• Heuristics

– Heuristics for Entity
– Heuristics for Boundary
– Heuristics for Control

SYSC-3120—Software Requirements Engineering 130

Example: Report Emergency

Flow of Events
1. FieldOfficer activates the “Report Emergency” function of terminal
2. FRIEND responds by presenting a form to the officer, including location, incident

description, resource request and hazardous material fields.
3. FieldOfficer completes form by specifying minimally the emergency type and

description fields. May also describe possible responses to the emergency
situation and request specific resources. Once form is completed, FieldOfficer
submits the form.

4. FRIEND receives form and notifies Dispatcher
5. Dispatcher reviews submitted information and creates an Incident in the

database by invoking the OpenIncident use case. All information contained in
form is automatically included in the Incident. Dispatcher selects a response by
allocating resources to the Incident (with AllocateResources use case) and
acknowledges the emergency report with a short message to FieldOfficer

6. FRIEND display acknowledgement and selected response to FieldOfficer.

SYSC-3120—Software Requirements Engineering 131

Textual Analysis

Part of speech
• proper noun
• common noun
• doing verb
• being verb
• having verb
• modal verb
• adjective

Example
• Alice
• FieldOfficer
• submit
• is a kind of
• has, includes
• must be
• incident description

Model component
• instance
• class
• method
• inheritance
• aggregation
• constraint
• attribute

Mapping parts of speech to object model components [Abbot 1983]
Examples from ReportEmergency Use Case

SYSC-3120—Software Requirements Engineering 132

Example: ReportEmergency

Flow of Events
1. FieldOfficer activates the “Report Emergency” function of terminal
2. FRIEND responds by presenting a form to the officer, including location, incident

description, resource request and hazardous material fields
3. FieldOfficer completes form by specifying minimally the emergency type and

description fields. May also describe possible responses to the emergency
situation and request specific resources. Once form is completed, FieldOfficer
submits the form.

4. FRIEND receives form and notifies Dispatcher
5. Dispatcher reviews submitted information and creates an Incident in the

database by invoking the OpenIncident use case. All information contained in
form is automatically included in the Incident. Dispatcher selects a response by
allocating resources to the Incident (with AllocateResources use case) and
acknowledges the emergency report with a short message to FieldOfficer

6. FRIEND displays acknowledgement and selected response to FieldOfficer.

Can you identify Common Noun, Doing verbs, Being Verbs, Having verbs,
Modal verbs, Adjectives ?

SYSC-3120—Software Requirements Engineering 133

Example: ReportEmergency

Flow of Events
1. FieldOfficer activates the “Report Emergency” function of terminal
2. FRIEND responds by presenting a form to the officer, including location, incident

description, resource request and hazardous material fields
3. FieldOfficer completes form by specifying minimally the emergency type and

description fields. May also describe possible responses to the emergency
situation and request specific resources. Once form is completed, FieldOfficer
submits the form.

4. FRIEND receives form and notifies Dispatcher
5. Dispatcher reviews submitted information and creates an Incident in the

database by invoking the OpenIncident use case. All information contained in
form is automatically included in the Incident. Dispatcher selects a response by
allocating resources to the Incident (with AllocateResources use case) and
acknowledges the emergency report with a short message to FieldOfficer

6. FRIEND displays acknowledgement and selected response to FieldOfficer.

Common Noun (blue) Doing verbs (red) Being Verbs (green)
Having verbs (yellow) Modal verbs (purple) Adjectives (orange)

SYSC-3120—Software Requirements Engineering 134

Pros and Cons

+ Focus on users’ terms
- Model quality depends on analyst writing style
- Natural language is inherently imprecise
- More nouns than relevant classes

• Usually imply clarifying and rephrasing the scenarios and use

cases with users, and use a data dictionary
• Use of heuristics is necessary with natural language

SYSC-3120—Software Requirements Engineering 135

Heuristics for Entity Objects

• Find terms that developers or users need to clarify in order to
understand the flow of events
– e.g., “information submitted by FieldOfficer”
– Clarify as “EmergencyReport”
– Note: Emergency Report is not mentioned in the use case

description, but is referred to as “information submitted by the
FieldOfficer”

• Recurring nouns in use cases
– e.g., Incident

• Real world entities that the system needs to keep track of
– e.g., FieldOfficer, Dispatcher

• Real world procedures that the system needs to keep track of
– e.g., EmergencyOperationsPlan

SYSC-3120—Software Requirements Engineering 136

ReportEmergency: (entity objects only)

• Dispatcher:
– Police officer who manages Incidents …

• EmergencyReport:
– Initial report about an Incident from a FieldOfficer to a
Dispatcher.

• FieldOfficer:
– Police or fire officer on Duty.

• Incident:
– Situation requiring attention from a FieldOfficer.

SYSC-3120—Software Requirements Engineering 137

Heuristics for Boundary Objects

• Represent the interfaces between system and actors
• Each actor interacts with at least one boundary object
• They transform the actor information to be used by entity and

control objects inside the system
• Examples of boundary objects:

– Forms and windows the users need to enter data into the system
• e.g., EmergencyReportForm

– Notices and messages the system uses to respond to the user
• e.g., AcknowledgmentNotice

– Data sources or sinks
• e.g. Printer

• Beware: Model the user interface at coarse level
– Do not model the visual aspects at this stage
– Visual aspects are dealt with by a GUI subsystem, e.g., based on SWING in

Java, which is the intermediary between the user and the interface class

SYSC-3120—Software Requirements Engineering 138

ReportEmergency : (Boundary)

• AcknowledgementNotice:
– Notice used for displaying the Dispatcher’s acknowledgement to the
FieldOfficer

• DispatcherStation:
– Computer used by the Dispatcher

• FieldOfficerStation:
– Mobile Computer used by the Dispatcher

• ReportEmergencyButton:
– Button used by FieldOfficer to initiate ReportEmergency use case.

• IncidentForm:
– Form used for the creation of Incidents, presented to Dispatcher on

DispatcherSation when EmergencyReport is received.
• Not mentioned in the use case description, but dispatcher needs an interface to view emergency

report

• EmergencyReportForm:
– Form used for input of the ReportEmergency, presented to FieldOfficer

on the FieldOfficerStation.

SYSC-3120—Software Requirements Engineering 139

Heuristics for Control Objects

• Responsible for coordinating boundary and entity objects
– e.g., ElevatorController in Elevator class diagram

• Control objects do not have usually a counterpart in real world
• Creation/Destruction (usually)

– created when a user session or a use case scenario starts
– ceases to exist at the end of the session or use case scenario

• Collect information from boundary objects and dispatch them to
entity and application logic objects

• Collect information from entity or other control objects and
dispatch them to boundary objects.

SYSC-3120—Software Requirements Engineering 140

Heuristics for Control Objects

• Identify one control object per use case or more if the use case is
complex

• Identify one control object per actor in the use case
– e.g., FRIEND: ReportEmergencyControl for the FieldOfficer and

ManageEmergencyControl for the Dispatcher
• The life span of a control object should be determined by the use

case or extent of user session

SYSC-3120—Software Requirements Engineering 141

FRIEND Example: (Control)

• ReportEmergencyControl:
– Manages the report emergency reporting function on the

FieldOfficerStation. The object is created when the FieldOfficer
selects the “report Emergency” button.

• ManageEmergencyControl:
– Manages the report emergency reporting function on the

DispatcherStation. This object is created when an EmergencyReport
is received.

• Two control objects for one Use Case due to distribution of
FieldOfficerStation and DispatcherStation.

SYSC-3120—Software Requirements Engineering 142

Cross-Checking

Cross-checking use cases and participating objects:
• Which use cases create this object (i.e., during which use cases

are the values of the object attributes entered in the system)?
Which actors can access this information?

• Which use cases modify and destroy this object (i.e., which use
cases edit or remove this information from the system)? Which
actor can initiate these use cases?

• Is this object needed (i.e., is there at least one use case that
depends on this information?)

We can use table(s) to report on such information.

SYSC-3120—Software Requirements Engineering 143

Finding Classes: Advice from Authors

• Lethbridge
– You might choose to be liberal in building the initial list of classes (keeping all

possible candidates) or you might choose to be strict (keeping only if you are
definite)

• Suggestion: Be liberal. Easy to eliminate classes during a review.
– As a rule of thumb, a class is only needed in a domain model if you have to

store or manipulate instances of it in order to implement a requirement.
• Common Difficulty: Deciding whether to have classes in a domain model

that represent actors
– Example: Security or Instant Messaging System
– Example: Drawing Package
– Example: Managing Corporate Accounts.

SYSC-3120—Software Requirements Engineering 144

Classes for actors? Example from Cab Lab

• From the Cab dispatching system:
– We should have a dispatcher class (because we have a driver class and they

are both actors)
• Not necessarily: only if the system has to store data about the dispatcher

(e.g., id, password)
– We should have a customer actor (because we have a customer class)

• No: the customer is not interacting with the system (unless paying with
credit card)

Dispatcher

 LogPrebookedJob

 HandleImmediateJob

<<initiate>>

<<initiate>>

Driver

Timer

 DispatchPrebookedJob
<<initiate>>

Administrator CreateCustomerAccount
<<initiate>>

Job Cab

Customer
driverID
driverMode

Driver

SYSC-3120—Software Requirements Engineering 145

SYSC-3120—Software Requirements Engineering

• Overview
• Analysis Concepts

– Modeling structure: class diagram
– Modeling interaction: sequence diagram
– Modeling state-based behaviour: state machine diagram

• Analysis Process
– Finding objects/classes (heuristics)
– Finding relationships : associations and attributes (heuristics)
– Interactions/behavior (heuristics)
– Responsibilities and consistency
– Analysis review

SYSC-3120—Software Requirements Engineering 146

Identify Associations

• Identify classes that need to know about another class
instances,
– e.g., they create, access, destroy instances of that class
– e.g., EmergencyReport can be created by FieldOfficer

• Association properties:
– name, roles, multiplicities, navigation

• An iterative process :
– Initial identification
– Then, refinement (analyzing and verifying the associations)

• For every association, ask yourself : Is it relevant to the
application ?
– Is it needed to implement some requirement ?
– If there is no requirement, you are simply complicating the model.

SYSC-3120—Software Requirements Engineering 147

Association Heuristics: Initial Identification

• Start with class(es) that are most central to the system.
– Start with associations between entity classes.
– Work outwards.

• Initially, examine verb phrases in scenarios and Use Case descriptions
– e.g., FieldOfficer submits an EmergencyReport

• Name associations and Roles precisely
– If you omit, association defaults to “has” (not always informative)
– Add sufficient names to make the association clear and unambiguous.

• Do not worry about multiplicity until the set of associations is stable
– In general, take a non-restrictive approach to multiplicity

• Begin with *, rather than 1..n
– Don’t worry about part-whole (aggregation vs composition)

• Do not worry about directionality of association, until design
– By default, associations are bi-directional.

SYSC-3120—Software Requirements Engineering 148

Association Heuristics: Refinement
• Eliminate associations that can be derived from other

associations (avoid redundancy during Analysis)
• Analyze multiplicity

– Read every association in both directions. Does it make sense ?
– Consider association class for any many-to-many association

• Analyze each entity class to see how it is identified
– Most entity objects have an identifying characteristics
– Use qualifiers as often as possible to identify key attributes

• Reduces multiplicity values
• Use sequence diagrams

– Uncover missing associations (between objects exchanging
messages)

– An association is legitimate only if its links survive beyond the
execution of a single operation

– If information does not need to be stored, perhaps you can eliminate
the association

SYSC-3120—Software Requirements Engineering 149

Identify Associations

<<boundary>>
ReportEmergencyButton

<<control>>
ReportEmergencyControl

1 0..1

<<control>>
ManageEmergencyControl

<<entity>>
EmergencyReport

*

1

<<boundary>>
ReportEmergencyForm

0..1 1

<<entity>>
FieldOfficer

*

1
could be 1.*

<<entity>>
Dispatcher

*

0..1

SYSC-3120—Software Requirements Engineering 150

FRIEND Example

1 * writes

author document

1

1 *

1

triggers reports

FieldOfficer EmergencyReport

Incident

Is this association necessary?
Should it exist after the
incident was created?

SYSC-3120—Software Requirements Engineering 151

Identify Attributes

• Attributes are properties of individual objects
– Property is a partial aspect of an object

• Some nouns become classes, and some become attributes
– E.g.,“the name of the tournament…”

• Some verbs correspond to associations, but not all
– “… complete the form by specifying the type”

• Identify associations before attributes
– Do not confuse associated objects and attributes

• For every attribute, ask yourself : Is it relevant to the application ?
– Is it needed to implement some requirement ?
– If there is no requirement, you are simply complicating the model.

• Attributes are the least stable part of analysis object model

SYSC-3120—Software Requirements Engineering 152

FRIEND Example

EmergencyReport

emergencyType:{fire,traffic,other}
location:String
description:String

• Describe each attribute in data dictionary

– name, brief description, type (legal values)

SYSC-3120—Software Requirements Engineering 153

Attribute Heuristics (I)

• Properties generally have simple types (or at least conceptually atomic)
• If attribute is an object, use association instead
• Exceptions: address, date

– e.g., FieldOfficer who authored an EmergencyReport
• Word analysis:

– possessive phrases (e.g., the description OF THE emergency)
– adjective phrases: (e.g., the emergency description)

• Nouns that are collections are associations, not attributes
– Attribute name should not be plural

Person
-name:String
homeStreet
homeCity
workStreet
workCity

Person
name:String

Address
street
city

*

SYSC-3120—Software Requirements Engineering 154

Attribute Heuristics (II)

• Attributes should not have an implicit internal structure.

• Represent stored state as attribute of entity object

Person
-name:String
+getSurname()
+getFirstName()

Person
-surname:String
-firstname:String
+getSurname()
+getFirstName()

SYSC-3120—Software Requirements Engineering 155

Generalization

• Eliminate redundancy in the analysis model
• Share attributes, operations, associations
• Example:

– Dispatchers and Fieldofficers both have badgeNumber to identify
them within the city. They are both PoliceOfficer

– Abstract PoliceOfficer class, containing common functionality and
attributes

• UML Class diagram notation: abstract class name in italics

SYSC-3120—Software Requirements Engineering 156

PoliceOfficer

<<boundary>>
ReportEmergencyButton

<<control>>
ReportEmergencyControl

1 0..1

<<control>>
ManageEmergencyControl

<<entity>>
EmergencyReport

*

1

<<boundary>>
ReportEmergencyForm

0..1 1

<<entity>>
Dispatcher

*

0..1

<<entity>>
FieldOfficer

*

1
could be 1.*

<<entity>>
PoliceOfficer

badgeNumber: Integer

SYSC-3120—Software Requirements Engineering 157

SYSC-3120—Software Requirements Engineering

• Overview
• Analysis Concepts

– Modeling structure: class diagram
– Modeling interaction: sequence diagram
– Modeling state-based behaviour: state machine diagram

• Analysis Process
– Finding objects/classes (heuristics)
– Finding relationships: associations and attributes (heuristics)
– Interactions/behavior (heuristics)
– Responsibilities and consistency
– Analysis review

SYSC-3120—Software Requirements Engineering 158

Modeling Object Behavior

• Sequence diagrams represent behavior from the perspective of
single use case
– Shows how the behaviour of a use case is distributed among

participating objects.
• Statechart diagrams capture behavior from the perspective of a

single object
– Focus only on objects with non-trivial behavior (multi-modal, state-

dependent)

• Help identify missing Use Cases
• Help identify missing objects and/or operations
• Build more formal description of the object behavior

SYSC-3120—Software Requirements Engineering 159

Incident Statechart

numAllocatedResource == 0

all reports

when incident.date > 1yr.

are submitted

Active Inactive Closed Archived

• Are there Use Cases for documenting, closing, and archiving Incidents?
• The Active state could be further refined and decomposed: nested statecharts
• Transitions conditions can and should be described more formally. (OCL – see

later)

SYSC-3120—Software Requirements Engineering 160

Use of Object Types (cont.)

In sequence diagrams
• Boundary objects communicate with Control objects.
• Control objects communicate with Boundary, Control and Entity objects.
• Entity objects communicate with other Entity objects.

These suggest directions of messages in sequence diagrams:
– Boundary → Control
– Control → Boundary, Control → Control, Control → Entity
– Entity → Entity

But the following are not allowed (during Analysis)
– Boundary → Entity
– Entity → Control
– Entity → Boundary

 This suggests that Control objects transform information received from Entity
objects and send it to Boundary objects.

We may break this rule during
design, but only for a good reason
(design solution, optimization, …)

Sequence Diagram vs Pre/Postconditions

• Pre/postconditions specify responsibilities of communicating
operations.

• Sequence diagram shows some responsibilities of interacting
operations.

• Sequence of messages must match the pre/postconditions of
operations!

SYSC-3120—Software Requirements Engineering 161

Library System (excerpt)

Operation borrowCopy(uid, cid) in class Library
Precondition:
– There is a user with id uid who has not reached his/her maximum number of allowed rentals.
– There is a book with id cid on shelves (ready to borrow).
Postcondition:
– There is no book on shelves with id cid.
– There is a loan object for a book with id cid.
– The user with id uid is borrowing one more copy and is linked to a loan for a book with id cid.
Can you write these in OCL? (see slide #92)

SYSC-3120—Software Requirements Engineering 162

+borrowCopy(in userID : Integer, in copyID : Integer)

LibraryControl

+borrowCopy(in userID : Integer, in copyID : Integer)
+borrowCopy(in user : User, in copy : Copy)

Library

1 1

+findUser(in userID : Integer) : User
+addLoan(in copy)
+canRent() : Boolean
+upDate()

User

+findCopy(in copyID : Integer) : Copy
+isOnShelf() : Boolean
+upDate()

Copy

1
*

1

*

Sequence Diagram for Borrowing (excerpt)

SYSC-3120—Software Requirements Engineering 163

 : LibraryControl : Library User

1: borrowCopy(uid, cid)

1.1: borrowCopy(uid, cid)

1.2: theUser := findUser(uid)

theUser : User

1.3: addLoan(cid)

Copy

1.3.1: theCopy := findCopy(uid)

This is the operation we just specified
with a precondition and a postcondition.

Nothing indicates that the client
ensures the precondition is met!

Setting links between the user, the copy and the new loan is
the responsibility of the operation we specified, not its client!

Improved Sequence Diagram for Borrowing (excerpt)

SYSC-3120—Software Requirements Engineering 164

 : LibraryControl : LibraryUser Copy

1: borrowCopy(uid, cid)

1.1: theUser := findUser(uid)

1.3: theCopy := findCopy(cid)

[bool1 and bool2] 1.5: borrowCopy(theUser, theCopy)

theUser : User theCopy : Copy

1.5.2: upDate()

1.5.1: upDate()

1.2: bool1 := canRent()

1.4: bool2 := isOnShelf()

The operation we specified.

The client ensures the
precondition is met.

This is UML 1.x notation.
In UML 2.x, use an opt or alt frame. This is what the operation we specified

does, according to its postcondition.

SYSC-3120—Software Requirements Engineering 165

ReportEmergency SD (1)

 FieldOfficer :Report
EmergencyButton

 :ReportEmergency
Control

 :ReportEmergency
Form

 :Emergency
Report

 :Manage
EmergencyControl

press()

create()
create()

submit()

fillContents()

submitReport()
create()

submitReportToDispatcher()

Object should only
appear when it is created

An activation bar for the
actor does not make sense

A <<new>> message
could be used instead

SYSC-3120—Software Requirements Engineering 166

ReportEmergency SD (2)

 :Manage
EmergencyControl

 :IncidentForm :Incident :Acknowledgment Dispatcher

create()

createIncident()

create()

submit()

create()

submitReportToDispatcher()
view()

• New entity object Acknowledgment that we forgot during our initial examination of
the ReportEmergency use case.

– It holds the information associated with an Acknowledgment (Entity object) and is created
before the AcknowledgementNotice boundary object (next slide).

• We also need to clarify with the user what information is contained by an
acknowledgement.

SYSC-3120—Software Requirements Engineering 167

ReportEmergency SD (3)

 FieldOfficer :ReportEmergency
Control

 :Acknowledgment
Notice

:Manage
EmergencyControl

Create()

View()

acknowledgeReport()

SYSC-3120—Software Requirements Engineering 168

FieldOfficer

:ReportEmergencyButton

1:press()

:ReportEmergencyControl
<<create>>

:ReportEmergencyForm
<<create>>

2:fillContents()

3:submit()

3.1:submitReport(data)

r:EmergencyReport
3.1.1:<<create>>(data)

:ManageEmergencyControl

3.1.2:submitReportToDispatcher(r)

:IncidentForm
<<create>>

:Incident
<<create>>

Acknowledgement
<<create>>

Dispatcher

View()

createIncident

createIncident

submit
submit

acknowledgeReport

:AcknowledgmentNotice
<<create>>

acknowledgement

SYSC-3120—Software Requirements Engineering 169

Heuristics for arranging lifelines in SD

• Arranging lifelines
– First column: actor who initiates the use case
– Second column: boundary object
– Third column: control object that manages the rest of the use case

• Object creation
– Control objects are created by boundary objects initiating use cases
– Other boundary objects are created by control objects

• Access to objects
– Entity objects are accessed by control and boundary objects
– Entity objects never access boundary or control objects

SYSC-3120—Software Requirements Engineering 170

Change to ReportEmergency

• New Entity object:
– Acknowledgment – Response of a Dispatcher to a FieldOfficer’s

EmergencyReport. Contains resources allocated, predicted arrival
time …

• Modify Step 4 of ReportEmergency flow of events’ description:
– The acknowledgment indicates to the FieldOfficer that the

EmergencyReport was received, an Incident created, and resources
allocated to the Incident.

SYSC-3120—Software Requirements Engineering 171

SYSC-3120—Software Requirements Engineering

• Overview
• Analysis Concepts

– Modeling structure: class diagram
– Modeling interaction: sequence diagram
– Modeling state-based behaviour: state machine diagram

• Analysis Process
– Finding objects/classes (heuristics)
– Finding relationships: associations and attributes (heuristics)
– Interactions/behaviour (heuristics)
– Responsibilities and consistency
– Analysis review

SYSC-3120—Software Requirements Engineering 172

Specifying Responsibilities

• Sequence diagrams imply we distribute the behavior of the use
case across participating objects.
– An operation is responsible for interacting with some other object

• Responsibilities under the form of operations, are assigned to
objects

• These operations may be shared by several Use Cases:
– remove redundancies but consistency needs to be checked

• During analysis, sequence diagrams only focus on high-level
behavior
– implementation issues should not be addressed at this point

SYSC-3120—Software Requirements Engineering 173

Specifying Responsibilities (cont.)

• Pre-condition: Conditions under which operations can be
executed and yield a correct result

• Post-Condition: Conditions that are guaranteed true after
execution of an operation

• Class invariant: Conditions that must remain true, at all times, for
any instance of a class

• Contract: All of the above are referred to as a contract

SYSC-3120—Software Requirements Engineering 174

Specifying Responsibilities (cont.)

• Class diagram
– Shows which attributes are the responsibility of which class
– Shows which operations are the responsibility of which class

– But also

– Multiplicities show what are the responsibilities of objects to maintain

links to other objects

• State machine diagram
– Show state-based behaviour of a given object

SYSC-3120—Software Requirements Engineering 175

What else can we get out of sequence diagrams?

• Sequence diagrams are derived from the use cases. We
therefore see the structure of the use cases.

• The structure of the sequence diagram helps us to determine
how decentralized the system is.

• We distinguish two structures for sequence diagrams:
– fork diagrams
– stair diagrams (Ivar Jacobsen)

Bruegge

SYSC-3120—Software Requirements Engineering 176

Fork and Stair Diagram

Fork Diagram
• Much of the dynamic behavior is placed in

a single object, usually the control object.
• The control object knows all the other

objects and often uses them for direct
questions and commands.

Bruegge

Stair Diagram
• The dynamic behavior is distributed.
• Each object delegates some responsibility

to other objects.
• Each object knows only a few of the other

objects and knows which objects can help
with a given behavior.

SYSC-3120—Software Requirements Engineering 177

Fork or Stair?

• Which of these diagram types should be chosen?
• Object-oriented fans claim that the stair structure is better

– The more the responsibility is spread out, the better
• However, this is not always true.
• Better heuristics for deciding between fork and stairs:

– Decentralized control structure
• The operations introduce a strong connection between caller and callee
• It is harder to change the order of the operations (change involves many

objects)
– Centralized control structure (better support for change)

• The operations can easily change order
• New operations can be easily inserted as a result of new requirements

Bruegge

SYSC-3120—Software Requirements Engineering 178

Cross-Checking

• Sequence diagrams can be used to help check the completeness
/ correctness of the use case model and class diagrams.

• Cross-checking:
– Which Use Cases create this object? Which actors can access this

information?
– Which Use Cases modify and destroy this object? Which actors

initiate these Use Cases?
– Is this object needed? (at least one Use Case depends on this

information)

Consistency Between UML Views

• UML views
– Use case diagram
– Use case descriptions
– Class diagram(s)
– Sequence diagram(s)
– State machine diagram(s)
– Data dictionary

• These view consider only one aspect of the system being built
(separation of concern)

– Functionalities (use case diagram + use case descriptions)
– Structure (class diagram)
– Interactions between objects(sequence diagrams)
– State-based behaviour of an object (state machine diagrams)
– Documentation: all the above + data dictionary

• Only one system is being built
– Those views must be kept in sync.

SYSC-3120—Software Requirements Engineering 179

Consistency Rules (excerpt)

SYSC-3120—Software Requirements Engineering 180

Use case
diagram

Use case descr. Sequence diagram Class diagram State machine
diagram

Data dictionary

Use case
diagram

NA One use case = one
description

+
Use case diagram

matches description
(e.g., actors)

One use case = one
or more sequence

diagrams
+

Use case diagram
matches sequence

diagram (e.g., actors)

Actors and use
cases must appear
in data dictionary

Use case
descr.

See
symmetric

cell

NA Flow of steps
matches flow of

messages

Entity classes, operations
and attributes appear in
uses case description

Sequence
diagram

See
symmetric

cell

See symmetric cell NA Objects must be instances
of classes in class diagram

+
Need for association = need

for message
+

Messages must appear in
class diagram (operations or

signals)

Scenarios in
statecharts and

sequence diagrams
should match

Scenarios and
contracts should

match

Class
diagram

See symmetric cell See symmetric cell NA Operations,
attributes,

navigations used in
state diagram
found in class

diagram

Classes, attributes,
operations (including
contracts) described

Statechart See symmetric cell See symmetric cell NA

Data
dictionary

See
symmetric

cell

See symmetric cell See symmetric cell See symmetric cell NA

SYSC-3120—Software Requirements Engineering 181

SYSC-3020—Introduction to Software Engineering

• Overview
• Analysis Concepts

– Different kinds of classes
– Different kinds of relationships
– Modeling interaction
– Modeling state-based behaviour

• Analysis Process
– Finding objects/classes (heuristics)
– Finding relationships: associations and attributes (heuristics)
– Interactions/behaviour (heuristics)
– Responsibilities
– Analysis review

SYSC-3120—Software Requirements Engineering 182

Analysis Review - Correctness

• Is the data dictionary understandable by the user?
• Do abstract classes correspond to user-level concepts?
• Are all descriptions in accordance with the user’s definitions
• Do all entity and boundary objects have meaningful noun

phrases as names?
• Do all use cases and control objects have meaningful verb

phrases as names?
• Are all error cases described and handled?
• Are system administration functions of the system described?

SYSC-3120—Software Requirements Engineering 183

Analysis Review - Completeness

• For each object:
– Is it needed by any use case? Where is it created, modified,

destroyed?
• For each attribute:

– When is it set? What is its type? Should it be a qualifier?
• For each association:

– When is it traversed? Why was the specific multiplicity chosen? Can
associations with one-to-many and many-to-many multiplicities be
qualified?

• For each control object:
– Does it have the necessary associations to access the objects

participating in its corresponding use case?

SYSC-3120—Software Requirements Engineering 184

Review-Consistency

• Are there multiple classes or use cases with the same name?
• Do model elements with similar names denote similar

phenomena?
• Are all model elements described at the same level of detail?
• Are there classes with similar attributes and associations that are

not in the same generalization hierarchy?

SYSC-3120—Software Requirements Engineering 185

Analysis Activities

Define use cases

Define
participating objects

Define
entity objects

Define
boundary objects

Define
control objects

Define interactions

Define non trivial
behavior

Define
attributes

Define
associations

Consolidate model Review model

SYSC-3120—Software Requirements Engineering 186

SYSC-3120—Software Requirements Engineering

• Overview
• Analysis Concepts

– Modeling structure: class diagram
• Modeling classes
• Different kinds of relationships
• OCL: Better specifying operation/classes, constraining class diagram
• Liskov substitution principle

– Modeling interaction: sequence diagram
– Modeling state-based behavior: state machine diagram

• Analysis Process
– Finding objects/classes (heuristics)
– Finding relationships : associations and attributes (heuristics)
– …

Liskov Substitution Principle

• This principle defines the notions of generalization /
specialization in a formal manner

• Class S is correctly defined as a specialization of
class T if the following is true:
– for each object s of class S there is an object t of

class T such that the behavior of any program P
defined in terms of T is unchanged if s is
substituted for t (i.e., t is replaced by s).

• S is a said to be a subtype of T
• All instances of a subclass can stand for instances of a

superclass without any effect on client classes
• Any future extension (new subclasses) will not affect existing

clients.

SYSC-3120—Software Requirements Engineering 187

T

S

P

188

Lack of Substitutability

class Rectangle : public Shape {
private: int w, h;
public:
virtual void set_width(int wi) {
w=wi;

}
virtual void set_height(int he) {
h=he;

}
}

class Square : public Rectangle {
public:
void set_width(int w) {
Rectangle::set_height(w);
Rectangle::set_width(w);

}
void set_height(int h) {
set_width(h);

}
}

void foo(Rectangle *r) { // This is the client
r->set_width(5);
r->set_height(4);
assert((r->get_width()*r->get_height()) == 20); // Oracle

}

• If r is instantiated at run time with instance of Rectangle, the assertion is true.
• If r is instantiated at run time with instance of Square, the behavior observed by

client is different (width*height == 16)
• May lead to problems
• Square should be defined as subclass of Shape, not Rectangle

SYSC-3120—Software Requirements Engineering

189

Rules

A number of rules must hold (have to be checked) to have
substitutability
• Signature Rule:

– The subtypes must have all the methods of the supertype, and the signatures
of the subtypes methods must be compatible with the signatures of the
corresponding supertypes methods

– In Java, this is enforced as the subtype must have all the supertype methods,
with identical signatures except that a subtype method can have fewer
exceptions (compatibility stricter than necessary here)

• Method Rule:
– Calls on these subtype methods must “behave like” calls to the

corresponding supertype methods.
• Properties Rule:

– The subtype must preserve the invariant of the supertype.

SYSC-3120—Software Requirements Engineering

190

Method Rule

Method Rule can be expressed in pre- and post-conditions.
• The precondition is weakened

– Weakening the precondition implies that the subtype method requires less
from the caller

– If methods T::m() and S::m() (overriding) have preconditions PrC1 and
PrC2, respectively, then PrC1 ⇒ PrC2

• The postcondition is strengthened
– Stregthening means the subtype method returns more than the

supertype method
– If methods T::m() and S::m() (overriding) have postconditions PoC1 and
PoC2, respectively, then(PrC1 ^ PoC2) ⇒ PoC1

 The calling code depends on the postcondition of the supertype method,
but only if the precondition is satisfied.

SYSC-3120—Software Requirements Engineering

191

Liskov – Example 1: IntSet

public class IntSet {

private Vector els; // the elements

public IntSet() {…}

// Post: Initializes this to be empty

public void insert (int x) {…}

// Post: Adds x to the elements of this

public void remove (int x) {…}

// Post: Remove x from the elements of this

public boolean isIn (int x) {…}
//Post: If x is in this returns true else returns false

public int size () {…}

//Post: Returns the cardinality of this

public boolean subset (IntSet s) {…}

//Post: Returns true if this is a subset of s else returns false

}

SYSC-3120—Software Requirements Engineering

192

Liskov – Example 1: MaxIntSet

public class MaxIntSet extends IntSet {

private int biggest; // biggest element if set not empty

public maxIntSet () {…} // call super()

public max () throws EmptyException {…}

// new method

public void insert (int x) {…}

// overrides InSet::insert()

// Additional Post: update biggest with x if x > biggest

public void remove (int x) {…}

// overrides InSet::remove()

// Additional Post: update biggest with next biggest element in

// this if x = biggest

}

We see that the post-conditions for insert() and remove() are stronger,
that is they contain (imply) the post-conditions of the methods they
override in the parent class.

SYSC-3120—Software Requirements Engineering

193

Liskov – Example 2: LinkedList and Set

public class LinkedList {
...
/** Adds an element to the end of the list
* PRE: element != null
* POST: this.getLength() == old.getLength() + 1
* && this.contains(element) == true
*/
public void addElement(Object element) { ... }
...

}
public class Set extends LinkedList {

...
/** Adds element, provided element is not already in the set
* PRE: element != null && this.contains(element) == false
* POST: this.getLength() == old.getLength() + 1
* && this.contains(element) == true
*/
public void addElement(Object element) { ... }
...

}
The method rule is transgressed here: the precondition of Set::addElement() is
stronger than the precondition of LinkedList::addElement().

SYSC-3120—Software Requirements Engineering

194

Properties Rule

• All methods of the subtype must preserve the invariant of the supertype
• The invariant of the subtype must imply the invariant of the supertype

• Example:
• Assume FatSet is a set of integers whose size is always at least 1.

– The constructor and remove methods ensure this.
– Inv: FatSet.allInstances->size >= 1

• ThinSet is also a set of integers but it can be empty and therefore
cannot be a legal subtype of FatSet.

SYSC-3120—Software Requirements Engineering

195

Property rule for InSet, MaxInSet

• Informal invariant description:

• Invariant of IntSet, for any instance i :

i.els != null and
all elements of i.els are Integers and
there are no duplicates in i.els

• Invariant of MaxIntSet, for any instance i (assuming that MaxIntSet
uses the iterator of InSet to traverse els):

invariant of InSet and
i.size > 0 and
for all integers x in els, x <= i.biggest

• The invariant of MaxInSet includes the invariant of InSet and therefore
implies it.

• We comply with the property rule.

SYSC-3120—Software Requirements Engineering

	SYSC-3120—Software Requirements Engineering
	SYSC-3120—Software Requirements Engineering
	Overview
	Overview (Bruegge and Dutoit, 2000)
	Object-Oriented, UML-based�Analysis Model (Bruegge and Dutoit, 2000)
	Analysis Model �(alternative to Object-Oriented, UML-based)
	Analysis Model �(alternative to Object-Oriented, UML-based)
	SYSC-3120—Software Requirements Engineering
	Class Definition
	Class Definition
	Class Definition—Example
	Class/Object Taxonomy
	Use of Class/Object Taxonomy
	Class Taxonomy
	User-defined Types
	SYSC-3120—Software Requirements Engineering
	Association
	Associations—Other Examples (the FRIEND system)
	Association: kinds and direction
	Association: name
	Association: multiplicities
	Association: multiplicities
	Association: multiplicities
	Association Multiplicities—Exercise
	Multiplicities have Semantics
	Multiplicities have Semantics (cont.)
	Multiplicities have Semantics (cont.)
	Multiplicity: Snapshot versus History ?
	Rolename == Attribute (during implementation)
	Rolename == Attribute (during implementation)
	Association Classes (Fowler)
	Whole-Part Class Relationship
	Whole-Part Class Relationship
	Association vs. Action
	Reflexive associations
	Rolename mandatory in context
	Constraining Associations: ordered
	Constraining Associations: subsets
	Association subsetting notation
	SYSC-3120—Software Requirements Engineering
	Generalization / Specialization
	FRIEND Example
	Interface and Realization
	SYSC-3120—Software Requirements Engineering
	Dependency
	Association vs. Dependency
	SYSC-3120—Software Requirements Engineering
	Constraints: Motivations
	Constraints: Motivations
	Analysis (and Design) by Contract
	Design by Contract (Rights and Responsibilities)
	Design by Contract (Rights and Responsibilities)
	Design by Contract (Rights and Responsibilities)
	Design by Contract (constraining object relations)
	Design by Contract (constraining object relations)
	Class Invariant
	Usage of Contracts/Constraints
	Object Constraint Language (OCL)
	OCL Expression—Context
	OCL Expression—Context
	Class/Instance Scope Model Element
	OCL Types
	Boolean Type
	Collection Types
	Collection Types
	Navigation Expression
	Navigation Expression
	Navigation—Simple Examples
	Navigation Expressions
	Result of Navigation—Collection
	Result of Navigation—Collection
	Result of Navigation—Collection
	Navigating—Association Classes, Generalizations, Enumerations
	Navigating—Association Classes, Generalizations, Enumerations
	Navigating—Association Classes, Generalizations, Enumerations
	Example Class Diagram
	Subset Selection
	Subset Selection
	Subset Selection
	Subset Selection
	Creating a Collection
	Creating a Collection
	Checking Collection Contents: includes(), includesAll()
	Examples of Basic Constraints
	Examples of Basic Constraints
	Checking Constraint on the Elements of a Collection
	Checking Constraint on the Elements of a Collection
	Checking Constraint on the Elements of a Collection
	Checking Constraint on the Elements of a Collection
	Postcondition—A Specific Notation
	A more Complex Example—A Library System
	Contracts for Library::borrowCopy
	SYSC-3120—Software Requirements Engineering
	Modeling Interactions
	Sequence Diagram Notation
	Sequence Diagram Notation (cont.)
	Sequence Diagram Notation (cont.)
	Example of Sequence & Communication Diagrams
	Lifelines: Reply or Returns
	Message Label
	Different categories of Messages
	Call vs. Signal
	Signal Hierarchy
	Example - ATM
	Sequence Diagram’s Frame
	Other Frames—Control Flow
	Other Frames—Control Flow (cont.)
	Other Frames—Control Flow (cont.)
	Other Frames—Control Flow (cont.)
	Other Frames—Control Flow (cont.)
	Other Frames—Control Flow (cont.)
	Other Frames—Control Flow (cont.)
	Other Frames—Control Flow (cont.)
	Other Frames—Control Flow (cont.)
	SYSC-3120—Software Requirements Engineering
	Different Kinds of Object Behaviours�[Douglas, Wagner et al]
	Notion of State in a Finite State Machine
	State = Condition: Condition on What?
	State Conditions are Distinguishable
	State vs. Class Invariant
	State vs. Class Invariant
	Finite State Machine
	A Simple Finite State Machine
	Transitions and Events
	SYSC-3120—Software Requirements Engineering
	Object Modeling
	Class Modeling during Analysis
	Finding classes (I)
	Finding classes (II)
	Example: Report Emergency
	Textual Analysis
	Example: ReportEmergency
	Example: ReportEmergency
	Pros and Cons
	Heuristics for Entity Objects
	ReportEmergency: (entity objects only)
	Heuristics for Boundary Objects
	ReportEmergency : (Boundary)
	Heuristics for Control Objects
	Heuristics for Control Objects
	FRIEND Example: (Control)
	Cross-Checking
	Finding Classes: Advice from Authors
	Classes for actors? Example from Cab Lab
	SYSC-3120—Software Requirements Engineering
	Identify Associations
	Association Heuristics: Initial Identification
	Association Heuristics: Refinement
	Identify Associations
	FRIEND Example
	Identify Attributes
	FRIEND Example
	Attribute Heuristics (I)
	Attribute Heuristics (II)
	Generalization
	PoliceOfficer
	SYSC-3120—Software Requirements Engineering
	Modeling Object Behavior
	Incident Statechart
	Use of Object Types (cont.)
	Sequence Diagram vs Pre/Postconditions
	Library System (excerpt)
	Sequence Diagram for Borrowing (excerpt)
	Improved Sequence Diagram for Borrowing (excerpt)
	ReportEmergency SD (1)
	ReportEmergency SD (2)
	ReportEmergency SD (3)
	Slide Number 168
	Heuristics for arranging lifelines in SD
	Change to ReportEmergency
	SYSC-3120—Software Requirements Engineering
	Specifying Responsibilities
	Specifying Responsibilities (cont.)
	Specifying Responsibilities (cont.)
	What else can we get out of sequence diagrams?
	Fork and Stair Diagram
	Fork or Stair?
	Cross-Checking
	Consistency Between UML Views
	Consistency Rules (excerpt)
	SYSC-3020—Introduction to Software Engineering
	Analysis Review - Correctness
	Analysis Review - Completeness
	Review-Consistency
	Analysis Activities
	SYSC-3120—Software Requirements Engineering
	Liskov Substitution Principle
	Lack of Substitutability
	Rules
	Method Rule
	Liskov – Example 1: IntSet
	Liskov – Example 1: MaxIntSet
	Liskov – Example 2: LinkedList and Set
	Properties Rule
	Property rule for InSet, MaxInSet

