
SYSC-3120 — Software Requirements Engineering 1

SYSC-3120 —Software Requirements
Engineering

Software Requirements Elicitation and Specification

Quotes from disgruntled customers:

• They are not listening to what I want for my system. They are giving me

the system that they want to build, not the one that I want.

• We often don’t know how to say what we want – we know it but don’t
know that we do – so it’s their job to listen to us, organize it and say it
back to us, better than how we ourselves could say it.

SYSC-3120 — Software Requirements Engineering 2

Software Requirements Elicitation and
Specification

• Fundamentals
– Motivation and Goals
– Requirement Engineering
– Functional vs. Non-Functional
– Defining Software System Scope
– Specifying a Use Case
– Use case relationships
– Pitfalls

• Requirements Elicitation Process
 (Requirements Elicitation Based on Use Cases and Scenarios (from

Bruegge and Dutoit, 2000))
• Documentation

SYSC-3120 — Software Requirements Engineering 3

What is a Requirement ?

• [Lethbridge] A requirement is a statement about what the
proposed system will do that all stakeholders agree must be
made true in order for the customer’s problem to be adequately
solved.
– Statement: brief, concise, fact-based.

• Collection of requirements = requirements document
– Do: What tasks the system will perform.

• Does not describe implementation (the “how”).
– All stakeholders: Fundamental purpose is communication vis-à-vis

agreements/contracts
– Problem: System must be focused on customer’s problem.

• [Dutoit] A requirement is a feature that the system must have or
a constraint that it must satisfy to be accepted by the customer.

Stating requirements

Typical statements…
• ATM: the ATM shall allow a customer to access (i.e., view the

balance of) his/her accounts.
• Cruise control: the cruise control shall be automatically and

immediately disengaged when the driver uses the break pedal.
• Air traffic control: the air traffic control software shall run 24h a

day, 7 days a week.
• Windows application: the software shall be configurable to any

language supported by the operating system.
• Anti-collision software: the software shall detect potential colliding

aircraft trajectories with at least 5mn before that can actually
happen.

SYSC-3120 — Software Requirements Engineering 4

SYSC-3120 — Software Requirements Engineering 5

Motivations and Goals (I)

• Requirements describes the expected behavior of a system
– Functional requirements
– Non-functional requirements

• Every nontrivial engineering system must be specified, based on
user requirements

• Requirements need to be explicitly stated and documented for
system implementation
– e.g., used for design decisions, verification and validation (see next

slide), and a reference point during maintenance
• SE is about developing software solutions to problems

– Good solutions can only be developed if software engineers
understand the problems.

Verification and Validation

• Software Verification: IEEE definition (Std 610.12.1990)
– The process of evaluating a system or component to determine

whether the products of a given development phase satisfy the
conditions imposed at the start of that phase.

– Interpretation: Constructing the system well
• The goal is to find as many latent defects as possible before delivery
• Checking whether the system adheres to properties termed as verification properties

• Software Validation: IEEE definition (Std 610.12.1990)
– The process of evaluating a system or component during or at the

end of the development process to determine whether it satisfies
specified requirements.

– Interpretation: Constructing the right system
• The goal is to gain confidence in the software, shows it meets its specifications
• Relationship with other software engineering activities (e.g., Requirements elicitation,

Analysis)

SYSC-3120 — Software Requirements Engineering 6

SYSC-3120 — Software Requirements Engineering 7

Motivations and Goals (II)

• Defects are cheaper when detected earlier
• For safety-critical systems, requirements problems are more

likely to be safety-related
• Failure to understand and manage requirements is the biggest

single cause of cost and schedule slippage
• Requirements documentation treats the software system as a

black-box
• Separation of concerns: “What” vs. “How”

SYSC-3120 — Software Requirements Engineering 8

Surveys

• Standish Group surveyed 350 companies, over 8000 projects, in
1994
– 31% cancelled before completed, 9-16% were delivered within cost

and budget
– Causes of failed projects:

• Incomplete requirements (13%)
• Changing requirements and specifications (9%)
• Unrealistic expectations (9%)
• Lack of user involvement (12%) …

• Source: Lutz, 1993, IEEE Int. Symp. On Requirements
Engineering
– NASA Voyager (87 faults) and Galileo (122 faults)
– Safety-related interface faults overwhelmingly caused by

communication errors between development teams (93%, 72%)
– Functional faults, especially safety-related ones, primarily caused by

misunderstanding requirements (62%, 79%)

SYSC-3120 — Software Requirements Engineering 9

Software Requirements Elicitation and
Specification

• Fundamentals
– Motivation and Goals
– Requirement Engineering
– Functional vs. Non-Functional
– Defining Software System Scope
– Specifying a Use Case
– Use case relationships
– Pitfalls

• Requirements Elicitation Process
 (Requirements Elicitation Based on Use Cases and Scenarios (from

Bruegge and Dutoit, 2000))
• Documentation

SYSC-3120 — Software Requirements Engineering 10

Requirements Engineering

• Requirements Engineering is the process of defining the
requirements for the system under construction

• [Dutoit]: Requirements engineering has two main activities:
1. Elicitation : results in requirements specification that the customer

understands
2. Analysis: results in analysis model that developer can unambiguously

understand
Both represent the same information
– Specification: communication with customer (informal notation)
– Analysis: communication among developers (formal notation)

• Traditional terminology:
– Requirements specification = = Requirements Definition
– Analysis model = = Requirements Specification

SYSC-3120 — Software Requirements Engineering 11

Sources of Requirements

Stakeholders wants and needs

Requirements

Current organization and systems
• Best practices
• Existing documents
• Requirement templates
• Domain models
• …

Current standards, certification
• Standards
• Legal issues
• Certification bodies
• …

SYSC-3120 — Software Requirements Engineering 12

Users of the Requirements (Sommerville, 2000)

System Customers

Managers

Specify the requirements and read them to
check that they meet their needs. They specify
changes to the requirements.

Use the requirements document to plan a bid
for the system and to plan the system
development process.

System Engineers Use the requirements to understand what
system is to be developed.

System Test Engineers Use the requirements to develop validation tests
for the system.

System Maintenance Engineers Use the requirements to help understand the
system and the relationships between its parts.

SYSC-3120 — Software Requirements Engineering 13

Products of Requirements Process

Requirements
Elicitation

Requirements
Analysis

Problem
Statement

Requirements Specfication

Functional
Model

Nonfunctional
Model

Analysis Model

SYSC-3120 — Software Requirements Engineering 14

Requirements Elicitation - Objectives

• Understand the processes, people, and resources involved
• Determine the coverage and boundary of the future system

(scope)
– VERY important decision, huge consequences if wrong

• Separate requirements according to level of priority
• No implementation decisions (i.e., No What), unless mandated

by customer

SYSC-3120 — Software Requirements Engineering 15

Why is Requirements Elicitation hard?

• Customers / Users are not always good at describing what they
want or need

• Software Engineers are not always good at understanding
someone else’s concerns

• In certain application domains, software engineers and
customers have completely different backgrounds and use a
different terminology

• Volatility: requirements change over time.

SYSC-3120 — Software Requirements Engineering 16

Techniques for Requirement Elicitation

• Observation
– Observe users at work
– Obtain subtle information not told by customer (forgotten, didn’t think

it was important, didn’t understand implication)
• Interviewing

– Requires skill, preparation, listening
– Ask specific details: boundaries, exceptions, anticipated changes
– Ask vision of future
– Ask alternatives
– Ask minimally acceptable solution
– Ask other sources of information

• Brainstorming : Moderated meeting with trigger questions
• Prototyping : To stimulate reaction by user.

SYSC-3120 — Software Requirements Engineering 17

Qualities of Specifications I

• Clear, unambiguous, understandable
=> Need for rigor (and perhaps formality)
=> But rigor and understandability may be contradictory goals

• Realistic (late changes to requirements are expensive)
• Correspond to real needs (Valid)
• Verifiable (to ease testing), e.g., use metrics

SYSC-3120 — Software Requirements Engineering 18

Qualities of Specifications II

• Consistency: lends itself to verifiable, testable, modifiable
specifications
– the specification is inconsistent if it is self-contradictory
=> More likely to be inconsistent as complexity grows, and

modifications are performed over time
• Completeness:

– Respond to all classes of inputs
– Internally complete, self-contained
– Complete set of requirements (captures all needs)
– Includes things the system must not do …

SYSC-3120 — Software Requirements Engineering 19

Quality Example [Lethbridge]
Restaurant Advisor System:
 “This system will allow people to choose a restaurant in a city.

Users enter one or more of the following criteria, and then the
system searches its database for suitable restaurants: food
type, price range, neighbourhood, size, service type (fast food,
cafeteria, buffet, full service), smoking arrangements (none
allowed, separately ventilated section, non-separately-ventilated
section). The user can also specify a desired day and time
period, and the number of people in their party. The system will
tap into the reservation database (of participating restaurants)
and only display restaurants that have available space. After
entering the criteria, the user clicks on “search” and the system
displays a list of matching restaurants. For restaurants that
participate in the automated reservation system, the user can
click on “reserve” next to a selection in order to make a
reservation.

Point out problems that you find in this
“short statement of functional requirements”

Restaurant Advisor System: quality deficiencies
• Duplication (ie. saying twice in two different ways) :

– System searches for suitable / System displays matching.
• Food type, price range, neighbourhood, size are inadequately defined.

– Are these taken from a fixed set of values, does a database contain free-form
information? Will it be standardized (to make searches easier)?

• Ambiguity in “reservation database” and “automated reservation
system”

– Same thing or not ?
• Unclear: It appears that some listed restaurants are not in the

reservation system/database.
– What does the system do with restaurants that are not participating ? Are they

omitted from the list?
• Unspecified: Can user select just one option or more than one option for

“type of food”, or smoking arrangement.
• Incomplete: If user selects “reserve”, there must be some way for the

system to record identifying information about the user so restaurant
knows who made it. This is omitted.
 SYSC-3120 — Software Requirements Engineering 20

SYSC-3120 — Software Requirements Engineering 21

The importance of organization and priority
Encounter game example [Braude, page 200]:
1. Every character in the Encounter video game shall have a name;
2. Every game character has the same set of qualities, each with a

floating point value;
3. Encounter shall take less than a second to compute the results of an

engagement;
4. Each area has a specified set of “qualities needed”;
5. When two Encounter game characters are in the same area at the

same time, they may either choose or be obliged by the game to
engage each other;

6. Every game character shall have an amount of life points;
7. The sum of the value of qualities of a game character relevant to the

area in question shall be referred to as the character’s area value. In
an engagement the system compares the area values of the
characters and computes the result of the engagement.

8. The name of any character shall have no more than 15 letters.

Deficiencies

• The organization and order will affect the readers’ understanding

• The Encounter game examples are a mix of:
– functional (behavioural) requirements (5 and 7)
– non-functional performance (3)

• Some naturally belong with related ones :
– some are about areas(4)
– some are about characters (1,2,6,8)
– some about engagement (3,5,7).

• Lack of organization:

– makes finding specific requirements hard (especially with big
systems)

– makes prioritizing hard.

SYSC-3120 — Software Requirements Engineering 22

SYSC-3120 — Software Requirements Engineering 23

The importance of precision
Before: Every area shall have a name of up to 15 characters.
After: Every area will have a unique name consisting of 1 to 15

characters. Acceptable characters shall consist of blanks, 0
through 9, a through z, and A through Z only.

Before: Every game character has the same set of qualities, each

have a floating point value. These are initialized to 100/n where
n is the number of qualities. The qualities are attention span,
endurance, intelligence, patience and strength.

After: Every game character has the same set of qualities. Each
quality shall be a nonnegative floating point number with at least
one decimal of precision. These are all initialized equally so that
the sum of their values is 100. The value of a quality cannot be
both greater than 0 and less than 0.5. For the first release, the
default qualities will be concentration, intelligence, patience,
stamina and strength. Qualities may be added or removed
during configuration, before any characters are created.

SYSC-3120 — Software Requirements Engineering 24

Software Requirements Elicitation and
Specification

• Fundamentals
– Motivation and Goals
– Requirement Engineering
– Functional vs. Non-Functional
– Defining Software System Scope
– Specifying a Use Case
– Use case relationships
– Pitfalls

• Requirements Elicitation Process
 (Requirements Elicitation Based on Use Cases and Scenarios (from

Bruegge and Dutoit, 2000))
• Documentation

SYSC-3120 — Software Requirements Engineering 25

Functional vs. Non-Functional

• Functional requirement:
– interaction between a system and its environment (e.g., UML actors)
– (independent from its implementation)

• Non-Functional requirement:
– restriction on the system that limits our choices for constructing a

solution
– e.g., memory, platform, real-time constraints.

• Non-Functional requirements have as much impact on the
system cost and development as functional requirements.

SYSC-3120 — Software Requirements Engineering 26

Types of NF Requirements

• Usability: the ease with which a user can learn to operate, prepare
inputs for, and interpret outputs of a system.

– Relates to the user interface—number of nested levels in menus, color
schemes …, online help, level of documentation …

• Dependability: the property of a system such that reliance can
justifiably be placed on the service it delivers. Includes reliability,
robustness, and safety.

• Reliability: the ability of a system to perform its required functions
under stated conditions for a specified period of time.

– Includes acceptable mean time to failure, the ability to detect specified faults
or withstand specified security attacks

• Robustness: the degree to which a system can function correctly in
the presence of invalid inputs or stressful environment conditions.

• Safety: A measure of the absence of catastrophic consequences to the
environment.

SYSC-3120 — Software Requirements Engineering 27

Types of NF Requirements (cont.)

• Performance: Quantifiable attributes of the system such as response
time, throughput, availability, accuracy.

• Response time: how quickly the system reacts to a user input.
• Throughput: how much work the system can accomplish within a

specified amount of time.
• Availability: the degree to which a system is operational and

accessible when required for use.
– E.g., an availability of 0.998 means that in every 1000 time units, the

system is likely to be available for 998 units.
• Accuracy: a quantitative measure of the magnitude of error.

SYSC-3120 — Software Requirements Engineering 28

Types of NF Requirements (cont.)

• Supportability: Requirements concerned with the ease of changes to
the system after deployment. Includes adaptability, maintainability.

• Adaptability: the ability to change the system to deal with additional
application domain concepts.

• Maintainability: the ability to change the system to deal with new
technology or to fix defects.

• In practice, NF requirements have to be prioritized by importance.
Some of them need to be met for the system to operate correctly.

SYSC-3120 — Software Requirements Engineering 29

Sommerville’s Classification

Non-functional
requirements

Product
requirements

Organizational
requirements

Implementation
requirements

Usability
requirements

Efficiency
requirements

Performance
requirements

Space
requirements

Reliability
requirements

Portability
requirements

Delivery
requirements

Standards
requirements

External
requirements

Interoperability
requirements

Ethical
requirements

Legislative
requirements

Privacy
requirements

Safety
requirements

SYSC-3120 — Software Requirements Engineering 30

Examples

• The product should identify an aircraft within 0.25 seconds
• The product should be used with poor lighting conditions and the

users will wear gloves
• The product should be easy to use with only one hand
• The system shall not disclose any personal information about

customers
• The product should be readily portable to the Linux operating

system.

SYSC-3120 — Software Requirements Engineering 31

What is usually not in the Requirements?

• System structure, implementation technology
• Development methodology
• Development environment
• Implementation language
• Reusability

• But in certain application domains, like airborne systems, military
systems, there are (international) standards to follow.

It is desirable that none of these are constrained by the client

SYSC-3120 — Software Requirements Engineering 32

Realistically

• Many requirements can only be clearly identified after some
experience with the system => incrementality

• Some amount of imprecision (“common knowledge”) is accepted
– e.g., what is a saving bank account in a given banking environment,

• Responsibility of users and software engineers to determine what
is acceptable.

SYSC-3120 — Software Requirements Engineering 33

NF Requirements Metrics examples

Property
• Speed

• Size

• Ease of use

• Reliability

• Robustness

• Portability

Metric
• Process transactions per second
• User/event response time
• Screen refresh time
• K Bytes
• Number of RAM chips
• Training time
• Number of help frames
• Mean time between failure (MTBF)
• Probability of unavailability
• Rate of failure occurrence
• Availability
• Time to restart after failure
• Percentage of events causing failure
• Probability of data corruption on failure
• Percentage of target dependent statements
• Number of target systems

Notice how each metric is a
quantifiable amount – a number
to be verified! Even portability

SYSC-3120 — Software Requirements Engineering 34

Software Requirements Elicitation and
Specifications

• Fundamentals
– Motivation and Goals
– Requirement Engineering
– Functional vs. Non-Functional
– Defining Software System Scope
– Specifying a Use Case
– Use case relationships
– Pitfalls

• Requirements Elicitation Process
 (Requirements Elicitation Based on Use Cases and Scenarios (from

Bruegge and Dutoit, 2000))
• Documentation

SYSC-3120 — Software Requirements Engineering 35

Defining the Software System Scope

• VERY important decision, huge consequences if wrong
• System Boundary: define activities and data IN the system
• Fundamental questions:

– What/who triggers the behaviour expected from the software?
– Should we implement the requirements or is the requested

functionality a responsibility of another system or a human?
• We need to know the context in which a system operates
• External entities:

– other systems, organizations, people, machines, device (sensor,
actuator), etc. that expect services/data from us or provide services
to us

• Input/Output data flows from/to external entities

SYSC-3120 — Software Requirements Engineering 36

Scope Example

• Web-based store: The system allows the purchase of items over the
web. When a purchase it made, inventory is checked and updated and
the total cost is computed. Because it is web-based, foreign purchases
may be made, requiring the cost to be computed in the foreign currency
using that day’s currency exchange rate.

• Two databases can be envisioned:
– Inventory/price database: For each item, number available and price
– Google’s currency exchange database

• Question: Define the scope of the system. In particular, are the

databases inside or outside the system ? Answer:
– Google’s currency exchange database is outside the system (i.e., an actor)
– Inventory/price database is internal

• however, the DBMS used to implement it is not part of the system,
• only the schema definition and DB queries are part of the system.

Software System Scope in UML—Use Case
Diagram

SYSC-3120 — Software Requirements Engineering 37

Staff Contact

System or subsystem boundary Actor

Communication between
the actor and the system

Use case

Defining Software System Scope

• Defines what is IN the software system
– Defines what is OUT of the software system

• Defines what is the responsibility of the software
• Defines what the engineers have to build
• Can be a binding (legal) description of the software system

SYSC-3120 — Software Requirements Engineering 38

SYSC-3120 — Software Requirements Engineering 39

Software Requirements Elicitation and
Specifications

• Fundamentals
– Motivation and Goals
– Requirement Engineering
– Functional vs. Non-Functional
– Defining Software System Scope
– Specifying a Use Case
– Use case relationships
– Pitfalls

• Requirements Elicitation Process
 (Requirements Elicitation Based on Use Cases and Scenarios (from

Bruegge and Dutoit, 2000))
• Documentation

Use Case [Cockburn]

• A use case captures a contract between the stakeholders of a
system about the system behaviour.
– What the actor expects from, sends to the system
– What the system ensures to, expects form the actor

• A use case describes the system’s behaviour under various
conditions as the system responds to a request from one of the
stakeholders, called the primary actor.
– The primary actor has a goal with the software system

• The system responds, protecting the interests of all the
stakeholders (not all stakeholders are actors)

• Different behaviours (i.e., scenarios) can unfold
– Including descriptions of what may go wrong

SYSC-3120 — Software Requirements Engineering 40

Use Cases and Actors

• A primary actor has a goal with the software system
• The system has a responsibility: to achieve the goal of the

primary actor
• The system formulates sub-goals to carry out its responsibility

– Some sub-goals can become other use cases (carried out internally)
– Some sub-goals can be achieved with the help of another

(secondary) actor (carried our externally)
• Recall the fundamental question: Should we implement the requirements

or is the requested functionality a responsibility of another system or a
human?

SYSC-3120 — Software Requirements Engineering 41

Use Case Scope/Extent

• How much does a use case describe?
– How many things are done in a use case
– How many scenarios?
– How many steps?

• Answer: what is the actor’s goal? [Cockburn]
• A use case usually passes the one person, one sitting test

– Can the primary actor go away happy after the use case finishes?
– Coffee break test: “after I get done with this, I can take a coffee

break”
– 2-20mn long to follow the steps of a use case.

SYSC-3120 — Software Requirements Engineering 42

Login in is not a system behaviour that is that much
interesting to stakeholders (from a functional point of
view). However, this is a behaviour the system will need
to exhibit, and this will therefore be a use case.

Use Case Scope/Extent (cont.)

• Some (potential) use cases do not pass this test, and should not
count as user goals:
– Use Case "Complete an on-line auction purchase“

• On-line auctions take several days, so fail the single-sitting test.
• This long “goal” should be split: e.g., making the auction publicly

available, making a bid, changing a bid, selecting the “winner”
– Use Case "Log on“

• Logging on 42 times in a row does not (usually) satisfy the
person’s job responsibilities or purpose in using the system.

• Instead
– Use Case "Register a new customer"

• Registering 42 new customers has some significance to a sales
agent.

– Use Case "Buy a book"
• A book purchase can be completed in a single sitting.

 SYSC-3120 — Software Requirements Engineering 43

SYSC-3120 — Software Requirements Engineering 44

Specifying a Use Case (template)

Use case are described by following template descriptions, which
typically include the following sections (many different templates exist):

• Use Case Name
• Brief Description
• Precondition
• Primary Actor
• Secondary Actors
• Dependencies to other use cases
• Basic Flow
• Alternative Flows: Specific, Bounded, Global Alternative Flows
• Special requirements
• Technology and data variations
• Open issues

SYSC-3120 — Software Requirements Engineering 45

Specifying a Use Case (cont.)

Use case name:
• Should be a verb phrase denoting what the actor is trying to accomplish

(goal)
• Should reflect the perspective of the actor

– E.g., “perform withdrawal” instead of “record withdrawal”

Precondition
• States what must always be true before any scenario of the use case

begins.
Primary Actor

– The principal actor that initiates the use case.
Secondary Actors

– The secondary actors that the system relies on to accomplish some of
the sub-goals.

Dependencies to other use cases (see later)
– <<include>> and <<exclude>> relationships between use cases.
– Generalization relationship between use cases.

SYSC-3120 — Software Requirements Engineering 46

Specifying a Use Case (cont.)

Basic Flow
– Describes a typical success path that satisfies the interests of the

stakeholders. It often does not include any conditions or branching.
– A step can be one of the following interactions:

1. Primary actor system: the primary actor sends a request and data
to the system.

2. System system: the system validates a request and data.
3. System system: the system alters its internal state (e.g., recording

or modifying something)
4. System secondary actor: the system sends requests to a

secondary actor.
– The first step (outside this classification) often indicates the trigger event

that starts the scenario.
– All steps are numbered sequentially:

1. <description of first step>
2. <second step> …

– Use active voice only
– Postcondition: what should be true after the basic flow has executed.

SYSC-3120 — Software Requirements Engineering 47

Specifying a Use Case (cont.)

Alternative flows
– Describe all the other scenarios or branches, both success and failure.

An alternative flow always depends on a condition occurring in a
specific step in a flow of reference, referred to as reference flow step
(RFS), and that reference flow is either the basic flow or an alternative
flow itself.

– All action steps are numbered sequentially.
– Each alternative flow must have a postcondition.

Three types of alternative flows:
– Specific alternative flow: an alternative flow that refers to a specific

step in the reference flow (either a main flow or another alternative flow).
– Bounded alternative flow: an alternative flow that refers to more than

one step in the reference flow–consecutive steps or not.
– Global alternative flow: an alternative flow that refers to any step in the

reference flow.

SYSC-3120 — Software Requirements Engineering 48

Specifying a Use Case (cont.)

Special Requirements
– If a non-functional requirement, quality attribute, or constraint relates

specifically to the use case, list it here.
Technology and Data Variation

– Foreseeable technology changes are listed
• E.g., providing credit account input using a card reader and the

keyboard
– Foreseeable input type variations

• E.g., metric vs. imperial
– The list can refer to steps in the basic or alternate flows.

Open issues
– Lists what remains to be clarified with stakeholders

• E.g., terminology.

Specifying a Use Case (cont.)—possible layout

SYSC-3120 — Software Requirements Engineering 49

Specifying a Use Case (cont.)

• See example of the report emergency use case (pdf file).
• See example of the withdraw funds use case (pdf file).

SYSC-3120 — Software Requirements Engineering 50

Specifying a Use Case (restricting the use of English)

• The subject of a sentence should be “the system” or an actor.
– The card has been ejected. (passive voice)
– The system ejects the ATM card. (active voice)

• Describe the flow of events sequentially (a use case describes
what should happen).

• Actor-to-actor interactions are not allowed (these interactions are
not supported by the software you specify, are they?).
– The customer gives the teller the ATM card.
– The customer inserts the ATM card into the card reader.

• Describe one action per sentence.
• Use present tense only.

– The system ejected the card.
– The system ejects the card.

• Use active voice rather than passive voice.
– The card is ejected.
– The system ejects the card.

SYSC-3120 — Software Requirements Engineering 51

Specifying a Use Case (cont.)

• Clearly describe the interaction between the system and actors
without omitting its sender and receiver.
– Customer enters PIN.
– ATM customer enters PIN number to the system.

• Use declarative sentence only. “Is the system idle?” is a non-
declarative sentence.
– Ejects the card.
– The system ejects the card.

• Use words in a consistent way. Keep one term to describe one
thing.
– Customer inserts the ATM card…
– ATM customer inserts the ATM card…

• Don’t use modal verbs (e.g., might) nor adverbs (e.g., very)
– The system might eject the card. The system likely ejects the

card.
– The system ejects the card. The system ejects the card

SYSC-3120 — Software Requirements Engineering 52

Specifying a Use Case (cont.)

• Use simple sentences only. A simple sentence must contain only
one subject and one predicate.
System displays customer accounts and prompts customer for

transaction type…
1. The system displays ATM customer accounts.
2. The system prompts ATM customer for …

• Don’t use negative adverb and adjective (e.g., hardly, never), but
it is allowed to use not or no.
– The PIN number has never been validated.
– The PIN number has not been validated

• Don’t use pronouns (e.g. he, this, it)
– …it reads the card number.
– …the system reads the card number.

• Don’t use participle phrases as adverbial modifier.
– ATM is idle, displaying a Welcome message.
– The system is idle. The system is displaying a Welcome message.

SYSC-3120 — Software Requirements Engineering 53

Specifying a Use Case (cont.)

• INCLUDE USE CASE = including another use cases.
– Grammar

• INCLUDE USE CASE <included use case name>
– Example:

• Include ValidatePIN use case.
• INCLUDE USE CASE ValidatePIN

• EXTENDED BY USE CASE = extension by another use case.
– Grammar

• EXTENDED BY USE CASE <extending use case>
– Example:

• Use case CreateIncident extends the current use case.
• EXTENDED BY USE CASE CreateIncident

SYSC-3120 — Software Requirements Engineering 54

Specifying a Use Case (cont.)

• RFS = reference flow step (number(s))
– Grammar

• RFS <reference flow step #> (specific alternative flow)
• RFS <reference flow step numbers> (bounded alternative flow)
• Not required for global alternative flow.

– Explanation
• One specific or bounded alternative flow must correspond to exactly one or

more than one reference flow steps.
– Example:

• RFS Basic Flow 5 …
• RFS Basic Flow 5-7, 10, 14 …

• IF, THEN, ELSE, ELSEIF, and ENDIF = conditional logic.
– Grammar

• IF <condition> THEN <steps> ENDIF
• IF <condition> THEN <steps> ELSE <steps> ENDIF
• IF <condition> THEN <steps> ELSEIF <condition> THEN <steps> ENDIF

– Example:
IF the system recognizes the ATM card, THEN the system reads the ATM

card number, ENDIF.

SYSC-3120 — Software Requirements Engineering 55

Specifying a Use Case (cont.)

• MEANWHILE = concurrency.
– Grammar

• <action> MEANWHILE <action>
– Example:

• the system cancels the transaction and ejects the card.
• the system cancels the transaction MEANWHILE the system ejects the

card.
• VALIDATES THAT = a condition is evaluated.

– Grammar
• VALIDATES THAT <condition>

– Explanation
• a condition is evaluated and must be true to proceed to the next step.
• the alternative case (the condition does not hold) must be described in a

corresponding alternative flow (BFS).
– Example:

• the system checks whether the user-entered PIN…
• the system VALIDATES THAT the user-entered PIN…

SYSC-3120 — Software Requirements Engineering 56

Specifying a Use Case (cont.)

• DO … UNTIL = iteration.
– Grammar

• DO <steps> UNTIL <condition >
– Explanation

• Following keyword DO is a sequence of steps. Following keyword UNTIL is
a loop ending condition.

– Example:
1. DO
2. action1
3. action2
4. UNTIL condition

• ABORT = an exceptionally exit action.
– Grammar

• ABORT
– Explanation

• Used in alternative flows, iterative, and conditional logic sentences. It
means the ending of a use case.

• An alternative flow ends either with ABORT or RESUME STEP.

SYSC-3120 — Software Requirements Engineering 57

Specifying a Use Case (cont.)

• RESUME STEP = an alternative flow goes back to its
corresponding basic flow.
– Grammar

• RESUME STEP <basic flow step #>
– Explanation

• Used in alternative flows.

SYSC-3120 — Software Requirements Engineering 58

Specifying a Use Case (summary)

• Template + Restrictions =
– Facilitates communication between stakeholders (fewer ambiguities)
– Facilitates subsequent phases in development

• Requirements are used in many phases and ought to be correct and
understandable

– Facilitates automation!
• Checking consistency
• Producing documentation
• Producing glossary of terms (domain)
• Generating analysis document (first draft)
• …

SYSC-3120 — Software Requirements Engineering 59

SYSC-3120 — Software Requirements Engineering 60

Software Requirements Elicitation and
Specifications

• Fundamentals
– Motivation and Goals
– Requirement Engineering
– Functional vs. Non-Functional
– Defining Software System Scope
– Specifying a Use Case
– Use case relationships
– Pitfalls

• Requirements Elicitation Process
 (Requirements Elicitation Based on Use Cases and Scenarios (from

Bruegge and Dutoit, 2000))

• Documentation

SYSC-3120 — Software Requirements Engineering 61

• Used to:
– Decompose larger/longer use case
– Share functionalities
– The included use case is always triggered when the base use case

is.
– The base use case delegates (sub)goals to the included use case

• Example:
– The use case ViewMap describes behaviour that can be used by the

use case OpenIncident and the use case AllocateResources

Base Use
Case

OpenIncident

AllocateResources

ViewMap

<<include>>

<<include>>

<<include>>

SYSC-3120 — Software Requirements Engineering 62

<<extend>>

• Problem:
– The functionality in the original problem statement needs to be

extended to account for exceptional flow of events.
• Solution:

– An extend association from (direction of the arrow head) a use case
A to a use case B indicates that use case A is an extension of use
case B.

– This specifies that use case A is triggered when use case B executes
only under some condition

ReportEmergency ConnectionDown
<<extend>>

Base Use
Case

Use case generalization

• A (base) use case can be specialized by another use case
• No much use!

– “Use case experts have been successfully doing use case work without this
optional relationship […] and there is not yet agreement by practitioners on
the best-practice guidelines of how to get value from this idea.” [Larman]

SYSC-3120 — Software Requirements Engineering 63

Example I

SYSC-3120 — Software Requirements Engineering 64

PlaceOrder

<<include>>

PlaceRushOrder

ValidateUser

TrackOrder <<include>>

<<extend>>

SYSC-3120 — Software Requirements Engineering 65

Example II

open_account

withdraw_cash

loan_application

clear_checks

get_report

Customer

Manager

Loan Officer

Clerk

Cash Dispenseropen_account

withdraw_cash

loan_application

clear_checks

get_report

Customer

Manager

Loan Officer

Clerk

Cash Dispenser

Banking System

SYSC-3120 — Software Requirements Engineering 66

Software Requirements Elicitation and
Specifications

• Fundamentals
– Motivation and Goals
– Requirement Engineering
– Functional vs. Non-Functional
– Defining Software System Scope
– Specifying a Use Case
– Use case relationships
– Pitfalls

• Requirements Elicitation Process
 (Requirements Elicitation Based on Use Cases and Scenarios (from

Bruegge and Dutoit, 2000))

• Documentation

SYSC-3120 — Software Requirements Engineering 67

Common mistake : Identifying wrong actor

• Consider a purchase system for any kind of store (Sears, Leons,
AMC Theatre, MacDonald’s). Customers give the cashier their
order. The cashier enters the selection (the item’s bar code, the
selected movie, the number of Big Macs) and the system
calculates the total.

Customer Cashier Purchase System

• The customer gives payment (debit/credit card) and the
transaction is complete.

Nowhere in the description above the customer
is said to interact with the system

Customer Cashier Purchase System

SYSC-3120 — Software Requirements Engineering 68

<<Include>>: Functional Decomposition
• Problem:

– A function in the original problem statement is too complex to be solvable
immediately

• Solution:
– Describe the function as the aggregation of a set of simpler functions. The

associated use case is decomposed into smaller use cases

ManageIncident

CreateIncident HandleIncident CloseIncident

<<include>> <<include>>
<<include>>

• However: remember the “one person, one sitting” test?
CreateIncident

HandleIncident

CloseIncident

SYSC-3120 — Software Requirements Engineering 69

Discussion : <<include>> as Functional
Composition

doX

login

A typical login situation

doY

doZ

doX

login

doY

doZ

Neither is right or wrong.
Instead, they mean different things.

<<include>>

<<include>>

<<include>>

SYSC-3120 — Software Requirements Engineering 70

In What Order Do Use Cases Execute?

• For each actor, we identify what that actor wants to do with the system.
– Each of these things that the actor wants to do with the system

become a Use Case.
– E.g., an actor wants to perform tasks A, B, C, and D with the system.

• This leads to 4 different use cases, all triggered by the actor.
• But perhaps, A is always being triggered before the other three?

• This cannot be modeled by a use case diagram!

• Solution: UML Activity diagram (mentioned in Bruegge&Dutoit)

– Activities are use cases.
– Swimlanes can be actors or domain objects (data manipulated in use cases)
– Activity diagram notation: conditions, loops, fork/join …

SYSC-3120 — Software Requirements Engineering 71

Use Case Order: The Library Example

SYSC-3120 — Software Requirements Engineering 72

Software Requirements Elicitation and
Specifications

• Fundamentals
• Requirements Elicitation Process

 (Requirements Elicitation Based on Use Cases and Scenarios
(from Bruegge and Dutoit, 2000))

– Identifying actors
– Identifying scenarios
– Identifying use cases
– Identifying non-functional requirements
– Refining use cases
– Relationships between use cases
– Summary

• Documentation

SYSC-3120 — Software Requirements Engineering 73

Use Case Model

• Define system functional requirements in terms of Actors and
Use Cases
– Each use case defined in terms of sequences of interactions

between Actor and System
• Structured narrative description, sequence diagram

– Basic sequences
• Most common sequences

– Alternative sequences
• Error conditions

• Use case associations (include, extend)

SYSC-3120 — Software Requirements Engineering 74

Requirements Elicitation Activities

1. Identify actors
• Identify the different types of users of the future system

2. Identify scenarios
• Identify scenarios for typical functionalities

3. Identify use cases
• Abstract scenarios into use cases

4. Identify nonfunctional requirements
• Identify aspects visible to the user but not directly related to

functionalities
5. Refine use cases

• Is the system specification complete (e.g., exceptional conditions)
6. Identify relationships among use cases

• Consolidate the use case model by eliminating redundancies

SYSC-3120 — Software Requirements Engineering 75

1. Identify Actors

• Can be human or external system, device
• Define system boundaries
• Find all stakeholders
• May correspond to roles in an organization
• Need to differentiate roles only when they access different

functionality
• Classes of functionality

SYSC-3120 — Software Requirements Engineering 76

Questions to Ask

• Which user groups are supported by the system to perform their
work?

• Which user groups execute the system’s main functions?
• Which user groups perform secondary functions, such as

maintenance and administration?
• Will the system interact with any external hardware or software

system?

SYSC-3120 — Software Requirements Engineering 77

FRIEND: Accident Management System

• It is a distributed information system for managing accidents. It
allows dispatchers and authorities to communicate and allocate
resources to an emergency.

• Problem: Long list of potential actors
– Firefighters, police officers, dispatchers, investigators, …

• We need to consolidate the list into a small number of actors who
are different from the point of view of the system usage
– A firefighter and a field police officer share the same interface, both

involved with a single incident on the field
– Dispatcher manages multiple concurrent incidents and requires

access to more information

FieldOfficer Dispatcher FRIEND

SYSC-3120 — Software Requirements Engineering 78

2. Identify scenarios

Bridging the gap between the user and the developer
• Scenarios: Example of the use of the system in terms of a series

of interactions between an actor and the system
• Use cases: Abstraction that describes a class of scenarios (e.g.,

end user functionalities)

SYSC-3120 — Software Requirements Engineering 79

Scenarios

• “A narrative description of what people do and experience as
they try to make use of computer systems and applications” [M.
Carrol, Scenario-based Design, Wiley, 1995]

• A concrete, focused, informal description of a single feature of
the system used by a single actor.

• Readily understandable by clients and users

• Developers and users write and refine a series of scenarios in
order to gain a shared understanding of what the system should
be.
– Iterative process.

SYSC-3120 — Software Requirements Engineering 80

Heuristics for finding Scenarios

• Ask yourself or the client the following questions:
– What are the primary tasks that the system needs to perform?
– What data will the actor create, store, change, remove or add in the

system?
– What external changes / events does the system need to know

about?
– What changes or events will the actor of the system need to be

informed about?

• Insist on task observation if a system already exists
– Ask to speak to the end user, not just to the software contractor
– Expect resistance and try to overcome it

• Sources of information:
– User manuals of previous systems, procedure manuals, company

standards, user and client interviews

SYSC-3120 — Software Requirements Engineering 81

FRIEND Scenario: Warehouse on Fire

• Scenario:
– A fire is detected in a warehouse; two field officers arrive at the scene and

request resources
• Source of information:

– Observation or discussions with actual, future users of the system about how
they would use the system (or are using the current system) in certain
circumstances

• Details:
– Bob, driving down main street in his patrol car notices smoke coming out of a

warehouse. His partner, Alice, reports the emergency from her car.
– Alice enters the address of the building, a brief description of its location (i.e.,

north west corner), and an emergency level. In addition to a fire unit, she
requests several paramedic units on the scene given that the area appears to
be relatively busy. She confirms her input and waits for an acknowledgment.

– John, the Dispatcher, is alerted to the emergency by a beep of his
workstation. He reviews the information submitted by Alice and acknowledges
the report. He allocates a fire unit and two paramedic units to the Incident site
and sends their estimated arrival time (ETA) to Alice.

– Alice received the acknowledgment and the ETA.

SYSC-3120 — Software Requirements Engineering 82

Observations about Warehouse on Fire Scenario

• Concrete scenario
– Describes a single instance of reporting a fire incident.
– Does not describe all possible situations in which a fire can be

reported.
• Participating actors

– Bob, Alice: Field officer (Primary Actor)
– and John, Dispatcher (Other stakeholder)

SYSC-3120 — Software Requirements Engineering 83

FRIEND: Other Scenarios

• FenderBender:
– A car accident without casualties occurs on the highway.
– Police officers document the incident and manage traffic while the

damaged vehicles are towed away.
• Earthquake:

– An unprecedented earthquake seriously damages buildings and
roads, spanning multiple accidents and triggering the activation of the
statewide emergency operations plan.

Objective of defining scenarios:
– shared understanding of the user work processes that need to be

supported
– understanding of the scope of the system.

Next step: Scenarios have now to be formalized into use cases

SYSC-3120 — Software Requirements Engineering 84

3. Identify Use Cases

• A scenario is an instance (or a realization) of a use case
• A use case specifies all possible scenarios for a given piece of

functionality
– Find hints for a use case in the scenario descriptions, e.g., “Report

Emergency “ in the first paragraph of the scenario is a candidate for
a use case

– Report Emergency accounts for all possible scenarios, i.e.,
Warehouse on fire, FenderBender, Earthquake etc.

• A use case is always initiated by an actor but may interact with
other actors as well

• A use case is a complete flow of events through the system

SYSC-3120 — Software Requirements Engineering 85

Steps in Formulating a Use Case (I)

• First name the use case
– Use case name: ReportEmergency

• Then find the actors
– Generalize the concrete names (“Bob”) to participating actors (“Field

officer”)
– Participating Actors: ReportEmergency

• Field Officer (Initiator)
• Dispatcher

• Then concentrate on the flow of events
• Pre and post conditions

SYSC-3120 — Software Requirements Engineering 86

Formulate the Flow of Events

1. The FieldOfficer activates the “Report Emergency” function on her
terminal.

2. FRIEND responds by presenting a form to the officer.

3. The FieldOfficer fills the form, by selecting the emergency level,
type, location, and brief description of the situation. The
FieldOfficer also describes possible responses to the emergency
situation. Once the form is completed, the FieldOfficer submits the
form

4. FRIEND receives the form and notifies the Dispatcher.

5. The Dispatcher reviews the submitted information and creates an
incident in the database by invoking the OpenIncident use case. The
Dispatcher acknowledges the emergency report and selects a
response.

SYSC-3120 — Software Requirements Engineering 87

Entry and Exit Conditions

• Precondition:
– The FieldOfficer is logged into FRIEND

• Post-condition:
– The FieldOfficer has received an acknowledgement and the

selected response from the Dispatcher, OR
– The FieldOfficer has received an explanation indicating why the

transaction could not be processed

SYSC-3120 — Software Requirements Engineering 88

Steps in formulating a use case (II)

• Write down the exceptions:
– The FieldOfficer is notified immediately if the connection

between her terminal and the central is lost.
– The Dispatcher is notified immediately if the connection between

any logged in FieldOfficer and the central is lost.
• Identify and write down any quality (NF) requirement:

– The FieldOfficer’s report is acknowledged within 30 seconds.
– The selected response arrives no later than 2 minutes after it is sent

by the Dispatcher.

SYSC-3120 — Software Requirements Engineering 89

Writing Guidelines (I)

• Use cases should be named with verb phrases. The name of the
use case should indicate what the user is trying to accomplish
– e.g., ReportEmergency, OpenIncident.

• Actors should be named with noun phrases
– e.g., FieldOfficer, Dispatcher, Victim.

• The boundary of the system should be clear: Steps accomplished
by the actor and steps accomplished by the system should be
distinguished.

• Use case steps in the flow of events should be phrased in the
active voice. This makes it explicit who accomplished the step.

SYSC-3120 — Software Requirements Engineering 90

Writing Guidelines (II)

• The causal relationship between successive steps should be clear.
• A use case should describe a complete user transaction

– e.g., the ReportEmergency use case describes all the steps between
initiating the emergency reporting and receiving an acknowledgement).

• Exceptions and alternative flows should be described separately.
• A use case should not describe the user interface of the system. This

takes away the focus from the actual steps accomplished by the user
and is better addressed with visual mockups

– e.g., the ReportEmergency only refers to the “Report Emergency”
function, not the menu, the button, nor the actual command that corresponds
to this function.

• A use case should not exceed two or three pages in length. Otherwise,
use include and extends relationships to decompose it in smaller use
cases.

SYSC-3120 — Software Requirements Engineering 91

4. Identify Non-Functional (NF) Requirements

• User-visible aspects of the system that are not directly related to
the functional behavior of the system

• It is important to be systematic when eliciting quality
requirements.

• Use template questions.
– See examples on next slides.
– Standards (IEEE, DoD) also help with this.

• Template questions for:

– Usability
– Performance
– Reliability

SYSC-3120 — Software Requirements Engineering 92

Template Questions for NF Requirements

Usability
• What is the level of expertise of the user?
• What are the user interface standards familiar to the user?
• What documentation should be provided to the user?

SYSC-3120 — Software Requirements Engineering 93

Template Questions for NF Requirements (II)

Performance
• How responsive should the system be?
• Are there user tasks that are time critical?
• How many concurrent users should it support?
• How large is a typical data store for comparable systems?
• What is the worse latency that is acceptable for users?

SYSC-3120 — Software Requirements Engineering 94

Template Questions for NF Requirements (III)

Reliability
• How reliable, available, robust should the system be?
• Is restarting the system acceptable in the event of a failure?
• How much data can the system loose?
• How should the system handle exceptions?
• Are there safety requirements on the system?
• Are there security requirements on the system?

SYSC-3120 — Software Requirements Engineering 95

5. Refining Use Cases

• Precision, correctness and completeness and consistency
• Expect Use Cases to change a lot and have many iterations
• Scenarios and user interface mock-ups can be used to help

exploration and validation
• Links to other use cases (AllocateResources in FRIEND)
• ReportEmergency:

– Include details about the type of incident known to FRIEND
– Detail how the Dispatcher acknowledges the report of the
FieldOfficer

SYSC-3120 — Software Requirements Engineering 96

Refinement Example (I)

1. The FieldOfficer activates the “Report Emergency” function on her
terminal.

2. FRIEND responds by presenting a form to the FieldOfficer. The
form includes an emergency type menu (general emergency, fire,
transportation), a location, incident description, resource request, and
hazardous material fields.

3. The FieldOfficer fills the form specifying minimally the emergency
type and description fields. The FieldOfficer may also describe
possible responses to the emergency situation and request specific
resources. Once the form is completed, the FieldOfficer submits
the form.

4. FRIEND receives the form and notifies the Dispatcher.

SYSC-3120 — Software Requirements Engineering 97

Refinement Example (II)

5. The Dispatcher reviews the submitted information and creates an
incident in the database by invoking the OpenIncident use case. All
the information contained in the FieldOfficer’s form is
automatically included in the incident. The Dispatcher selects a
response by allocating resources to the incident (with the
AllocateResources use case) and acknowledges the emergency
report by sending a short message to the FieldOfficer.

6. The FieldOfficer receives the acknowledgment and the selected
response.

SYSC-3120 — Software Requirements Engineering 98

Use Case Diagram for FRIEND

FRIEND

Field Officer Dispatcher

Report
Emergency

Open Incident

Allocate
Resources

<<initiates>>

SYSC-3120 — Software Requirements Engineering 99

6. Identify relationships among use cases

• Even simple systems have a lot of use cases
• Use case dependency = relationship between use cases
• Goal: Reduce complexity, Increase understandability, maximize reuse of

use cases
• Important relationships:

– Extend
• A use case extends another use case (separate exceptional and

common flows of events)
– Include

• A use case uses another use case (“functional decomposition”)
– Generalization

• “Use case experts have been successfully doing use case work
without this optional relationship […] and there is not yet
agreement by practitioners on the best-practice guidelines of how
to get value from this idea.” [Larman]

SYSC-3120 — Software Requirements Engineering 100

ConnectionDown

 The ConnectionDown use case extends ReportEmergency
when the connection between the FieldOfficer and the
Dispatcher is lost.

1.The FieldOfficer and the Dispatcher are notified that the
connection is broken. They are advised of the possible reasons
why such an event occur (e.g., going through a tunnel).

2.The situation is logged by the system and recovered when the
connection is reestablished.

3.The FieldOfficer and the Dispatcher enter in contact
though other means and the Dispatcher initiates
ReportEmergency from the Dispatcher station.

SYSC-3120 — Software Requirements Engineering 101

Summary

• Scenarios and Use Cases is one way to document and formalize
requirements in a form which is understandable by users and
clients

• Scenarios are the basis to derive Use Cases
• Use Cases relationships can be used to simplify the use case

model: extend, include
• They are modeled as stereotypes of UML dependencies
• Other relationships could be imagined: sequential dependencies

…

SYSC-3120 — Software Requirements Engineering 102

Tips from Authors
• Lethbridge:

– A use case should describe the user’s interaction with the system,
not the computations the system performs.

– A use case should be written to be as independent as possible from
any particular user interface design.

• No: Push the Open button
• Yes: Choose the Open command.

– In general, a use-case should cover the full sequence of steps from
the beginning of a task until the end.

• Fowler: Although use cases have been around for a while, there’s been
little standardization on their use. The UML is silent on the important
contents of a use case and has standardized only the much less
important diagrams. As a result, you can find a divergent range of
opinions on use cases.

• Breugge & Dutoit : Do not overstructure the use case model. A few
longer use cases (eg. 2 pages long) are easier to understand and review
than many short ones (eg. ten lines long)

SYSC-3120 — Software Requirements Engineering 103

Advantages of using Use-Cases

• Helps define the scope of the system (what it does and does not
do)

• Can be used as part of the development plan
– # use cases is an indicator of project size
– progress can be measured by % use cases completed

• Form the basis of definition of test cases
• Can be used to structure user manuals

SYSC-3120 — Software Requirements Engineering 104

Disadvantages of Use-Cases

1) Use cases themselves must be validated

2) Some aspects of functional requirements may not be covered
by use case analysis, only those triggered by an actor.
– Automatic cleaning of a database to remove outdated information

may not appear in user’s use-case
– Solution: Have different packages of use-case, for different

stakeholders – user vs. maintainer.
3) When software requirements are derived from use-cases, the

software tends simply to mirror the way users worked BEFORE
the software was developed. Innovative solution may not be
considered.

SYSC-3120 — Software Requirements Engineering 105

Software Requirements Elicitation and
Specifications

• Fundamentals
• Requirements Elicitation Process

 (Requirements Elicitation Based on Use Cases and Scenarios
(from Bruegge and Dutoit, 2000))

• Documentation

SYSC-3120 — Software Requirements Engineering 106

Requirements Definition document

• Defines system to be built from the customer’s perspective
• Customer needs to understand the document
• Basis of contract between customer and system developer
• Requirements ought to be complete and consistent!!!

SYSC-3120 — Software Requirements Engineering 107

Software requirements document

• Cover page
• Introduction
• Functional requirements specification
• Nonfunctional requirements (e.g. standards to be met, platform,

memory requirements)
• Glossary

SYSC-3120 — Software Requirements Engineering 108

Software requirements document cover page

• Name of the project/product
• Date
• Version number
• Author(s)
• Responsibilities of every author
• Key changes since last version

SYSC-3120 — Software Requirements Engineering 109

Format and Style

• Modifiability
– Well-structured, indexed, cross-referenced
– Little and explicit redundancy

• Traceability
– Backwards, e.g., stakeholder, document
– Forwards, e.g., to design, test plan

• Useful annotations: levels of necessity, stability

SYSC-3120 — Software Requirements Engineering 110

Review - questions

• Important interfaces described?
• Major functions within scope?
• Design constraints realistic?
• Technological risk considered?
• Clear validation criteria stated?
• Do inconsistencies, omissions, redundancy exist?

SYSC-3120 — Software Requirements Engineering 111

Review - guidelines

• Lookout for persuasive connectors (certainly, therefore,
obviously,….)

• Watch for vague terms (some, often, usually,….)
• Lists complete (no etc., such as,…)
• Check the use of terms: always the same meaning in document?
• Beware ambiguity and vague statements (e.g., undefined

terminology)

SYSC-3120 — Software Requirements Engineering 112

Standards

• IEEE-STD-830-1993.
– IEEE Recommended Practice for Software Requirements

Specifications
• MIL-STD-498.

– Military Standard for Software Development and Documentation.
• DO-178B.

– Promotes traceability between high-level requirements down to code
statements (airborne systems)

Similar standards exist for public transportation (train), power plants

…

	SYSC-3120 —Software Requirements Engineering
	Software Requirements Elicitation and Specification
	What is a Requirement ?
	Stating requirements
	Motivations and Goals (I)
	Verification and Validation
	Motivations and Goals (II)
	Surveys
	Software Requirements Elicitation and Specification
	Requirements Engineering
	Sources of Requirements
	Users of the Requirements (Sommerville, 2000)
	Products of Requirements Process
	Requirements Elicitation - Objectives
	Why is Requirements Elicitation hard?
	Techniques for Requirement Elicitation
	Qualities of Specifications I
	Qualities of Specifications II
	Quality Example [Lethbridge]
	Restaurant Advisor System: quality deficiencies
	The importance of organization and priority
	Deficiencies
	The importance of precision
	Software Requirements Elicitation and Specification
	Functional vs. Non-Functional
	Types of NF Requirements
	Types of NF Requirements (cont.)
	Types of NF Requirements (cont.)
	Sommerville’s Classification
	Examples
	What is usually not in the Requirements?
	Realistically
	NF Requirements Metrics examples
	Software Requirements Elicitation and Specifications
	Defining the Software System Scope
	Scope Example
	Software System Scope in UML—Use Case Diagram
	Defining Software System Scope
	Software Requirements Elicitation and Specifications
	Use Case [Cockburn]
	Use Cases and Actors
	Use Case Scope/Extent
	Use Case Scope/Extent (cont.)
	Specifying a Use Case (template)
	Specifying a Use Case (cont.)
	Specifying a Use Case (cont.)
	Specifying a Use Case (cont.)
	Specifying a Use Case (cont.)
	Specifying a Use Case (cont.)—possible layout
	Specifying a Use Case (cont.)
	Specifying a Use Case (restricting the use of English)
	Specifying a Use Case (cont.)
	Specifying a Use Case (cont.)
	Specifying a Use Case (cont.)
	Specifying a Use Case (cont.)
	Specifying a Use Case (cont.)
	Specifying a Use Case (cont.)
	Specifying a Use Case (cont.)
	Specifying a Use Case (summary)
	Software Requirements Elicitation and Specifications
	<<include>>
	<<extend>>
	Use case generalization
	Example I
	Example II
	Software Requirements Elicitation and Specifications
	Common mistake : Identifying wrong actor
	<<Include>>: Functional Decomposition
	Discussion : <<include>> as Functional Composition
	In What Order Do Use Cases Execute?
	Use Case Order: The Library Example
	Software Requirements Elicitation and Specifications
	Use Case Model
	Requirements Elicitation Activities
	1. Identify Actors
	Questions to Ask
	FRIEND: Accident Management System
	2. Identify scenarios
	Scenarios
	Heuristics for finding Scenarios
	FRIEND Scenario: Warehouse on Fire
	Observations about Warehouse on Fire Scenario
	FRIEND: Other Scenarios
	3. Identify Use Cases
	Steps in Formulating a Use Case (I)
	Formulate the Flow of Events
	Entry and Exit Conditions
	Steps in formulating a use case (II)
	Writing Guidelines (I)
	Writing Guidelines (II)
	4. Identify Non-Functional (NF) Requirements
	Template Questions for NF Requirements
	Template Questions for NF Requirements (II)
	Template Questions for NF Requirements (III)
	5. Refining Use Cases
	Refinement Example (I)
	Refinement Example (II)
	Use Case Diagram for FRIEND
	6. Identify relationships among use cases
	ConnectionDown
	Summary
	Tips from Authors
	Advantages of using Use-Cases
	Disadvantages of Use-Cases
	Software Requirements Elicitation and Specifications
	Requirements Definition document
	Software requirements document
	Software requirements document cover page
	Format and Style
	Review - questions
	Review - guidelines
	Standards

