
SYSC-3120 — Software Requirements Engineering 1

SYSC-3120 —Software Requirements Engineering

Software Engineering Preview



SYSC-3120 — Software Requirements Engineering 2

Software Engineering Preview

• Definitions

• Software Failures

• History and Context

• Software Development Myths

• Principles

• Software Development Processes

• Software Development Tools

• Summary



SYSC-3120 — Software Requirements Engineering 3

Definitions of SW Engineering

• Software Engineering [IEEE-93]: 
– The application of a systematic, disciplined, quantifiable approach to 

the development, operation, and maintenance of software; 
that is, the application of engineering to software. 

– Highlights the difference between programming and software 
engineering

• Canadian Standards Association: 
– “The systematic activities involved in the design, implementation and 

testing of software to optimize its production and support”



SYSC-3120 — Software Requirements Engineering 4

Definitions of SW Engineering (cont.)

• Parnas (1987): 
– “Multi-person construction of multi-version software”
– Software Engineering means the construction of quality software with 

a limited budget and a given deadline in the context of constant 
change

• Lethbridge (2004):
– “Software engineering is the process of solving the customers’

problems by the systematic development and evolution of large, 
high-quality software systems within cost, time and other 
constraints.”



SYSC-3120 — Software Requirements Engineering 5

Definitions of SW Engineering: Conclusion

• Important notions to remember:
– Systematic, disciplined, quantifiable
– Development, operation, and maintenance (not only 

construction/coding)
– Quality
– Constraints



SYSC-3120 — Software Requirements Engineering 6

The Engineer in SW Engineering

• Engineers design products following well-accepted practices 
which normally involve the application of science, mathematics 
and economics 

• As professionals, engineers assume a duty of personal 
responsibility to the public and society, and a code of ethics.
– The society includes the customer (ie. meeting economic and time 

constraints)



SYSC-3120 — Software Requirements Engineering 7

Scope of SW Engineering

• SE is part of a much larger system design activity
– Telephone switching systems, power plants, banking systems, 

hospital admin systems, aircraft
• Doing SE right requires a much larger look at system engineering 

issues
– entities and activities within the system, its boundary and interface 

with other systems and users
• Understanding the application and user needs is key

– Decide what activity should be supported by the system and how
– Having a technical understanding of the system to be developed is 

not enough
– Many domains, where very different software systems must be 

developed, with emphasis on different priorities: 
• time-to-market (telecom), safety (aerospace, NASA Shuttle), 

maintainability (telecom, banking)



SYSC-3120 — Software Requirements Engineering 8

Importance of SW Engineering

• Software is pervasive in our lives, in most systems surrounding 
us - we take it for granted!

• US $500 Billion world-wide in 1995
• This includes critical systems that affect our well-being and our 

lives
• Many reported stories of poor software engineering practices 

leading to catastrophes



SYSC-3120 — Software Requirements Engineering 9

Software Quality

• External Characteristics (of interest to stakeholders)
– Usability
– Efficiency
– Reliability
– Maintainability
– Reusability

• Internal Characteristics (impact maintainability and reliability)
– Comments
– Code Complexity: Nesting depth, branches, complex programming
– Modularity

Short term

Long term

Engineering is tradeoffs



SYSC-3120 — Software Requirements Engineering 10

Software Engineering Stakeholders

• Developers are only one of the stakeholders in a SE Project

• Users: Use the end-product
– Appreciate software that is easy to learn, improves their working 

conditions

• Customers: Order and pay for the software
– Increase profits or run business better

• Development Managers: Manage the developers
– Please the customer while spending the least money.

• One person may take on multiple roles.



SYSC-3120 — Software Requirements Engineering 11

Activities Involved in SE
• Knowledge acquisition: 

– Understand the application domain, the system requirements
– Knowledge acquisition is not sequential, as a single piece of additional 

information can invalidate complete models

• Modeling (the blue-print of the software engineer): 
– Way to cope with complexity by raising the level of abstraction, e.g., UML

• Problem solving: 
– Find an acceptable solution within constraints (budgets and timelines)
– Find -> search -> experiment (i.e., compare alternatives, evaluate)

• Documentation: 
– The rationale behind decisions need to be captured, in order to be able to 

deal with change



SYSC-3120 — Software Requirements Engineering 12

Software Engineering Preview

• Definitions

• Software Failures

• History and Context

• Software Development Myths

• Principles

• Software Development Processes

• Software Development Tools

• Summary



SYSC-3120 — Software Requirements Engineering 13

Examples of SE Failures
• Patient Protection and Affordable Care Act (a.k.a. ObamaCare, 2013):

– Incorrect functionality, unable to handle the load due to poor specifications, 
flawed design, poor coding, poor testing, security flaws, time constraints.

• Soyuz spacecraft’s descent from the ISS on May 3rd 2003
– Halfway back to Earth, for no apparent reason, the computer had suddenly 

begun searching for the ISS as if to dock with it.
• Ariane 5 Flight 501: 

– The space rocket was destroyed. Cause: poor specifications, usage 
testing, and exception handling.

• Therac-25: 
– Radiation therapy and X-ray machine killed several patients. Cause: 

unanticipated, non-standard user inputs. 
• NASA mission to Mars (Mars Climate Orbiter Spacecraft, 1999):

– Incorrect conversion from imperialmetric leads to loss of Mars satellite

US study (1995):
– 81 billion US$ spend per year for failing software development projects

• Despite many success stories, there is much room for improvement.



SYSC-3120 — Software Requirements Engineering 14

Software Engineering Preview

• Definitions

• Software Failures

• History and Context

• Software Development Myths

• Principles

• Software Development Processes

• Software Development Tools

• Summary



SYSC-3120 — Software Requirements Engineering 15

Historical perspective of SW Engineering

• Read the opening sentence in your textbook [Dutoit]
– The term software engineering was coined in 1968 as a response to 

the desolate state of the art of developing quality software on time 
and within budget. …. More often that not, the moon was promised, 
lunar rover built and a pair of square wheels delivered.

• [Braude] The production of automobiles was revolutionized by 
Henry Ford’s observation that parts could be standardized, so 
that cars of a given model could use any instance of each 
required part.  The reduction in cost … made automobiles more 
affordable
– We now expect to reuse ideas, architectures, designs or code from 

one application to build others. …
– Only modular applications have potentially reusable parts.
– Reusability of developer knowledge.



SYSC-3120 — Software Requirements Engineering 16

Relationships with other Disciplines

Theories Technologies Problem

Computer Science Customer / System Engineering

Software Engineering

Tools and Techniques 
to Solve the Problem

• Management Science
• Quantitative Methods
• …

Pfleeger, 1998 (adapted)

Management science
Project scheduling, resource 
planning, people management, 
project tracking, technology 
assessment

Artificial Intelligence
Operating systems
Compilers
Database management 

systems …

Boolean algebra
First order logic
Set theory
Complexity theory
…



SYSC-3120 — Software Requirements Engineering 17

Software Engineering Preview

• Definitions

• Software Failures

• History and Context

• Software Development Myths

• Principles

• Software Development Processes

• Software Development Tools

• Summary



SYSC-3120 — Software Requirements Engineering 18

Management Myths

• State-of-the-art tools are the solution
“A fool with a tool is still a fool”

• Falling behind schedule is resolved by hiring additional 
programmers

“adding people to a late software project makes it later”



SYSC-3120 — Software Requirements Engineering 19

Customer myths

• A general statement of objectives is sufficient to begin writing 
programs - we can fill in the details later.
– Problems:

• Poor up-front definition is a major cause of failed software projects
• Detailed description of function, performance, interfaces, design 

constraints and validation criteria are essential
– Thorough communication between customer and developer needed

• Changes can be easily accommodated because software is 
flexible
– Problem:

• Impact of change grows throughout the lifecycle -> late changes are 
expensive

– Changes happen as a fact of life, cannot avoid them
Such myths lead to false expectations by the customer and result 

in dissatisfaction with the developer.



SYSC-3120 — Software Requirements Engineering 20

The impact of change

Definition

1 x

Design

3 - 6 x

C
os

t t
o 

ch
an

ge

Code

10 x

1

10

Test

15-40 x
100

System 
Test

30-70 x

Field 
Operation

40-1000 x
1000



SYSC-3120 — Software Requirements Engineering 21

Practitioner’s myths

• Once we write a program and get it to work, our job is done
– 50-70% of all effort after first delivery

• Until I get the program “running”, I really have no way in 
assessing its quality
– inspections & reviews

• The only deliverable for a successful project is the working 
program
– documentation (users, maintenance), e.g., UML Analysis and Design 

Models
• Software engineering will make us create voluminous and 

unnecessary documentation and will invariably slow us down
– Software engineering is not about creating documents. It is about 

creating quality. Better quality leads to reduced rework. And reduced 
rework results in faster delivery times



SYSC-3120 — Software Requirements Engineering 22

Software Engineering Preview

• Definitions

• Software Failures

• History and Context

• Software Development Myths

• Principles

• Software Development Processes

• Software Development Tools

• Summary



SYSC-3120 — Software Requirements Engineering 23

Characteristics of today’s software development

• Development of large & complex systems
• Software systems must fulfill the requirements of many users (or 

usage conditions)
• Number of persons involved in the development >>>> 1
• Distributed development is now commonplace

– Same place, same city (Kanata-Downtown)
– Same country (Ottawa-Vancouver), same continent
– Ottawa-Vancouver-England-India-Australia

• Software systems are expected to live long and be used by many 
people.



SYSC-3120 — Software Requirements Engineering 24

What are the problems?

• Increased quality demands on software products
• High cost and time pressure
• Shorter time to market
• Coordination problems within the projects
• Scarce resources (e.g., qualified personnel)



SYSC-3120 — Software Requirements Engineering 25

Software Engineering Principles

• There are a number of general principles underlying and driving 
all software engineering techniques

• They aim at dealing with the inherent complexity of software and 
help achieve quality goals, e.g., reliability, evolvability

• We will refer to these principles throughout the course.

– Rigor and formality
– Separation of concerns
– Modularity
– Abstraction

– Anticipation of change
– Generality
– Incrementality



SYSC-3120 — Software Requirements Engineering 26

Rigor and Formality

• More reliable products, control costs, increase our confidence in 
the product

• Rigor: well-defined, repeatable, technically sound steps (based 
on method, technique)

• Formality, the highest degree of rigor, require the software 
process to be driven by mathematical laws

• No need to be always formal -> tradeoff
– Formality and Rigor have a cost (training, additional time) , so apply 

as long as the benefits are significantly larger
• Rigor and formality apply to both the SW process and product

• The UML notation is an example of a (semi-)formal notation. It 
brings rigor to the way we do analysis and design.



SYSC-3120 — Software Requirements Engineering 27

Separation of Concerns

• Decompose a complex problem (or concern) into simpler 
problems

– Sub-problems (or concerns) should overlap as little as possible
• A concern is anything of interest
• Concerns may be separated 

– in time (e.g., life cycle phases), 
– qualities (the “alities”),  
– product views (e.g., UML diagrams), 
– product parts (subsystems, components)



SYSC-3120 — Software Requirements Engineering 28

Modularity

• Software systems are decomposed into simpler pieces: modules, 
components

• High cohesion and low coupling within/among components
• Allow reuse, easier understanding, team work, etc.
• Ideally, SW development could be based on composing reusable 

components

• Modularity vs. “separation of concerns”
– Separation of concerns (for product parts) is often achieved through 

modularity



SYSC-3120 — Software Requirements Engineering 29

Abstraction

• Identify important aspects and ignore non-relevant details for the 
task at hand

• Equations, formalisms are forms of abstractions from reality, in all 
engineering disciplines

• Software specifications and design representations / models: 
abstract away from programming details

• Programming languages: abstract away from hardware details



SYSC-3120 — Software Requirements Engineering 30

Anticipation of Change

• Software undergoes change constantly
• How to account for potential change and limit the side effects?
• Impact on design strategy 

– Layered architecture
e.g., user interface, business or application logic, database management 

system
– Design patterns

• Manage versions and revisions (Configuration management)
• Process changes, e.g., personnel turnover: Analysis and Design 

documentation



SYSC-3120 — Software Requirements Engineering 31

Generality

• General solutions mean more software reuse
• General software solutions for a given application domain
• Different forms:

– libraries, executable components, frameworks (e.g., JavaCC)
– Database management systems, spreadsheets, text processing 

and numerical analysis libraries
• Overhead, acquisition cost versus reliability, reuse
• Large, expanding COTS market (Components/Commercial Off 

The Shelf) in the software industry



SYSC-3120 — Software Requirements Engineering 32

Incrementality

• Stepwise development => early subsets of an application
– build the software in small increments; for example, adding one use 

case at a time
• Early feedback from customers, users
• Initial requirements often not stable and fully understood

– start with parts that are clear
• Incrementality requires special care for managing documents, 

programs, test data, etc. of successive versions (configuration 
management)



SYSC-3120 — Software Requirements Engineering 33

Software Engineering Preview

• Definitions

• Software Failures

• History and Context

• Software Development Myths

• Principles

• Software Development Processes

• Software Development Tools

• Summary



SYSC-3120 — Software Requirements Engineering 34

The Software Process

• Software Engineering [IEEE-93]: 
– The application of a systematic, disciplined, quantifiable approach

to the development, operation, and maintenance of software; 
that is, the application of engineering to software. 

• A Software Process is a series of predictable steps to follow to 
create a timely, high-quality result.

– Provides stability, control, organization
– Can be adapted to individual process needs (not rigid, can be agile)



SYSC-3120 — Software Requirements Engineering 35

Survey of Some Process Models

• Waterfall Model
• Phased-Release Model
• Spiral Model
• Unified Process
• Agile Process
• Model-based Development Process

• All have the afore-mentioned activities and principles.



SYSC-3120 — Software Requirements Engineering 36

Waterfall Model

• In principle, a phase should not start until the previous phase has 
finished (has been approved).

• Problems:
– Real projects rarely follow the sequential flow
– Difficult for stakeholder to state all the requirements once and for all
– Stakeholders must have patience: working version of software comes 

late in process.

Requirement definition

Specification

Design

Implementation

Integration & deployment

Maintenance



SYSC-3120 — Software Requirements Engineering 37

Phased-Release Model
• Principle:

– Linear sequences of the waterfall process, with each sequence 
producing an operational deliverable.

– The incremental model delivers a series of releases, called 
increments.

– Suggests that all requirements are finalized early in the process.

Requirement definition

Specification

Planning

Implementation

Integration & deployment

Phase 1
Design

Implementation

Integration & deployment

Phase 2
Design



SYSC-3120 — Software Requirements Engineering 38

Spiral Model

Incremental and Iterative
Idea: 
• start by developing a prototype 

following a mini-waterfall 
model.

• Prototype serves to gather 
requirements.

• Each increment is reviewed 
and evaluated.

Image from creative commons



SYSC-3120 — Software Requirements Engineering 39

Unified Process

Iterative and Incremental, Use-case driven, Architecture centric
Phases:
– Inception: The core idea is developed into a product vision. We review 

and confirm our understanding of the core business drivers. We want to 
understand the business case for why the project should be attempted. 
Product feasibility and project scope. 

– Elaboration: The majority of the Use Cases are specified in detail and 
the system architecture is designed. "Do-Ability" of the project. We 
identify significant risks and prepare a schedule, staff and cost profile 
for the entire project. 

– Construction: Produces a system complete enough to transition to the 
user. The design is refined into code. 

– Transition: The goal is to ensure that the requirements have been met 
to the satisfaction of the stakeholders. Other activities include site 
preparation, manual completion, and defect identification and 
correction. The transition phase ends with a postmortem devoted to 
learning and recording lessons for future cycles. 



SYSC-3120 — Software Requirements Engineering 40

Unified Process (cont.)

Time

A
ct

iv
iti

es

Image from creative commons



SYSC-3120 — Software Requirements Engineering 41

Agile Model

• Key Assumptions
– Difficult to predict software requirements
– Difficult to predict analysis, design, construction, and testing
– Design and construction should be interleaved

• How can we design a process that can manage unpredictability?
Process adaptability.

• Example: Extreme Programming (XP)
– 4 phases: Planning (stories), Design (prototype solutions), Coding 

(pair programming, re-factoring), Test
– The tests are the specification
– Communication paramount (small team, knowledgeable 

programmers)



SYSC-3120

SYSC-3120 — Software Requirements Engineering 42

Software Lifecycle in Textbook

Application
Domain 
Objects

SubSystems

class...
class...
class...

Implementat
ion Domain 

Objects

Source
Code

Test 
Cases

? 

Expressed in 
Terms Of

Structured 
By

Implemented
By

Realized By Verified 
By

System
Design

Object
Design

Implemen-
tation Testing

class....? 

Requirements
Elicitation

Use Case
Model

Requirements
Analysis

SYSC-4120 SYSC-
1005…

SYSC-4101



SYSC-3120 — Software Requirements Engineering 43

Software Engineering Preview

• Definitions

• Software Failures

• History and Context

• Software Development Myths

• Principles

• Software Development Processes

• Software Development Tools

• Summary



SYSC-3120 — Software Requirements Engineering 44

Some Modeling Tools

• Dataflow diagrams
• Entity-Relationship diagrams
• Finite state machines
• Petri nets, queueing networks, fault tree 
• Descriptive Formal specification languages: Z, B, Alloy, SPIN, 

TRIO, VDM, LOTOS, RT-LOTOS …

- Which notation is used depends on  the type of system, 
familiarity of analysts, organization decisions, etc.

- UML combines/adapts many notations into a consistent 
framework



SYSC-3120 — Software Requirements Engineering 45

Some Modeling Tools

• Data Flow Diagram

• Entity Relationship Diagram



SYSC-3120 — Software Requirements Engineering 46

Some Modeling Tools

• Finite State Machine

• Petri Net



SYSC-3120 — Software Requirements Engineering 47

Some Modeling Tools

• Synchronous (SCADE) diagram

• Z notation



SYSC-3120 — Software Requirements Engineering 48

Some Modeling Tools

• Unified Modeling Language (UML)
– Now the de-facto standard for OO software development
– 70% of IT shops use the UML in one way or another
– 90% of the Fortune 500 companies use the UML in one way or 

another



UML diagrams

Two categories of UML diagrams (out of 14 diagrams types)
• Structure diagrams

– class, component, composite structure, package, profile, 
deployment, object

• Behaviour diagrams
– use case, state machine, activity, sequence, communication, 

interaction overview, timing

SYSC-3120 — Software Requirements Engineering 49

Image from Creative Commons



UML CASE Tools

• CASE = Computer-Aided Software Engineering
– Using automated tools (software) in software engineering

• UML CASE tool
– Software to support the use of the UML
– Many, many such tool (incomplete list):

• http://en.wikipedia.org/wiki/List_of_Unified_Modeling_Language_tools
• with varying capabilities

– Software engineering activities supported?
Drawing Modeling
Different versions of UML Varying support for notation
Code generation Documentation generation
Individual and team work
Software development phases (analysis, design, …)
Measurement Simulation
Forward/Reverse/Round-trip engineering Traceability …

SYSC-3120 — Software Requirements Engineering 50



SYSC-3120 — Software Requirements Engineering 51

Software Engineering Preview

• Definitions

• Software Failures

• History and Context

• Software Development Myths

• Principles

• Software Development Processes

• Software Development Tools

• Summary



SYSC-3120 — Software Requirements Engineering 52

Summary

• Software engineering is 
– engineering discipline focused on the development of software 

systems 
– as the solution to a user’s problem 
– applying the right techniques / methods / tools

• Software engineering is necessary for developing complex but 
reliable software

• A good software engineering practice help to develop software in 
large teams.



SE goal is to avoid this

SYSC-3120 — Software Requirements Engineering 53


	SYSC-3120 —Software Requirements Engineering
	Software Engineering Preview
	Definitions of SW Engineering
	Definitions of SW Engineering (cont.)
	Definitions of SW Engineering: Conclusion
	The Engineer in SW Engineering
	Scope of SW Engineering
	Importance of SW Engineering
	Software Quality
	Software Engineering Stakeholders
	Activities Involved in SE
	Software Engineering Preview
	Examples of SE Failures
	Software Engineering Preview
	Historical perspective of SW Engineering
	Relationships with other Disciplines
	Software Engineering Preview
	Management Myths
	Customer myths
	The impact of change
	Practitioner’s myths
	Software Engineering Preview
	Characteristics of today’s software development
	What are the problems?
	Software Engineering Principles
	Rigor and Formality
	Separation of Concerns
	Modularity
	Abstraction
	Anticipation of Change
	Generality
	Incrementality
	Software Engineering Preview
	The Software Process
	Survey of Some Process Models
	Waterfall Model
	Phased-Release Model
	Spiral Model
	Unified Process
	Unified Process (cont.)
	Agile Model
	Software Lifecycle in Textbook
	Software Engineering Preview
	Some Modeling Tools
	Some Modeling Tools
	Some Modeling Tools
	Some Modeling Tools
	Some Modeling Tools
	UML diagrams
	UML CASE Tools
	Software Engineering Preview
	Summary
	SE goal is to avoid this

