
 SYSC 3120
page 1

COMET- Design methodology for
real-time & concurrent

applications

 SYSC 3120
page 2

COMET software life-cycle
 COMET was developed by Hassan Gomaa for real-time distributed

concurrent systems
 2 books by Gomaa listed in course outline presents COMET:

 book from 2000: uses UML 1.4 (only a restricted set of diagrams)
 book from 2011: uses UML 2

 COMET as presented here is meant for writing the code “by hand” rather than
automatically generated.

 SYSC 3120
page 3

Step 1: Requirement Modeling
 Develop the use case model

 develop use case diagram(s)
 actors, use-cases and their relationships

 textual description of use-cases
 follow template

• use case name and summary
• actors
• dependency of other use cases (e.g., what is included)
• preconditions
• narrative description of the “happy path”
• description of different alternatives
• postconditions

COMET Summary

 SYSC 3120
page 4

Step 2: Analysis Model (problem domain)
 Develop static model (i.e., structure)

 identify physical objects/classes in the problem (application) domain
 develop system context model – interaction with external classes
 entity classes – data intensive classes that store data (represent physical

objects)
 build a class dictionary (classes and attributes)

 Develop system structure: group classes into subsystems
 Develop dynamic model (i.e., behaviour). For each use case:

 identify participant objects (classes)
 develop interaction diagrams

 describe “happy path” and all alternatives
 identify information passed between objects

 develop a statechart for each state-dependent object in a collaboration
 events and actions in statechart are consistent with messages

received and sent by the respective object in the collaboration

COMET Summary

 SYSC 3120
page 5

COMET Step 3: Design Model (solution domain)
1. Synthesize initial software architecture from the analysis model –

this is a transition from analysis to design
 synthesize statecharts for each state-dependent object from the partial

statecharts built in the analysis phase
 each partial SC: the behaviour of the object in a collaboration

 consolidate all the collaboration diagram in a collaboration model for
the system – verify consistency

 synthesize design static model
 refinement of analysis static model – new objects needed for the

solution may be added.
2. Design overall software architecture

 structure application into subsystems
 define interfaces between subsystems
 develop collaboration diagrams for each subsystem and a high-level

collaboration diagram for the whole system.

COMET Summary

 SYSC 3120
page 6

Step 3: Design Model (continued)
3. Design the distributed software architecture

 identify distributed components
 design their interfaces

4. Design concurrent task architecture for each subsystem
 decide on the concurrent tasks and their interfaces
 for each subsystem: develop concurrent collaboration diagram

between its concurrent tasks
5. Analyze the performance of the design

 predictive performance analysis by using performance models
6. Detailed software design for each subsystem

 design internals of composite tasks – contain passive objects
 design details of task communication/synchronization

7. Analyze the performance of the real-time design for each
subsystem

COMET Summary

 SYSC 3120
page 7

Case Study: Banking System
 Problem statement:

 a bank has several automated teller machines (ATM) connected to a central
bank server

 each ATM has: card reader, cash dispenser, keyboard/ display, receipt printer
 a customer may withdraw cash from a checking or saving account, query the

balance, or transfer funds
 a transaction is initiated when the customer inserts an ATM card into the card

reader
 customer authentication:

 based on PIN – allows only for three attempts only
 the info from the card is verified against the data maintained by the system

– cards reported lost or stolen are confiscated
 customer transaction may proceed after successful authentication
 at the end, the customer record, account record and card record are updated at

the bank server
 an ATM operator may start up and close down the ATM to replenish the cash

dispenser and for routine maintenance
 simplifying assumptions: opening and closing accounts, adding/removing

customers are not part of this problem

 SYSC 3120
page 8

Case Study step 1: Use Case Model
 Actors in real-time embedded systems can be not only human users,

but also external devices, external systems, timers, etc.
 in this case the actors are human users

 SYSC 3120
page 9

Validate PIN Use Case: textual description
 Use case name: validate PIN
 Summary: system validates customer PIN
 Actor: ATM Customer
 Preconditions: ATM is idle, displaying a welcome message
 Description:

1. Customer inserts the ATM card into the card reader
2. System reads the card
3. System prompts customer for PIN
4. System check expiration date and whether the card is lost or stolen
5. If card is valid, system check PIN validity against value stored in the

system
6. If PIN matches, system check if the card may access the account
7. System displays customer account and prompts customer foe transaction

type

 SYSC 3120
page 10

Validate PIN Use Case (cont)
 Alternatives:

1. If card not recognized, the system ejects the card
2. If card expired, the system confiscates the card
3. if card has been reported lost or stolen, the system confiscates

it
4. if the customer-entered PIN does not match the one stored by

the system, the system re-prompts for PIN
5. if the customer enters an incorrect PIN three times, the card is

confiscated
6. If the customer enters “Cancel” the transaction is cancelled

and the card is ejected.
 Postcondition: Customer PIN has been validated.

 SYSC 3120
page 11

Step 2: Analysis Model
Static model (i.e., structure)

 ● Develop static model
 - identify physical objects/classes in the problem domain
 - develop system context model
 - entity classes – data intensive classes that store data
 - build a class dictionary (classes and attributes)

 ● Develop system structure: start grouping classes into subsystems
 (subsystems are finalized in the Design Model)

 SYSC 3120
page 12 Domain Model

 Domain model: identifies key concepts from a certain area/domain
 Example: electro cardiogram (ECG) system model:

 problem domain concepts: heart rate, arrhythmias, waveforms, scaling
in time, scaling in amplitude

 design concepts: data buffers, tasks and threads, semaphores
 Every application domain has its own vocabulary and concepts

 some domains are closer to the problem space
 other domains are closer to the solution space (implementation)

 A complete application may involve multiple domains which may be
layered:
 top-level domains belong to the application, while lower level domains

represent the underlying platforms (OS, communications, hardware);
 domains are normally stable, which foster reuse;
 help to make the system development robust to change (of platform, of

requirements, etc.) by limiting the impact of change.
 COMET static analysis: concerned with the problem domain model.
 Domain modeling advice: avoid introducing design concepts in the problem

domain model.

 SYSC 3120
page 13 Categorizing external classes

 Identify separately and categorize by using UML stereotypes the following kind of classes:
 application classes which are part of the system to be built (discussed in next slide)
 external classes which are part of the environment:

 «external user»: user interacting with the system and exchanging information via standard I/O
devices (keyboard, screen, mouse - handled by the operating system)

 «external device»: application-specific hardware devices (e.g., sensors, actuators)
 «external system»: other systems interacting with our system
 «external timer»: clock to keep track of time or timer to initiate timer events

 SYSC 3120
page 14 Categorizing application classes (1)

 application classes are part of the system under construction
 they are categorized according to the role played in the application

(described on the next slide)
 the stereotype hierarchy shown below applies to classes as well as their

instances.

 SYSC 3120
page 15 Categorizing application classes (2)

 The class structuring categories are as follows:
1. «entity»: encapsulates information and provides access to it (may be

persistent)
2. «boundary»: interfaces and communicates with the external environment

 «user interaction»: interfaces with a human user via standard I/O devices
 «device I/O»: interfaces with a hardware I/O device

• may be «input», «output», or «input/output»
 «proxy»: interfaces with an external system or subsystem.

3. «control»: provides the overall coordination for a collection of objects
 may be «state dependent control», «coordinator», or «timer»

4. «application logic»: contains the details of the application logic; needed to
separate the application logic from the data it manipulate
 may be: «business logic» in business application, «algorithm» in scientific

applications, or «service» in service-based systems.

 SYSC 3120
page 16 COMET static Analysis

Problem domain: physical classes
 conceptual static model of the problem domain
 identify physical classes and their relationships

 many physical objects end up being represented in the software as “entity classes”
 some are “external users” – which represent both the user and its interface

 SYSC 3120
page 17 System context diagram

 The context diagram shows the interaction between:
 the system to be designed (represented as a black box)
 its environment (external users, external devices, etc.)

 defining precisely "what is the system” is important in order to differentiate between which
classes/instances are included in the system and which are part of the environment
 here, the system is a software application (does not include hardware devices or external

users)
 Especially important for real-time and embedded systems, which interact with sensors,

actuators, etc.

 SYSC 3120
page 18

Entity classes for the problem domain
 The entity classes are data intensive classes that are encapsulating and storing information

 may be persistent, in which case the entity object accesses a database (not shown in the analysis
phase)

 the attributes are identified at this stage (not shown in the diagram)

 SYSC 3120
page 19

External and boundary classes
 From the context diagram – add boundary objects inside the system that interact with

the external objects identified previously

 SYSC 3120
page 20

Analysis phase:
Dynamic model (i.e., behaviour)

 ● For each use case:
 - identify participant objects (classes)
 - develop interaction diagrams
 - describe “happy path” and all alternatives
 - identify information passed between objects
 - develop a statechart for each state-dependent object

 SYSC 3120
page 21 Validate PIN “happy path”:

communication diagram

 SYSC 3120
page 22 Validate PIN “happy path

 SYSC 3120
page 23 ATM Control: partial statechart for

Validate PIN “happy path”
 For each state-dependent object build

a statechart corresponding to each use
case realization
 consider the interaction of ATM

Control with other instances to build
the ATM Control statechart

Heuristics for building the statechart:
 Start with the happy path

 keep consistency between interaction
diagram (ID) and statechart (SC):
 incoming ID messages or signals

correspond to SC triggers
 outgoing ID messages or signals

correspond to SC actions of
sending messages

 execution occurrences as effect of
ID messages correspond to SC
actions

 Continue with all the alternatives,
adding new transitions, triggers,
actions, and/or states to the statechart,
as necessary.

 SYSC 3120
page 24 Validate PIN: Invalid PIN

 SYSC 3120
page 25 Validate PIN: Third Invalid PIN

 SYSC 3120
page 26 Validate PIN: card stolen or expired

 SYSC 3120
page 27

ATM Control: partial statechart for Validate PIN
showing alternatives

this part has been
created before

 SYSC 3120
page 28 Withdraw Funds

 SYSC 3120
page 29

ATM Control: partial statechart for Withdraw Funds

existing states

 SYSC 3120
page 30 Statechart for Withdraw Funds

with alternatives

 SYSC 3120
page 31 Integration: ValidatePIN and Withdraw Funds

 SYSC 3120
page 32 Hierarchical statechart for ATM Control: top level

grouping states into
superstates

 SYSC 3120
page 33 Processing Customer Input superstate

 SYSC 3120
page 34 Processing Transaction superstate

 SYSC 3120
page 35 Terminating Transaction superstate

 SYSC 3120
page 36

System decomposition issues
 A system is structured into subsystems, which contain objects that are

functionally dependent on each other (see example on next slide):
 low coupling between subsystems
 high coupling between objects in the same subsystem
 a subsystem can be considered an aggregate or composite object that contains

the objects that compose it
 hierarchical decomposition can be used

 Separation of concerns between subsystems: each subsystem performs a
major function which is relatively independent of other subsystems.

 Subsystems provide a larger-grained information hiding than objects.
 Guidelines for determining subsystems in the analysis phase

 geographical subsystem structuring (Ex: ATM Banking System)
 high coupling between objects in the same subsystem

 try to group objects that participate in a use case into the same subsystem
 objects participating in more us cases will be placed into one subsystem

 SYSC 3120
page 37

Example of distributed software architecture

 SYSC 3120
page 38

Subsystem structuring criteria
 Subsystems are likely to be application dependent. The kind of

subsystems often needed in real-time systems is given below:
 Control: controls a given aspect of the system or subsystem
 Coordinator: in cases where there are more than one control

subsystems, a coordinator may be necessary to coordinate them.
 Data collection: collects data from the external environments. It may

convert, store or reduce the data, usually in real time.
 Data analysis: analyzes data and provides reports. As opposed to data

collection, data analysis may be a non-real time activity.
 Server
 User interface
 I/O subsystems
 System services: file management, middleware, network

communication.
 usually not developed with the application, but the designer has to

recognize their existence and use them.

	COMET- Design methodology for �real-time & concurrent applications
	COMET software life-cycle
	Step 1: Requirement Modeling
	Step 2: Analysis Model (problem domain)
	COMET Step 3: Design Model (solution domain)
	Step 3: Design Model (continued)
	Case Study: Banking System
	Case Study step 1: Use Case Model
	Validate PIN Use Case: textual description
	Validate PIN Use Case (cont)
	Step 2: Analysis Model �Static model (i.e., structure)
	Domain Model
	Categorizing external classes
	Categorizing application classes (1)
	Categorizing application classes (2)
	COMET static Analysis�Problem domain: physical classes
	System context diagram
	Entity classes for the problem domain
	External and boundary classes
	Analysis phase: �Dynamic model (i.e., behaviour)
	Validate PIN “happy path”: communication diagram
	Validate PIN “happy path
	ATM Control: partial statechart for �Validate PIN “happy path”
	Validate PIN: Invalid PIN
	Validate PIN: Third Invalid PIN
	Validate PIN: card stolen or expired
	ATM Control: partial statechart for Validate PIN showing alternatives
	Withdraw Funds
	ATM Control: partial statechart for Withdraw Funds
	Statechart for Withdraw Funds�with alternatives
	Integration: ValidatePIN and Withdraw Funds
	Hierarchical statechart for ATM Control: top level
	Processing Customer Input superstate
	Processing Transaction superstate
	Terminating Transaction superstate
	System decomposition issues
	Example of distributed software architecture
	Subsystem structuring criteria

