
SYSC-3120 — Software Requirements Engineering 1

SYSC-3120 —Software Requirements Engineering

ARENA Case Study

ARENA Case Study

• Problem statement
• Requirement elicitation
• Use case model
• OO Analysis Model

SYSC-3120 — Software Requirements Engineering 2

Initial Problem Statement

1. Problem
• The popularity of the Internet and the WWW has enabled the

creation of a variety of virtual communities:
– groups of people sharing common interests
– who have never met each other in person
– can be short lived (e.g., a group of people meeting in a chat room or

playing a tournament) or long lived (e.g., subscribers to a mailing list).
• Many multi-player computer games now include support for the

virtual communities of players:
– receive news about game upgrades
– new game maps and characters
– announce and organize matches
– compare scores and exchange tips
– the game company takes advantage of this infrastructure to generate

revenue or to advertise its products.

SYSC-3120 — Software Requirements Engineering 3

Initial Problem Statement (2)

Problem (cont.)
• Currently, however, each game company develops such

community support in each individual game.
• Each company uses a different infrastructure, different concepts,

and provides different levels of support.
• This redundancy and inconsistency results in disadvantages:

– learning curve for players when joining each new community,
– game companies need to develop the support from scratch
– advertisers need to contact each individual community separately
– this solution does not provide much opportunity for cross-fertilization

among different communities.

SYSC-3120 — Software Requirements Engineering 4

Initial Problem Statement (3)

2. Objectives
• provide an infrastructure for operating an arena, including

registering new games and players,
• organizing tournaments, and keeping track of the players scores
• provide a framework for league owners to customize the number

and sequence of matches and the accumulation of expert rating
points.

• provide a framework for game developers for developing new
games, or for adapting existing games into the ARENA
framework.

• provide an infrastructure for advertisers.

SYSC-3120 — Software Requirements Engineering 5

Initial Problem Statement (4)

3. Functional requirements
ARENA supports five types of users:
• The operator should be able to define new games, new tournament styles

(e.g., knock-out tournaments, championships, best of series), define new
expert rating formulas, and manage users.

• League owners should be able to define a new league, organize and
announce new tournaments within a league, conduct a tournament, and
declare a winner.

• Players should be able to register in an arena, apply for a league, play the
matches that are assigned to the player, or drop out of the tournament.

• Spectators should be able to monitor any match in progress and check
scores and statistics of past matches and players. Spectators do not need
to register in an arena.

• The advertiser should be able to upload new advertisements, select an
advertisement scheme (e.g., tournament sponsor, league sponsor), check
balance due, and cancel advertisements.

SYSC-3120 — Software Requirements Engineering 6

Initial Problem Statement (5)

4. Non-functional requirements
• Low operating cost. The operator must be able to install and

administer an arena without purchasing additional software
components and without the help of a full-time system administrator.

• Extensibility. The operator must be able to add new games, new
tournament styles, and new expert rating formulas. Such additions
may require the system to be temporarily shut down and new
modules (e.g., Java classes) to be added to the system. However,
no modifications of the existing system should be required.

• Scalability. The system must support the kick-off of many parallel
tournaments (e.g., 10), each involving up to 64 players and several
hundreds of simultaneous spectators.

• Low-bandwidth network. Players should be able to play matches via
a 56K analog modem or faster.

SYSC-3120 — Software Requirements Engineering 7

Initial Problem Statement (6)

5. Target environment
• All users should be able to access any arena with a web browser

supporting cookies, Javascript, and Java applets.
• Administration functions (e.g., adding new games, tournament

styles, and users) used by the operator should not be available
through the web.

• ARENA should run on any Unix operating system (e.g., MacOS
X, Linux, Solaris).

SYSC-3120 — Software Requirements Engineering 8

Identifying Actors and high-level Use Cases
• Five actors are identified from the problem statement:

– Operator, LeagueOwner, Player, Spectator, and Advertiser
• High level use cases identified by looking at a narrow vertical slice of the

system: TicTacToeTournament (described in text and use-case diagram)

9

Glossary – define problem domain concepts

SYSC-3120 — Software Requirements Engineering 10

Refine high-level Use Cases

SYSC-3120 — Software Requirements Engineering 11

Brief description of Use Cases (1)

SYSC-3120 — Software Requirements Engineering 12

Brief description of Use Cases (2)

SYSC-3120 — Software Requirements Engineering 13

 High-level use case OrganizeTournament

SYSC-3120 — Software Requirements Engineering 14

Refine OrganizeTournament

SYSC-3120 — Software Requirements Engineering 15

Exceptions occurring in AnnounceTournament

SYSC-3120 — Software Requirements Engineering 16

Non-functional requirements (1)

SYSC-3120 — Software Requirements Engineering 17

Non-functional requirements (2)

SYSC-3120 — Software Requirements Engineering 18

Lessons Learned during Requirements Elicitation

• Requirements elicitation involves constant switching between
perspectives
– high-level vs. detailed,
– client vs. developer,
– activity vs. entity.

• Requirements elicitation requires a substantial involvement from
the client.

• Developers should not assume that they know what the client
wants.

• Eliciting non-functional requirements forces stakeholders to make
and document trade-offs.

SYSC-3120 — Software Requirements Engineering 19

OO Analysis Phase

Develop the part of the analysis object model relevant to the
AnnounceTournament use case of ARENA.

• Start by identifying entity objects using Abbott’s heuristics
• Identify boundary and control objects
• Use sequence diagrams to find:

– additional associations
– objects
– attributes.

• Finally, consolidate the object model and represented it in a
series of class diagrams.

SYSC-3120 — Software Requirements Engineering 20

Entity objects (using Abbott’s heuristics)

SYSC-3120 — Software Requirements Engineering 21

continue…

Entity objects (cont)

SYSC-3120 — Software Requirements Engineering 22

Boundary Objects in Announce Tournament

SYSC-3120 — Software Requirements Engineering 23

Object interaction: tournament creation workflow

SYSC-3120 — Software Requirements Engineering 24

Object interaction: sponsorship workflow

SYSC-3120 — Software Requirements Engineering 25

Object interaction: interest group workflow

SYSC-3120 — Software Requirements Engineering 26

Consolidated class diagram: entity objects

SYSC-3120 — Software Requirements Engineering 27

Inheritance hierarchy among entity objects

SYSC-3120 — Software Requirements Engineering 28

Associations among boundary, control and selected entity objects

SYSC-3120 — Software Requirements Engineering 29

Lessons learned during OO Analysis
• Identifying objects, their attributes and associations, takes many iterations,

often with the client.
• Object identification uses many sources, including the problem statement,

use case model, the glossary, and the event flows of the use cases.
• A nontrivial use case can require many sequence diagrams and several

class diagrams.
• It is unrealistic to represent all discovered objects in a single diagram.

Instead, each diagram serves a specific purpose:
– depicting associations among entity objects
– depicting associations among participating objects in one use case.

• Key deliverables, such as the glossary, should be kept up to date as the
analysis model is refined.

– others, such as sequence diagrams, can be redone later if necessary.
– maintaining consistency at all times, however, is unrealistic.

• There are many different ways to model the same application domain or the
same system, based on the personal style and experience of the analyst.

– This calls for developing style guides and conventions within a project.

SYSC-3120 — Software Requirements Engineering 30

	SYSC-3120 —Software Requirements Engineering
	ARENA Case Study
	Initial Problem Statement
	Initial Problem Statement (2)
	Initial Problem Statement (3)
	Initial Problem Statement (4)
	Initial Problem Statement (5)
	Initial Problem Statement (6)
	Identifying Actors and high-level Use Cases
	Glossary – define problem domain concepts
	Refine high-level Use Cases
	Brief description of Use Cases (1)
	Brief description of Use Cases (2)
	 High-level use case OrganizeTournament
	Refine OrganizeTournament
	Exceptions occurring in AnnounceTournament
	Non-functional requirements (1)
	Non-functional requirements (2)
	Lessons Learned during Requirements Elicitation
	OO Analysis Phase
	Entity objects (using Abbott’s heuristics)
	Entity objects (cont)
	Boundary Objects in Announce Tournament
	Object interaction: tournament creation workflow
	Object interaction: sponsorship workflow
	Object interaction: interest group workflow
	Consolidated class diagram: entity objects
	Inheritance hierarchy among entity objects
	Associations among boundary, control and selected entity objects
	Lessons learned during OO Analysis

