CARLETON UNIVERSITY

Department of Systems and Computer Engineering

Wednesday June 13, 2007.

1. Assume the following program was compiled and executed using static scoping rules. What value of X is printed in procedure Sub1? Under dynamic scoping rules, what value of X us printed in procedure Sub1?
procedure Main is
X : Integer;
procedure Sub1 is
begin - of Sub1 Put(X); end; - of Sub1
procedure Sub2 is X : Integer; begin - of Sub2
$\mathrm{X}:=10$;
Sub1; end; - of Sub2
begin - of Main
X :=5;
Sub2;
end; - of Main
2. Consider the following program:
procedure Main is
X, Y, Z: Integer;
procedure Sub1 is
A, Y, Z: Integer;
begin - of Sub1
end; - of Sub1
procedure Sub2 is
A, B, Z: Integer;
begin - of Sub2
end; - of Sub2
procedure Sub3 is
A, X, W: Integer;
begin - of Sub3

$$
\begin{aligned}
& \quad \text { end; - of Sub3 } \\
& \text { begin - of Main } \\
& \cdots ; \\
& \text { end; - of Main }
\end{aligned}
$$

Given the following calling sequences and assuming that dynamic scoping is used, what variables are visible during the execution of the last subprogram activated? Include with each visible variable the name of the unit where it is declared.
a) Main calls Sub1; Sub1 calls Sub2; Sub2 calls Sub3;
b) Main calls Sub3; Sub3 calls Sub2; Sub2 calls Sub1;
3. Consider the following program:

```
procedure Main is
    X, Y, Z: Integer;
    procedure Sub1 is
        A, Y, Z: Integer;
        begin - of Sub1
        end; - of Sub1
    procedure Sub2 is
        A, X, W: Integer;
        procedure Sub3 is
            A, B, Z: Integer;
            begin - of Sub3
            end; - of Sub3
        begin - of Sub2
        end; - of Sub2
    begin - of Main
    ...;
    end; - of Main
```

List all of the variables, along with the program units where they are declared, that are visible
in the bodies of Sub1, Sub2, and Sib3, assuming static scoping is used.
4. Multicolumn arrays can be stored in row major order, as in $\mathrm{C}++$, or in column major order, as in Fortran. Develop the access functions for both of these arrangements for three-dimensional arrays.
5. Consider the following C program:

```
int fun( int *i ) {
    i += 5;
    return 4;
}
void main() {
    int x = 3;
    x = x + fun(&x );
}
```

What is the value of x after the assignment statement in main, assuming:
a) operands are evaluated left to right.
b) operands are evaluated right to left.
6. Assuming the following rules of associativity and precedence for expressions:

$$
\begin{array}{ll}
\text { Precedence: } \quad \text { Highest } \quad & *, /, \text { not } \\
& +,-, \&, \bmod
\end{array}
$$

unary -
$=, /=,<,<=,>=,>$
and
Lowest or, xor
Associativity left to right

Show the order of evaluation of the following expressions be parenthesizing all subexpressions and placing a superscript on the right parenthesis to indicate order. For example, for the expression

$$
a+b * c+d
$$

the order of evaluation would be represented as

$$
\left(\left(a+(b * c)^{1}\right)^{2}+d\right)^{3}
$$

a) $a * b-1+c$
b) $a>b$ xor c or $d<=17$
7. Rewrite the following code segment using a multiple selection statement in the following languages:

```
if (k=1) or (k=2) then j := 2 * k - 1;
if (k=3) or (k=5) then j := 3 * k + 1;
if (k=4) then j := 4 * k - 1;
if (k=6) or (k=7) or (k=8) then j := k - 2;
```

(a) C or C++ or Java;
(b) Scheme.

