
Introductory Assembly Language

Thorne : Chapter 3, Sections 7.1, 13.1, Appendix V.A
(Irvine, Edition IV : 4.1, 4.2, 6.2 7.2, 7.3, 7.4)

SYSC3006 1

Intel 8086 Assembly InstructionsIntel 8086 Assembly Instructions

• Assembly instructions are readable forms of machine instructions
– They use mnemonics to specify operations in a human-oriented

short form
– Examples

MOV (move)
SUB (subtract)
JMP (jump)

• Instructions have two aspects : operation and operands
– Operation (Opcode): how to use state variable values
– operands: which state variables to us

• Operands can be specified in a variety of ways that are called
addressing modes
– Simple modes: register, immediate, direct

SYSC3006 2

– More powerful: indirect

Sample Instructions

Syntax Semantics

MOV AX, BX AX := BX (2 ops)
ADD DX, CX DX := DX + CX (2 ops)
SUB DX, AX DX := DX – AX (2 ops)
INC AX AX := AX + 1 (1 op)
NOP (0 op)

Instructions with two operands : destination (dest), source (src)
MOV AX, BX

Operation operand (dest), operand (src)
(Opcode)

(Order of dest and src is important, Must know on exams)

SYSC3006 3

(p ,)

Instruction Syntax : Operand Compatibility

• For all instructions with two operands, the two operands must be
compatible (same size).

In high level languages : type checking– In high level languages : type checking
– In assembly : same size

• Examples :
MOV AH, CL 8-bit src and dest ☺
MOV AL, CX ????? /

Example uses register modeExample uses register mode,
but compatibility is required
for all addressing modes to
come.

SYSC3006 4

Addressing Modesg

Syntax Semantics Addresssing Mode

MOV AX, BX AX := BX Register,Register
ADD DX, 1 DX := DX + 0001 Register,Immediate
SUB DX, [1] DX := DX – m[DS:0001] Register,Direct Memory
SUB DX, var DX :=DX – m[DS:var] Register,Direct Memory

A variable declared in data segment (more later)

INC [BX] m[DS:BX]:= m[DS:BX]+1 Register Indirect
MOV AX, [BX+1] AX := m[DS:BX+1] Based Indirect

d d di

g ()

MOV AX, [BX+SI] AX := m[DS:BX+SI] Based-Index Indirect
MOV AX, [BX+SI+1] AX := m[DS:BX+SI+1] Based-Index Indirect

with Displacement

SYSC3006 5

p

Addressing Mode : (1) Register

Register mode allows a register to be specified as an operand
As a source operand : Instruction will copy register value
A d ti ti it l t i tAs a destination: write value to register

Example : MOV AX, DX
register addressing mode for
both dest and srcp ,

AX := DX
Contents of DX is copied to AX

SYSC3006 6

Addressing Mode : (2) ImmediateAddressing Mode : (2) Immediate

• Immediate mode allows a constant to be specified as source
– Constant value is encoded as part of the instruction

E ample : MOV AL 5• Example : MOV AL, 5
– Because AL is an 8-bit destination, the instruction encoding

includes 8-bit value 05h
• Example : MOV AX, 5

– Because AX is a 16-bit destination, the instruction encoding
includes the 16-bit value 0005hincludes the 16 bit value 0005h

• Question : Is this possible ? MOV 4, BH ????

SYSC3006 7

Addressing Mode : (3) Direct Memory

• Direct memory mode allows the address offset of a memory
variable to be specified as an operandvariable to be specified as an operand
– A constant address offset is encoded as part of the instruction
– The address offset is static : It must be known at assembly-

time and remains constant through execution but thetime and remains constant through execution … but the
contents of that address may be dynamic

– During execution, the address offset is implicitly combined
with DSwith DS

• Example : MOV AL, [5]
• Reads contents of byte at address DS:0005 BEWARE :

Compare To• Example : MOV var, AX
– Assumes a variable is declared in data segment
– Write contents of word at address DS:var

Compare To
Immediate Mode!!
MOV AL, 5

SYSC3006 8

Addressing Mode : (4a) Register Indirect

• A register holds the address offset of the operand
• The register can only be : BX SI DI BP• The register can only be : BX, SI, DI, BP
• DS is default segment for: BX, SI, DI
• SS is default segment for BP (later!)
• Syntax : [register]

I di t E l Value in BX is used as address• Indirect Example:
MOV AX, [BX]

= MOV AX, DS:[BX]

Value in BX is used as address
offset to a memory operand

CPU loads AX with contents of, []
Ö AX:= m[DS:BX]

CPU loads AX with contents of
contents of that memory

Indirect addressing mode use registers as a pointer,
hi h i i t t h dl ! (l t)

SYSC3006 9

which is a convenient way to handle an array! (later)

Addressing Mode : (4b) Indirect Indexed or Based

• Like register indirect, except you also specify a constant
e.g. [BX + constant]

• During execution, the processor uses a temporary register to
calculate BX + constant
– It then accesses memory addressed by BX + constanty y

• Restriction: may only use BP, BX, SI or DI
• Example :

same as register indirect

MOV AX, [BX +2]
= MOV AX, 2[BX]
= MOV AX [BX][2]

In both cases :
CPU computes address = Value in
BX+2 MOV AX, [BX][2]

MOV AX, [BX +var]

BX+2
CPU loads AX with of that
address

SYSC3006 10

= MOV AX, var[BX]

Addressing Mode (4c) : Indirect Based-IndexedAddressing Mode (4c) : Indirect Based Indexed

• It is like indexed, except you use a second register instead of a constant
e.g. [BX + SI]

• During execution, the processor uses a temporary register to calculate
sum of register values
– It then accesses memory addressed by sum

• Restrictions:
– one must be base register: BX (or BP Å later!)
– one must be index register: SI or DI
– The only legal forms:

[BX + SI] [BX + DI]
base = BXDefault DS

[] []
[BP + SI] [BP + DI]

base = BPDefault SS

SYSC3006 11

Addressing Mode (4c) : Indirect Based Indexed withAddressing Mode (4c) : Indirect Based-Indexed with
Displacement

• It is like based-indexed mode, except includes a constant too, p
e.g. [BX + SI + constant]

• During execution, the processor uses a temporary register to
calculate sum of valuescalculate sum of values
– It then accesses memory addressed by sum

• Restrictions: same as based mode
• MOV AX, [BX + SI + 2]
= MOV AX, [BX][SI+2]
= MOV AX 2[BX+SI]

In both cases :
CPU computes address = Value in= MOV AX, 2[BX+SI]

• MOV AX, [BX + SI + var]

CPU computes address Value in
BX+SI+2
CPU loads AX with of that
address

SYSC3006 12

= MOV AX, var[BX][SI]

Loading Registers with Addresses

• Before most instructions that use indirect addressing, the registers have
to be loaded with address.

• Two alternatives :
MOV BX, OFFSET W

Functionally
equivalent!

LEA BX, W
• Both calculate and load the 16-bit effective address of a memory

operand.

SYSC3006 13

Segment Override

Required for exam : Restricted uses of registers
MOV [DX], AX Marks will be deducted.

Recall : DS is default segment for: BX, SI, DI
SS is default segment for BP (later!)

MOV [BX], AL = = MOV DS:[BX], AL
MOV [BP], AL = = MOV SS:[BP], AL

At times, you may run out of registers and need to use either the
index registers or the segment registers outside of their assigned
default roles (eg. duplicating data structures),default roles (eg. duplicating data structures),

MOV SS:[BX], AL
MOV ES:[BX], AL
MOV DS [BP] AL

SYSC3006 14

MOV DS:[BP], AL

Operand Compatibility with Memory Operands

Clear and unambiguous Examples
MOV [0BCh], AX
MOV [BX] ALMOV [BX], AL

– Why ? Because the other REGISTER operand determines
size

Ambiguous Examples :
MOV [0BCh], 1
MOV [BX], 0

– Why ? The immediate operand could be 8 bits or 16 bits ?
– How does the assembler decide ?

SYSC3006 15

How does the assembler decide ?

Operand Compatibility with Memory Operands

• Memory Access Qualifiers

WORD PTR word pointer – 16-bit operandWORD PTR word pointer – 16-bit operand
BYTE PTR byte pointer – 8-bit operand

l• Example :
MOV BYTE PTR [0FF3E], 1

8 bit destination, no ambiguityg y

MOV WORD PTR [BX], 0
16 bit destination no ambiguity

SYSC3006 16

16-bit destination, no ambiguity

Assembler Tip About Operand Compatibility

W DW 0AA33h
. . .

MOV AL W 8 bit register dest operand

16-bit memory src operand

MOV AL, W

• The assembler will generate an error

8-bit register dest operand

g
– Basic “type checking”

SYSC3006 17

Programs to do simple arithmeticPrograms to do simple arithmetic

Problem : Write a code fragment to add the values of memory locations
at DS:0, DS:01, and DS:02, and save the result at DS:10h.
Solution:
Step 1

AL ⇐ m[DS:00]
Processor Memory

Step 2
AL ⇐AL + m[DS:01]

Step 3
AL ⇐AL + [DS 02]

AL=10h/30h/44h

DS:00 10h

DS:01 20h

AL ⇐AL + m[DS:02]
Step 4

DS:10 ⇐ AL

DS:02 14h

MOV AL, [0000]
ADD AL, [0001]
ADD AL, [0002]

DS:10h FFh 44h
DS is default!

SYSC3006 18

, []
MOV [0010h], AL

Learning how to read a reference manual on assembly
instructions

We’ve seen that instructions often have restrictions – registers, addressing
mode

For each instruction – whether in textbook or in processor’s programmingFor each instruction whether in textbook or in processor s programming
manual - the permitted operands and the side-effects are given

Thorne text Appendix VA “Instruction set summary”
ADD
Instruction Formats : Flag status affected:

AF PF CF SF OF ZF

Thorne text, Appendix V.A Instruction set summary

ADD reg, reg ADD reg, immed
ADD mem, reg ADD mem, immed
ADD reg, mem ADD accum, immed

AF, PF, CF, SF, OF, ZF

SYSC3006 19

Is this permitted : ADD X, Y ?

Learning how to read a reference manual on assembly
instructions

Fl t t ff t dMOV
Instruction Formats :

MOV MOV i d

Flag status affected:
None

MOV reg, reg MOV reg,immed
MOV mem, reg MOV mem, immed
MOV reg, mem MOV mem16, segregg, , g g
MOV reg16, segreg MOV segreg, mem16
MOV segreg, reg16

Question: Suppose we want to initialize DS with a constant value
45DFh ?

Segment registers (CS, DS, SS, ES) are 16-bit!

SYSC3006 20

Understanding High-Level Control Flow at Machine Level

• Execution of data transfer/manipulation
instruction advances CS:IP to next
sequential instruction. Conditional Statements :q

• Execution of control flow instructions
changes address for fetch of next
instruction.

if (condition)
{

true_statements;
}• For example :

– If condition is true, continue
sequentially then skip to
next statements

}
else
{

false_statements;
next_statements

– If condition is false, skip to
false_statements, then continue
sequentially

_
}
next_statements;

sequentially
– Skip = control flow or jumps

• Conditions depend on the status flags
(zero, carry, overflow, sign, parity)

Skip == Change
CS:IP of next
fetched instruction

SYSC3006 21

(, y, , g , p y)
(ZF, CF, OF, SF, PF)

Understanding High-Level Control Flow at Machine
Level

• Control Flow is also seen in Program Loops
for (i = n1 to n2) for (i= n2 downto n1)
{ d t t t S } { d St t t S }{ do statements S } { do Statements S }

while (condition C) do { statements S }() { }

repeat { statements S } until (condition C)

“condition” are dependent on the status flags

SYSC3006 22

Control Flow Implications of Segmented Memory ModelControl Flow Implications of Segmented Memory Model

• The address of the next instruction is determined by CS:IP
• Intra-segment control flow : control stays in current code

segment
– Only need to modify IPy y
– Need only supply (up to) 16-bit of information

• Inter-segment control flow : control passes to an address outside
f t d tof current code segment
– Must modify both CS and IP
– Must supply 32-bits of information.pp y

• To begin : We will only be concerned with intrasegment control
fl (l dif IP)

SYSC3006 23

flow (only modify IP)

JMP target Unconditional JUMP

• Control is always transferred to specified (relative) target.

Relative Addressing Example: .LST file fragment
address machine instruction ASM instruction

()(memory contents)
0034H E9 10 02 JMP 0247H
0037H

Not…. …. ….
0247H CS:247

start of fetch: IP = 0034H IR = ????????

E9 47 02!

sta t o etc : 003 ????????
after fetch: IP = 0037H IR = E9 10 02
after execute: IP = 0247H IR = E9 10 02 (Little endian=0210h)

SYSC3006 24

Simple Conditional JMPs

• Specify condition in terms of FLAG values set by the execution
of the previous instruction
JZ Jump Zero: Jump if ZF = 1 else continueJZ Jump Zero: Jump if ZF = 1 else continue
JC Jump Carry : Jump if C=1 else continue
JO Jump Overflow:Jump if O=1 else continue
JS Jump Signed : Jump if S=1 else continue
JP Jump Parity : Jump if P=1 else continue

• For each case, there is a “not” condition ,
e.g. JNZ Jump Not Zero

Loop Example: MOV CX, 5
DoLoop:DoLoop:

. . .
SUB CX, 1

SYSC3006 25

JNZ DoLoop
·

Comparison Instructions CMP

• Comparison instructions are used to simply set the flags
CMP dest, src

P f d t d t FLAGS (b t d t t lt)• Performs dest – src and sets FLAGS (but does not store result)
• CMP Example :

CMP AL, 10
JZ EqualToTen ; or JE !
… ; Code for Not Equal

EqualToTen:

• It is often useful to think of combination as:
CMP dest, srcCMP dest, src
J*

Where the jump is taken if “dest - src” meets condition *

SYSC3006 26

– in above example, jump is taken if AL == 10

