
1

Question 2 [21 marks] Array Programming and Subroutines

The address B800:0000h in the main memory of an 8086-based PC, is used as the starting
address of an array with a specific purpose. We will call this the display array.

(1) The display array is directly mapped to the display screen. This means that any
write to an element in this array results in an update to your screen.

(2) Each element in the array is a byte-pair that can be described as follows:
struct { char ASCII;

 unsigned byte colour; } DISPLAY_CHAR;
 where colour = {07h(white), 08h(grey), 09h(blue), 0A(green) …

(3) The array is 2-dimensional, and it represents a rectangular screen of 60 rows
(screen height) and 80 characters per row (screen width).

DISPLAY_CHAR displayArray[60][80];

Example : Write ‘A’ to the upper-left corner
displayArray[0][0].ASCII = ‘A’;

Example : Change the rightmost character on the 2nd row to blue.
 displayArray[1][79].colour= 09h;
a) [1 mark] How big is this array (total size in bytes) ?

b) [3 marks] Write an equation that calculates the offset of the character in row r and
column c.

c) [5 marks] Write an ASM code fragment that fills the entire screen with green
character ‘A’s.

d) [2 marks] In class, we’ve said that the Intel 8086 supports isolated I/O and have
studied several examples (timer, PIC, keyboard, switches, LEDs). This display array
however is a form of memory-mapped I/O because writing to this array (at memory
address B800:0000) causes a character to be displayed on the screen (an output
device). Suggest one reason why memory-mapped I/O would be more convenient for
displays (Hint : How would the code you wrote for the previous question change?)

e) [10 marks] Write the complete ASM implementation of the following subroutine
according to the provided pseudo-code. Course policies must be used.

boolean putString(char[] &msg, unsigned byte size, unsigned byte row)
// Print a string of “size” length on the “row”, starting at column=0.
// Return false if row is too big or msg is too long to fit on 1 line.
// if (size > 80) return false;
// boolean error = false;
// for (int i=0; i<size && error != true; i++)
// { error = putChar(msg[i], row, i) ; }
// return error;

You are provided with the implementation of putChar() to use in your subroutine.
boolean putChar (char ASCII, unsigned byte row, unsigned byte column)

2

// Display a character at [row,column] and returns true;
// return false if row or column are beyond the screen size.

Question 3 [8 marks] Assembly Development

a) [1 mark] IP = address of the next instruction to be fetched (not the instruction
currently being executed). Give one example where this definition is useful.

b) [4 marks] Below are a few possible errors messages from the assembler. For each
one, identify during which pass of the assembler the message would be printed.

Unresolved Reference ____________

Invalid instruction operands ____________

Target for conditional jump is out-of-range __________

Incompatible operands ____________

c) [3 marks] Three separate (i.e. they don’t do anything useful) ASM statements follow.
For each one, state whether the calculation is static (done during program build) or
dynamic (done during program execution).

 EQU INT_TYPE 9*4 ______________

 MOV ES:[BX+2], CS ______________

 MOV msg+2, ‘A’ ______________

Question 4 [20 marks] Interrupt Processing

a) [3 marks] Name three functions of the Intel 8259 Programmable Interrupt Controller.

b) [3 marks] The NMI is a hardware interrupt. Write an ASM code fragment to show
how you can artificially create an NMI in software. Give one reason why you may
want to do this.

Question 5 [20 marks] Designing a complete application

One of the uses of robots in factories is for repetitive movements where, time after time, a
sequence of precise movements is required. Suppose we have a simple robot that works
as follows:

a) Whenever stationary, the robot reads the contents of its 8-bit write-only data port
(at I/O address 0389h) that contains a position value written by the software of the
robot controller.

b) The robot then moves to the next given position, if different.
c) The robot stops.

3

d) Repeat the previous steps forever

Suppose that the robot controller is built using an 8086-based system.

a) [3 marks] Assume that the software for the robot controller has a global variable (one
byte) called nextPosition. Write an assembly code fragment that writes the contents of
nextPosition to the robot’s data port.

b) [15 marks] Our simple robot is to be used in a chocolate factory environment. Its job
will be to transfer a row of chocolate bars from their molds traveling on one conveyor
belt to their packaging on another conveyor belt. The system will also have a small
keyboard with four buttons: (1) RESET to start the robot moving, beginning at its
initial position (2) PAUSE to temporarily stop the movement (3) RESUME to
continue moving from its current position (4) QUIT to power down. Inappropriate
keystrokes (e.g. hit RESUME when already running) will be ignored.

Write the pseudo-code solution for a program that will cause our robot to move
through a repeated sequence of positions. The required sequence of movements is
encoded in an array of position values declared as follows (assume it is initialized to
proper values) :

positions db 10 dup (?) ; positions to be used by the robot

The program must simply iterate through the array at a regular interval of 5 seconds,
at the same time handling any activity on the keyboard.

Assume that the timer is programmed to interrupt every 1 second. The solution must
be completely interrupt-driven with main() simply waiting to quit. Show only the logic
of the solution and the use of data variables. No marks will be given for assembly
code, for ISR installation, for programming the timer, for initializing the positions
array, or for STI/CLI/EOI.

The PC I/O Map

LED Data port 378h Switch Data port 379h
PIC Command Register 20h PIC Mask Register 21h
PIT Timer 0 Data Register 40h PIT Control Register 43h
Keyboard Data Port 60h Keyboard Control Port 61h

An instruction summary

Transfer instructions MOV dest, src PUSH reg/mem POP reg/mem
 IN ALorAX, imm8 IN ALorAX, DX
 OUT DX, ALorAX OUT imm8, ALorAX

Arithmetic Instructions : ADD dest, src SUB dest, src CMP dest, src
MUL reg DIV reg

4

INC operand DEC operand

Logical instructions : AND dest, src TEST dest,src
OR dest, src XOR dest,src NOT operand

Shift Instructions:
Arithmetic : SAR operand, 1 SAR operand, CL

SAL operand, 1 SAL operand, CL
Logical : SHR operand, 1 SHR operand, CL

SHL operand, 1 SHL operand, CL

Control Flow
 Unconditional : JMP target

Simple Branches : JC JS JO JZ LOOP target
Unsigned Branches : JA JB JAE JBE
Signed Branches : JG JGE JL JLE

 Subroutines: CALL target RET
ISRs : INT type IRET INTO
 CLI Disable STI Enable

