
SYSC-3006 Pearce/Schramm/Wainer

Indirect Addressing Modes

SYSC-3006 Pearce/Schramm/Wainer

A (more complete) Summary of Intel Addressing Modes

Immediate: constant
• constant data contained as part of instruction

Register: contained in a register
• Instruction specifies which register

Memory: contained in a memory location
• Instruction specifies address of memory operand
Direct

– constant address contained as part of the instruction
– Address static: known at assembly-time. Remains

constant throughout program execution.
Indirect

– Variable address in a register
– instruction specifies the register holding the address
– Address dynamic: depends on contents of register

when instruction is executed.

SYSC-3006 Pearce/Schramm/Wainer

(Register) Indirect Memory Address Mode

• Register holds address offset of operand
• Register can only be: BX, SI, DI, BP
• DS default segment for BX, SI, DI
• SS default segment for BP (later!)
• Syntax: [register]

• Indirect Example:
W DW
. . .

MOV BX, OFFSET W
. . .

MOV AX, [BX]

“[“ & “]” differentiates from register mode !

offset of variable treated as a constant

Value in BX used as offset to memory
operand

• loads AX with contents of W

SYSC-3006 Pearce/Schramm/Wainer

An Alternative to OFFSET : LEA instruction

• Before using indirect addressing, we always need to
load the register with the address

• Two alternatives :
MOV BX, OFFSET W

LEA BX, W

• Both calculate and load the 16-bit effective address of a memory
operand.

Functionally
equivalent!

SYSC-3006 Pearce/Schramm/Wainer

Why are the [] – brackets needed?

• What is the difference?
MOV AX, 1234h
MOV AX, [1234h]

• What is the difference?
MOV AX, BX
MOV AX, [BX]

• What is the difference? (suppose BX = 1234h)
MOV AX, [1234h]
MOV AX, [BX]

SYSC-3006 Pearce/Schramm/Wainer

Example : Using Register Indirect for Array Programming

• Suppose we have array of integers declared:
X DW ; 1st element of array

DW ; 2nd element of array
. . . etc.

numX DW ; number of elements in X

• Write a program that sums the contents of the array into AX
int total = 0;
for (int i=0; i<numX; i++) {

total += X[i];
}

• Use DI to hold the address of the current element.
• i.e., it plays the role of X[i]

Each element is 2 bytes long

SYSC-3006 Pearce/Schramm/Wainer

Memory Map

DS:00
DS:01
DS:02

DS:04
DS:03

DS:05

DS:07
DS:06

DS:08

DS:0A
DS:0B

DS:09

00
0D
00

01
0F

40

D4
03

00

00
56

2A

……

XAX = total

CX = loop counter i

DI = address of X[i]

[DI]

SYSC-3006 Pearce/Schramm/Wainer

Code Fragment Example:
MOV AX, 0 ; initialize sum
LEA DI, X ; initialize array index
MOV CX, numX ; get # of elements

CheckForDone:
CMP CX, 0 ; any elements left to sum?
JE Done

ADD AX, [DI] ; sum ith element

ADD DI, 2 ; adjust index (offset)
SUB CX, 1 ; one less element
JMP CheckForDone

Done: …

Why “2”?

SYSC-3006 Pearce/Schramm/Wainer

Segment Override

Recall : DS is default segment for: BX, SI, DI
SS is default segment for BP (later!)

MOV [BX], 3 = = MOV DS:[BX], 3
MOV [BP], 3 = = MOV SS:[BP], 3

You run out of registers: need to use either the index registers or segment
registers outside of their default roles (eg. duplicating data structures),

MOV SS:[BX], 3
MOV ES:[BX], 3
MOV DS:[BP], 3

SYSC-3006 Pearce/Schramm/Wainer

Indirect Addressing Ambiguity

• Indirect addressing: register holds offset to operand
– Address offset points to a single memory location

• In some cases, no ambiguity in operand size
eg. MOV AL, [BX]

• AL – 8-bit register
• [BX] is interpreted as the offset to byte of memory

• In others, ambiguity :
eg MOV [BX], 1
– Source is immediate value
– 8 bit or 16 bit ? Move byte 01 to the offset, or the word 0001?

• You must use syntax qualifiers to remove ambiguity
MOV BYTE PTR [BX], 1
MOV WORD PTR [BX], 1

SYSC-3006 Pearce/Schramm/Wainer

The Power of Indirect Addressing

• Advantage ?
MOV AX, var versus LEA BX, var

MOV AX, [BX]
• Power: support for data structures

– Arrays: collection of elements all of the same type
int array[10];
array[0] = 1; array[2] = 5; …

– Records or Structures: collection of elements of different types
struct {

char name[80];
int number;

} student;
student.number = 123456;

High level language selector is []

High level
language selector
is “.”

SYSC-3006 Pearce/Schramm/Wainer

A Vector A 2-D Matrix (4x3) A 3-D Matrix (4x4x4)

0

1

2

3

0

1

2

3

0 1 2

Arrays are Indexable Data Structures

Access to each element given by an address calculation

- array[i] = start address of the array + i * sizeOfElement

- Offset depends on size of the element

- First element of a vector is associated with the index 0. Why ?

SI and DI are index registers. Hmmm …

SYSC-3006 Pearce/Schramm/Wainer

ASM Programming of Arrays is all about Addresses

.data

a1 db 11h, 22h, 33h, 44h, 55h

a2 db 01h

db 02h

db 03h

a3 db 2 dup(0FFh)

Memory Map

DS:00
DS:01
DS:02

DS:04
DS:03

DS:05

DS:07
DS:06

DS:08

DS:0A
DS:0B

DS:09

11h
22h
33h

55h
44h

01h

03h
02h

FFh

?
?

FFh

C equivalent :
byte a1[5]; a1[0] = 17;
byte a2[3]; a2[1] = 2;
byte a3[2]; a3[1] = 255;

SYSC-3006 Pearce/Schramm/Wainer

ASM Programming of Arrays
is all about Addresses

.data
a1 dw 11h, 22h, 33h, 44h
a2 dw 01h

dw 02h
dw 03h

a3 dw 2 dup(0FFFFh)

Memory Map

DS:00
DS:01
DS:02

DS:04
DS:03

DS:05

DS:07
DS:06

DS:08

DS:0A
DS:0B

DS:09

11
00
22

33
00

00

00
44

01

02
00

00

03DS:0C

…

C equivalent :
int a1[5]; a1[0] = 17;
int a2[3]; a2[1] = 2;
int a3[2]; a3[1] = 65535;

SYSC-3006 Pearce/Schramm/Wainer

ASM Programming of Arrays is all about Addresses

.data

a1 db 01h, 05h

db 02h, 06h

db 03h, 07h

a2 db 2*2 dup(00)

Memory Map

DS:00
DS:01
DS:02

DS:04
DS:03

DS:05

DS:07
DS:06

DS:08

DS:0A
DS:0B

DS:09

01
05
02

03
06

07

00
00

??
??DS:0C

00
00
??

C equivalent :
byte a1[3][2]; a1[0][1] = 5;
byte a2[2][2]; a2[1][1] = 0;

SYSC-3006 Pearce/Schramm/Wainer

Structures

• Group of related variables accessed through a common name.
• Each item within a structure: its own data type.

struct catalog_tag {
char author [40];
char title [40];
char pub [40];
unsigned int date;
unsigned char rev;

} card;

where, the variable card is of type catalog_tag.

To access :

card.author[0]

card.date

card.rev

SYSC-3006 Pearce/Schramm/Wainer

ASM Programming of Structures is all about Addresses

.data

card db 40 dup (‘$’)

db 40 dup (‘$’)

db 40 dup (‘$’)

dw ?

db ?

Memory Map

DS:00
…
DS:27

…
DS:28

DS:4F

…
DS:50

DS:77

DS:79
DS:7A

DS:78

$
…
$

…
$

$

…
$

$

?
?

?

Author

Title

Pub

Date

Rev

SYSC-3006 Pearce/Schramm/Wainer

There are 2 scenarios when programming arrays:

1. Address of array static

2. Address of array dynamic

• Code work for any array of a given type (i.e. sizeof
element), given the start address.

• Example: function accepting array as an argument for
processing

• Different invocations of the function may process
different arrays

• 8086 addressing modes exist to support both cases !

SYSC-3006 Pearce/Schramm/Wainer

(Indirect) Indexed or Based Addressing Mode

• Like register indirect, except you also specify a constant
e.g. [BX + constant]

• During execution, processor uses a temporary register to calculate
BX + constant

– It then accesses memory addressed by BX + constant
• Restriction: may only use BP, BX, SI or DI

• Typical Uses :
1. Accessing array using static address

• Constant = start address of array
• Register = index offset (address offset from start)

2. Accessing elements within a structure
• Register = start address of structure
• Constant = offset of elements within structure

same as register indirect

SYSC-3006 Pearce/Schramm/Wainer

Code Fragment Example:
MOV AX, 0 ; initialize sum
MOV DI, 0 ; initialize index offset
MOV CX, numX ; get # of elements

CheckForDone:
CMP CX, 0 ; any elements left to sum?
JE Done

ADD AX, [DI + X] ; sum ith element

ADD DI, 2 ; adjust index (offset)
SUB CX, 1 ; one less element
JMP CheckForDone

Done: …

start address of X is staticdynamic!
DI holds
offset to
element

SYSC-3006 Pearce/Schramm/Wainer

Example: using indexed mode on a structure

Assume we have the previous structure definition :

struct catalog_tag {
char author [40];
char title [40];
char pub [40];
unsigned int date;
unsigned char rev;

} card;

Write a code fragment to clear all fields of the structure
• Make all strings “empty”
• Make all data fields null.

SYSC-3006 Pearce/Schramm/Wainer

Structure Example:

AUTHOR EQU 0
TITLE EQU AUTHOR+40
PUBLISHER EQU TITLE+40
DATE EQU PUBLISHER+40
REVISION EQU DATE+2

MOV BX, offset card

MOV BYTE PTR [BX+AUTHOR], ‘$’
MOV BYTE PTR [BX+TITLE], ‘$’
MOV BYTE PTR [BX+PUBLISHER], ‘$’
MOV WORD PTR [BX+DATE], 0
MOV BYTE PTR [BX+REVISION], 0

constant is the
offset of element
within structure.

BX = constant
start address of
structure.

SYSC-3006 Pearce/Schramm/Wainer

(Indirect) Base-Indexed Addressing Mode:

• Like indexed, except you use a second register instead of a constant
e.g. [BX + SI]

• During execution, processor uses temporary register to calculate sum of
register values

– It then accesses memory addressed by sum
• Restrictions:

– one must be base register: BX (or BP ß later!)
– one must be index register: SI or DI
– only legal forms:

[BX + SI] [BX + DI]
[BP + SI] [BP + DI]

• Typical use : access array using dynamic address
– One register = start address; Other register = index offset

base = BX

base = BP

Default DS

Default SS

SYSC-3006 Pearce/Schramm/Wainer

Code Fragment Example:
MOV AX, 0 ; initialize sum
LEA BX, X ; initialize base
MOV SI, 0 ; initialize index offset
MOV CX, numX ; get # of elements

CheckForDone:
CMP CX, 0 ; any elements left to sum?
JE Done

ADD AX, [BX + SI] ; sum ith element

ADD SI, 2 ; adjust index (offset)
SUB CX, 1 ; one less element
JMP CheckForDone

Done: …

SYSC-3006 Pearce/Schramm/Wainer

(Indirect) Based-Indexed with Displacement Addressing
Mode

• Like based-indexed mode; includes a constant too
e.g. [BX + SI + constant]

• During execution, processor uses temporary register to calculate sum of
values
– accesses memory addressed by sum

• Restrictions: same as based mode
• Typical use: Composite Data structure (Beyond single arrays)

– Array of arrays :
• Constant = start address,
• 1st register = index offset into first dimension;
• 2nd register = index offset into second dimension

– Array of structs:
• 1st register = start address;
• 2nd register = index offset (start of structure);
• constant = offset of element within structure.

SYSC-3006 Pearce/Schramm/Wainer

SYSC-3006 Pearce/Schramm/Wainer

Using Register Indirect with Control Flow

• Three forms of addressing were identified for control flow
– Absolute
– Relative
– Indirect

• Example :
MOV BX, offset version1
JMP [BX] ; What does BX contain ?

version1:
…

version2 :
…

• Dynamic selection of code (e.g. Java runtime binding ?)

SYSC-3006 Pearce/Schramm/Wainer

Using Register Indirect with Control Flow

• When using indirect target, you encounter another “operand ambiguity”:
Intra-segment or inter-segment control flow.

• Intra-segment control flow :
– BX = address containing offset of next instruction.

• BX an address to a word.
• Inter-segment control flow :

– BX = address containing segment:offset of next instruction
• BX is an address of two words.

• For data, we used WORD PTR and BYTE PTR to resolve the ambiguity.
• For control flow:

– JMP NEAR PTR [BX] ; Intra-segment
– JMP FAR PTR [BX] ; Inter-segment.

SYSC-3006 Pearce/Schramm/Wainer

Stack … As a generic Abstract Data Type

• Stack: data structure with LIFO behaviour (often used to hold
values temporarily)

• Concept: a pile of “things” (elements); one element on top, the rest
follow beneath sequentially.

– Example: stack of papers
– Last-In-First-Out Behaviour :

• Each new element added to the top (new thing now on top).
• Elements removed only from the top (element below top in

the pile is now on top).
• Elements below top can be looked at if you know the position

of the element relative to the top.
– Example : Look at the 2nd element from the top.

Change
State

Read
State

SYSC-3006 Pearce/Schramm/Wainer

Stack … As a generic Abstract Data Type

A
B

A
B
C

Existing Stack Add from var1 Remove to var2

Cvar2Cvar1

Read 1st to var3

?? var3

A
B
C

A
B
C

SYSC-3006 Pearce/Schramm/Wainer

A Generic Stack Implementation

What does that
arrow represent ?

top pointer item on top
next item

last item

unused locations

items in stack

next location for
adding a value

Stack implemented by reserving (1) a block of memory to hold
values and (2) a pointer to point to the value on top.

SYSC-3006 Pearce/Schramm/Wainer

Issues in a Generic Stack Implementation

• Stack grow from high-to-low addresses (as in picture), or
vice versa ?

– Conceptually, no difference.
– Convention: typically high-to-low

• Initialization (stack empty): what should top pointer point to?
– usually “top” points outside the reserved block;

next add will adjust pointer before copying value
into the location.

• Stack overflow: full stack (no space for more items), what if
item is added ?

– How can the implementation check ?
– What should the implementation do ?

• Stack underflow: empty stack, what if item is removed ?

SYSC-3006 Pearce/Schramm/Wainer

A Generic Stack Implementation (Stack of bytes)

.data
top dw 102h ; Address of top element
stack db 100h dup (?) ; Stack = array of bytes
…

MOV BX, top ; Add AL to stack
SUB BX, 1
MOV [BX], AL
MOV top, BX

…
MOV BX, top ; Read 7th element from top
ADD BX, 7 ; into AL
MOV AL, [BX]

…
MOV BX, top ; Remove top element into AL
MOV AL, [BX]
ADD BX, 1
MOV top, BX

SYSC-3006 Pearce/Schramm/Wainer

The Hardware or Runtime Stack

• Processor has built-in stack support called the runtime stack.
– “top” maintained by dedicated pointer registers: SS:SP
– SS:SP points to a stack holding 16-bit values.
– grows “down” in memory (high-to-low addresses)
– some instructions: use it implicitly (use/alter SS:SP)

• Must initialize SP before using any stack operations.
.stack size

– assembler reserved a block of memory to use for stack
– translated into instruction to loader to initialize SS:SP !!
– SP points at byte just above (high address!) last byte

reserved for stack

SYSC-3006 Pearce/Schramm/Wainer

Intel Stack Instructions

• PUSH operand Adds a new item at top of stack
– specify 16-bit source operand
– operand may be register or memory
– Stack grows “down” (to lower addresses):

SP := SP – 2 // adjust pointer
mem[SP] := operand // copy value to top

• POP operand Removes item from top of stack
– specify 16-bit destination operand
– operand may be register or memory

operand := mem[SP] // copy value to top
SP := SP + 2 // adjust pointer

SYSC-3006 Pearce/Schramm/Wainer

Intel Stack Instructions

• To read value in stack, index from the top (given by SS:SP)

– Natural solution : MOV AX, [SP + constant]
• recall limitations on indirect addressing modes :

– can only use BP, BX, SI, DI
– But … SS default segment for indirect memory,

access using BP

– Needed solution
• MOV BP, SP
• MOV AX, [BP+constant]

SYSC-3006 Pearce/Schramm/Wainer

Stack as a Storage Buffer

• The stack can be used to temporarily hold data

• Example: Suppose we need to save registers AX, BX and CX

PUSH AX
PUSH BX
PUSH CX

AX value

BX value

CX valueSP

SYSC-3006 Pearce/Schramm/Wainer

Stack as a Storage Buffer

• Example: Suppose we now need to access the saved value of AX.

– We could POP off the values off until AX is reached.
or
– We could index into the stack.

MOV BP, SP

MOV CX,[BP + 4] ;read saved AX

AX value
BX value

CX value

SP

BP

AX value

BX value

CX value

SP

BP

+4

+2

