
SYSC-3006

Advanced Instructions

SYSC-3006

Addressing Mode : (3) Direct Memory

• Direct memory mode: address of memory variable specified as operand
– constant address offset: encoded as part of the instruction
– address offset static: must be known at assembly-time. Remains

constant through execution… (contents of the address may be
dynamic)

– During execution, address offset implicitly combined with DS

• Example : MOV AL, [5]
• Reads contents of byte at address DS:[0005]

• Example : MOV X, AX
– Assumes variable declared in data segment
– Write contents of word at address DS:X

BEWARE :
Compare To
Immediate Mode!!
MOV AL, 5

SYSC-3006

Programs to do simple arithmetic

Problem : Write a code fragment to add values of memory locations
at DS:0000, DS:0001, and DS:0002, and save the result at DS:0010h.

Solution:
Step 1 AL ⇐ m[DS:0000]
Step 2 AL ⇐ AL + m[DS:0001]
Step 3 AL ⇐ AL + m[DS:0002]
Step 4 DS:0010h ⇐ AL

MOV AL, [0000]
ADD AL, [0001]
ADD AL, [0002]
MOV [0010h], AL

Processor

Memory

AL=10h/30h/44h

DS:0000 10h

DS:0001 20h

DS:0002 14h

DS:0010h FFh 44h

SYSC-3006

Problem : Write a program to perform the following operation :
z = x + y where x = 55667788h and y = 99669988h

Solution:
.data
x DW 7788h
DW 5566h

y DW 9988h
DW 9966h

z DW ?
DW ?

.code
MOV AX, x
MOV BX, x+2
ADD AX, y
ADD BX, y+2
MOV z, AX
MOV z+2, BX

END

1 111
5566 7788

+ 9966 9988

EECD 1110

SYSC-3006

Operand Compatibility with Memory Operands

Clear and unambiguous Examples
MOV [BC], AX
MOV [1234h], AL

– Why? REGISTER operand determinates size

Ambiguous Examples :
MOV [BC], 1
MOV [1234h], 0

– Why? Immediate operand could be 8 bits or 16 bits.
– How does the assembler decide ?

SYSC-3006

Operand Compatibility with Memory Operands

• Memory Access Qualifiers

WORD PTR word pointer – 16-bit operand
BYTE PTR byte pointer – 8-bit operand

• Example :
MOV BYTE PTR [0FF3E], 1

8 bit destination, no ambiguity

MOV WORD PTR [1234h], 0
16-bit destination, no ambiguity

SYSC-3006

Assembler Tip About Operand Compatibility

W DW
. . .

MOV AL, W

• The assembler will generate an error
– Basic “type checking”

8-bit register dest operand

16-bit memory src operand

SYSC-3006

Intel 8086 Assembly Language – Memory Declarations

• Multiple data declarations on one line:

– Separate by a comma
– Allocated to successive locations

• Examples:
DB 3, 6, 9

Array1 DW -1, -1, -1, 0
Array2 DB 5 dup(0)
Array3 DW 3 dup(?)

SYSC-3006

Intel 8086 Assembly Language – Memory Declarations

• To declare a string variable

– enclose in quotes
– ASCII chars stored in consecutive bytes

Message DB ‘Hi Mom!’
MessageNullT DB ‘Hi Mom!’, 0
DOSMessage DB ‘Hi Mom!’, ‘$’

Any string to be printed out by
DOS functions must be terminated
by ‘$’

SYSC-3006

Understanding High-Level Control Flow at Machine Level

• Data transfer/manipulation instructions: CS:IP to next
sequential instruction.

• Control flow instructions: changes
address for fetch next instruction.

• Example:
– condition true:

• continue sequentially
• skip to next_statements

– condition false:
• skip to false_statements
• continue sequentially

• Conditions depend on flags (zero, carry, overflow)

Conditional Statements :
if (condition) {

true_statements;
}

else {
false_statements;

}

next_statements;

Skip == Change
CS:IP of next
fetched instruction

SYSC-3006

• Control Flow instructions also needed in Program Loops

for (i = n1 to n2) for (i= n2 downto n1)
{ do statements S } { do Statements S }

while (condition C) do { statements S }

repeat { statements S } until (condition C)

“condition” dependent on the status flags

Understanding High-Level Control Flow at Machine Level

SYSC-3006

Control Flow Implications of Segmented Memory Model

• Address of next instruction determined by CS:IP

• Intra-segment control flow: stay in current code segment
– Only modify IP
– Supply 16-bit of information

• Inter-segment control flow: control passes to address outside of current
code segment

– Modify both CS and IP
– Supply 32-bits of information.

• To begin: only concerned with intrasegment control flow (modify IP)

SYSC-3006

Four types of JUMP instructions:
Unary (unconditional) jumps: always execute

JMP target

Simple jumps: taken when a specific flag is set
JC target

Unsigned jumps: comparison of unsigned numbers
results in specific combination of status flag

JA target (Jump if above)

Signed jumps: comparison of signed quantities results
in specific combination of status flags

JG target (Jump if greater than)

Implication : Preceded
by an instruction that
alters the appropriate flags

Control Flow : JMP instructions

Conditional
Jumps

SYSC-3006

Specifying Control Flow Targets (Intra-segment)

• Jump instructions: target must supply a value used to modify IP

1. Absolute addressing: 16-bit constant value to replace the IP
Execution Semantics: IP := new value

2. Relative addressing: value to be added to IP (after fetch!)
Execution Semantics :IP := IP + value

Value positive: jump “forward”
Value negative: jump “backward”

3. Register/memory indirect addressing: a register or memory location
contains the value to be used to replace IP

Execution Semantics : IP := mem[addrs]
IP := register

SYSC-3006

Specifying Control Flow Targets (Intra-segment)

Question : What addressing modes are used below ?

JMP 1000h

JMP here

SYSC-3006

JMP target Unconditional JUMP

• Control is always transferred to specified (relative) target.

Relative Addressing Example: .LST file fragment
address machine instruction ASM instruction

(memory contents)

0034H E9 10 02 JMP here
…. …. ….
0247H here:

start of fetch: IP = 0034H IR = ????????
after fetch: IP = 0037H IR = E9 02 10
after execute: IP = 0247H IR = E9 02 10(Little endian=0210h)

SYSC-3006

Simple Conditional JMPs

• Specify condition in terms of FLAG values
JZ Jump Zero: if ZF = 1 else continue
JC Jump Carry: if C=1 else continue
JO Jump Overflow: if O=1 else continue
JS Jump Sign: if S=1 else continue
JP Jump Parity: if P=1 else continue

• For each case, there is a “not” condition
e.g. JNZ Jump Not Zero

Loop Example:
DoLoop:

. . .
SUB CX, 1
JNZ DoLoop

Assembly language
label translated to
relative offset by
assembler

SYSC-3006

Comparison Instructions - CMP

• Used to simply set the flags
CMP dest, src

• Performs dest – src. Sets FLAGS (but does not store result)

• Example :
CMP AL, 10
JZ EqualToTen ; or JE !
… ; Code for Not Equal

EqualToTen:

• Often useful to think of combination of:
CMP dest, src
J*

Jump taken if “dest * src” condition holds

– in above example, jump is taken if AL == 10

SYSC-3006

Signed and Unsigned Conditional Instructions

• Processor provides status flags to reflect results of (binary)
manipulation under both signed and unsigned interpretations

• Separate conditional jump instructions for signed and unsigned
– implementation tests flags appropriate to the data type.

Unsigned Signed
JA Above JG Greater
JAE Above or Equal JGE Greater or Equal
JB Below JL Less
JBE Below or Equal JLE Less or Equal

• There are also instructions for Not conditions too!

SYSC-3006

Example : Conditional Branches

Suppose AL = 7FH:

Unsigned Scenario Signed Scenario

SUB AL, 80h SUB AL,80h

JA Bigger JG Bigger

In each scenario, is the jump taken? Why?

Programmer MUST know how binary values are to be interpreted!
(e.g. value in AX above)

SYSC-3006

Limitation of J* Instructions

• Conditional jump restricted to 8-bit signed relative offset!
– IP := IP + (offset sign-extended to 16-bits)
– Can’t jump very far! – 128 ßà +127 bytes

• Example: JL Less
ADD AX, 1
. . .

Less: MOV . . .

• One possible workaround if distance is greater than 127 bytes (but not the only
one!):

JNL Continue
JMP Less

Continue: ADD AX, 1
. . .

Less: MOV . . .

maximum possible
distance = 127 bytes

JMP can have 16-bit relative offset

distance can now be > 127

SYSC-3006

LOOP Instruction
• Useful when you have an action repeated a given number of times
• C++ analogy

for (int i=max; i > 0; i--)

MOV CX, max
DoLoop: . . .

SUB CX, 1
JNZ DoLoop

MOV CX, max
DoLoop: . . .

LOOP DoLoop

Functionally equivalent Different performance & code size

• LOOP automatically
decrements CX

• only works with CX

SYSC-3006

Example Write a code fragment showing how you would implement the
following pseudocode

boolean done = FALSE;

while (! done)

{ . . . }

Solution:
TRUE equ 1

FALSE equ 0

.code

MOV AL, FALSE ; AL= register variable done

notDone: CMP AL, TRUE

JE amDone

; . . .

JMP notDone

amDone: . . .

SYSC-3006

Example: Write a code fragment to test whether a variable is
divisible by 4, leaving the boolean result in AX.

Solution: A number divisible by 4 would have the least significant
two bits equal 0s.

FALSE equ 0
TRUE equ 1
.data
variable dw 1922h
.code

MOV AX, variable
AND AX, 03h
JZ yes
MOV AX, FALSE
JMP continue

yes:MOV AX, TRUE
continue:

. . .

Alternative :
TEST variable, 03h

SYSC-3006

Example: Suppose a robot has four motors, each of which can be off, in
forward direction or in reverse direction. Status of motors is

stored by the robot into a status word, called “motors” in
the following bitmap formation.

where the two bits for each motor are set according
01 forward
10 reverse
11 off

Write a code fragment that waits until motor1 is off before continuing on.
…

7 6 5 4 3 2 1 0
Motor1 Motor2 Motor3 Motor4

SYSC-3006

Solution: .data
motors db ?

.code
waiting: MOV AL, motors

AND AL, 0C0h
CMP AL, 0C0h
JNZ waiting
…

SYSC-3006

Basic Coding Conventions

• As in high-level languages, coding conventions make programs easier
to read, debug and maintain.

varName DB ?
MAX_LIMIT EQU 5

label:
MOV AX, BX
CMP AX, varName

Indentation :

1.Label left-justified

2.Instructions lined up one tab in.

3.Next instruction follows label.

Naming Convention :
4. Labels lower case, upper case for joined words
5. EQU symbols are UPPER_CASE
6. Keywords (mnemonics and registers) upper-case

SYSC-3006

Basic Coding Conventions

varName DB ? ; Counter
MAX_LIMIT EQU 5 ; Limit for counter

; Test for equality
label:

MOV AX, BX ; AX is current
CMP AX,varName ; If current < varName

Comments
1. Use them
2. Comments on the side to explain instruction
3. Comments on the left for highlight major

sections of code.

SYSC-3006

Intel 8086 Assembly Language – Memory Declarations
• When using constants to initialize a memory declaration
1. Beware an assembler quirk

DW 8000h ; 16-bit value of 8000h is loaded into word
DW 0FFFFh ; 16-bit value of FFFFh is loaded into word

; Zero does not mean 20-bit value
; Zero is needed by assembler to distinguish
; a HEX number from a label reference

2. Which one is easier to read?
DW -1
DW 0FFFFH
DW 1111111111111111B

In all three cases, the same
Binary value is assigned.

SYSC-3006

Intel 8086 Assembly Language – Directives

Directives are statements that are intended for other tools

– not assembled directly into instructions or memory
declarations

END Directive:
• used by 2 tools: assembler & loader
• Assembler: stop reading from .ASM file

– Any statements after END are ignored.
• Optional operand: a control flow label reference.

– Loader uses this as the address of first instruction to
be executed:

Syntax : END [label-reference] [] means optional

SYSC-3006

Intel 8086 Assembly Language – Directives

• Tell the tools what type of machine the program will be running on
– Diferent members of 80x86 family have diferent instructions
– Also, diferent address spaces (sizes/configurations of programs to run)

• Example: a program requires 20 bytes for data, 137 bytes for instructions
(code), 100 bytes for stack

– could all fit in one segment !
– optimal organization: CS, DS and SS could all overlap

• Example : a program requires 80K bytes for data, 47K bytes for instructions
(code), 10K bytes for stack

– need diferent non-overlapping segments for each one, and two data
segments!

– Segment management is more complicated.

• In this course, we will be writing small 8086 programs.
– amount of memory reserved for code: less than 64K
– amount reserved for data: less than 64K
– amount of memory used for run-time stack: will not exceed 1K bytes.

SYSC-3006

Intel 8086 Assembly Language – Directives
.8086

– limits assembler 8086 processor instruction set

.model

– Allows tools to make simplifying assumptions when
organizing data

– We will use .model small
– At most: program will use one code and one data

segment
– No intersegment control flow needed
– Never need to modify DS or CS once initialized

SYSC-3006

Intel 8086 Assembly Language – Directives

.code

– Identifies the start of the code segment
– Tools will ensure that enough memory is reserved for

the encodings of the instructions
.data

– Identifies the start of the data segment

.stack size

– Reserves size bytes of memory for the run-time stack
– More on stack later

Only when working with .model small

SYSC-3006

Intel 8086 Assembly Language – Directives

. EQU directive

– allows you to define a symbolic name for a number
– symbolic name can be used anywhere you want to use

that number
– assembler will replace symbolic name with the actual

number before assembling

– A EQU directive does NOT result in any memory being
declared or initialized!

VAL EQU 0FFFFh
X DW VAL
V DW VAL

What is the
advantage of
defining a
symbol with
EQU ?

A question of style !

MOV BX, VAL
CMP AX, VAL
MOV DX, X

SYSC-3006

Loading a Program

• Our program must be loaded into memory to be executed

– Done by the loader (a part of the operating system)
– decides which physical memory segments to be used
– initializes SS:SP (for stack use – later!) and CS:IP (to

point to first instruction to be executed)
– initializes DS but NOT to the data segment for the

program !
– Loader “knows’ which segment it has loaded as the

data segment
– As the program is loaded, loader replaces every

occurrence of “@data” with the data
segment number

• What does this mean for our program ?

SYSC-3006

Loading a Program

• Recall : processor uses contents of DS as 16-bit segment value to
access memory variables

– programmer only needs to supply 16-bit offset in
instructions

• DS must be initialized before ANY access to the data segment

– Before any reference to a memory label

• Because the loader does not initialize DS, DS is initialized
dynamically (at run time)

– It should be the first thing program does !
– Specifically, no variable defined in the data segment

can be referenced until DS is
initialized.

SYSC-3006

Loading a Program

• How do we initialize DS ?

– Wrong way (due to limited addressing modes, later)

MOV DS, @data
– Correct way

MOV AX, @data
MOV DS, AX

