
SYSC-3006

Basic Assembly

SYSC-3006

Program Development

• Problem: convert ideas into executing program (binary image in
memory)

• Program Development Process: tools to provide people-friendly way
to do it.

• Tool chain:

1. Programming Language
– Syntax: symbols + grammar for constructing statements (C=A+B)
– Semantics: what is meant by statements à what happens upon

execution (add A plus B and store the result in C)
– Assembly Language: simplest readable language. One-to-one

mapping to machine instructions.

SYSC-3006

Program Development

2. Assembler: Program to convert assembly language to object format
• Object Code: program in machine format (i.e. binary)
• May contain unresolved references (variables or functions)

3. Linker: program to combine object files into a single executable file
– All references resolved

4. Loader: program to load executable files into memory. May
initialize registers (e.g. IP) and starts it going.

5. Debugger: program that loads and controls execution of the program
· start/stop execution, view and modify state variables

SYSC-3006

Program Development

• Source Code
– Program written in assembly or high-level language

• Object Code
– Output of assembler or compiler
– Executable program in binary format (machine instructions)
– Unsolved external references (Linker: solves these references and

creates executable file)

• Executable Code
– The complete executable program in binary format.

SYSC-3006

Program Development

.OBJ

.ASM

.OBJ

.EXE

.LST

Assembler

Linker

human readable
results (including
assembly errors)

may link multiple
OBJ files

loader is part of
operating system (or
possibly debugger)

Editor

Computer System

Loader

memory

processor CS:IP

people
work
here

SYSC-3006

Using TASM

A short Demo

SYSC-3006

Intel 8086 Assembly Language

• Assembly instructions: readable machine instructions (not binary)
– Mnemonic encoding of instructions in a human-oriented short form
– Examples

MOV (move)
SUB (subtract)
JMP (jump)

• Instructions have two components:
– operation (what is being done)
– operands (data for operation), including varied addressing modes

• Translated instruction (in binary): encode operation and operand
information

• Not only instructions: all aspects of a program
– constant values
– reserve memory to use for variables
– directives to tools in development process

SYSC-3006

Intel 8086 Addressing Modes

• Variety of mechanisms to specify Operands
– Simple modes: immediate, register, direct
– More powerful: indirect

SYSC-3006

Addressing Mode : Immediate

• Immediate mode: constant specified as source

• Example : MOV AL, 5
– AL: 8-bit destination; instruction encoding includes 8-bit value 05h

• Example : MOV AX, 5
– AX: 16-bit destination; instruction encoding includes

16-bit value 0005h

• constant value assembled into instruction (hard-coded; static value)
• constant value loaded into IR as part of instruction
• constant value obtained from IR as instruction executed

SYSC-3006

Addressing Modes : Register

Register mode allows a register to be specified as an operand
As a source operand: instruction will copy register value
As a destination: write value to register

Example : MOV AX, DX
AX := DX
Contents of DX is copied to AX

register addressing mode for
both dest and src

SYSC-3006

Instruction Syntax : Operand Compatibility

• For all instructions with two operands, the two operands must be
compatible

– In high level languages: type checking
– In assembly: same size

• Examples :
MOV AH, CL 8-bit src and dest ☺
MOV AL, CX ????? L

Example uses register mode,
but compatibility is required
for all addressing modes to
come.

SYSC-3006

Intel 8086 Instruction Set

1. Data transfer: copy data among variables (registers,
memory and I/O ports)

• Do not modify FLAGS

2. Data manipulation: modify variable values
• Executed within the ALU data path
• Modify the FLAGS

3. Control-flow: determine “next” instruction to execute
• Allow non-sequential execution

SYSC-3006

Learning how to read a reference manual on assembly
instructions

Instructions have restrictions – registers, addressing mode
Each instruction: permitted operands and the side-effects are given

ADD
Instruction Formats :

ADD reg, reg ADD reg, immed
ADD mem, reg ADD mem, immed
ADD reg, mem ADD accum, immed

O D I S Z A P C

* * * * * *

SYSC-3006

Learning how to read a reference manual on assembly
instructions

MOV
Instruction Formats :

MOV reg, reg MOV reg, immed
MOV mem, reg MOV mem, immed
MOV reg, mem MOV mem16, segreg
MOV reg16, segreg MOV segreg, mem16
MOV segreg, reg16

O D I S Z A P C

SYSC-3006

Data Transfer Instruction

• MOV (Move) Instruction

• Syntax: MOV dest , src
• Semantics: dest := src

– Copy src value to dest state variable
– register and memory operands only (I/O ??)

SYSC-3006

Data Manipulation Instructions

Use data to compute new values
– Modify variables to hold results
– Modify flags during on the results

ZF = zero flag set if result = 0
CF = carry flag reflect carry value
SF = sign flag set if result < 0

assumes 2’s complement encoding!
OF = overflow flag

set if signed overflow

set = 1, clear = 0

What about unsigned overflow ?

specific use of “overflow” – not
the same as the general concept!

SYSC-3006

Data Manipulation : ADD

Syntax : ADD dest, src
Semantics : dest := dest + src (bitwise add)

– dest is both a source and destination operand

– FLAGS
ZF := 1 if result = 0
SF := 1 if msbit of result = 1 (sign = negative)
CF := 1 if carry out of msbit
OF := 1 if result overflowed signed capacity

SYSC-3006

Data Manipulation : ADD

Example: AL = 73H, then we execute:

ADD AL, 40H
73 H + 40 H = B3H carry?

results: AL := B3H (= 1011 0011 B)
ZF := 0 result ≠ 0
SF := 1 result is negative (signed)
CF := 0 (no carry out of msbit)
OF := 1 +v + +v = −v

SYSC-3006

Data Manipulation : SUB and CMP

Syntax : SUB dest, src
Semantics : dest := dest - src (bitwise subtract)

– ZF := 1 if result = 0
SF := 1 if msbit of result = 1 (sign = negative)
CF := 1 if borrow into msbit
OF := 1 if result overflowed signed capacity

Syntax : CMP dest, src (Compare)
Semantics : Modifies FLAGS only to reflect dest - src

SYSC-3006

Data Manipulation : Logical Operations

Syntax : BOOLEAN dest, src
Semantics : dest = dest BOOLEAN src

where BOOLEAN = { AND, OR, XOR }

Example : AND AL, 80h

Example : OR Control, BH

Example : XOR AX, AX
XOR AH, 0FFh

SYSC-3006

Data Manipulation : Shift

• Versions for : Left/Right and Arithmetic/Logical
Logical Shift Right

SHR AL, 1

Arithmetic Shift Right

MOV CL, 2
SAR AL, CL

Cb7 ----------------- b0

Cb7 ----------------- b00

Logical or Arithmetic Shift Left

SHL AL, 1
SAL AL, 1

C b7 ----------------- b0 0

SYSC-3006

Data Manipulation : Rotate

• Versions for : Left/Right and with/out carry

Cb7 ----------------- b0

Rotate-Carry-Left

RCL AL, 1

Rotate Left

MOV CL, 4
ROL AL, CL

Cb7 ----------------- b0

SYSC-3006

Data Manipulation : DIV
Unsigned Integer Division
• Syntax: DIV src
• Semantics: accumulator / src (integer division)

– src: register, direct or indirect mode (not immediate)
– 8-bit and 16-bit division depending on src

• 8-bit division: if src = 8-bit
– divide 16-bit value in AX by src
– AL := AX ÷ src (unsigned divide)

AH := AX mod src (unsigned modulus)

– Flags undefined after DIV

Two
8-bit
results

16-bit dividend
8-bit divisor

SYSC-3006

Data Manipulation: DIV

• 16-bit division : if src = 16-bit operand
– divide 32-bit value in DX:AX by src

AX := DX:AX ÷ src (unsigned divide)
DX := DX:AX mod src (unsigned modulus)

– flags undefined after DIV

Question: What if the result is too big to fit in destination?
• e.g.: AX ÷ 1 ?? AL = ??
• overflow trap – more later!

Two 16-
bit
results

32-bit dividend
16-bit divisor

SYSC-3006

MASM/TASM Assembly Language Syntax - Constants

• Decimal value: default format – no “qualifier”. Digits in 0 . . 9 (e.g. 12345)

• Binary: only 0’s and 1’s, ends with ‘B’ or ‘b’ (e.g. 10101110b)

• Hexadecimal:
– starts with 0 .. 9; may include 0 . . 9, A .. F (a . . f)
– ends with ‘H’ or ‘h’
– Requires leading zero if the first digit is A..F
– e.g. 0FFH

• String: sequence of characters encoded as ASCII bytes:
– enclose characters in single quotes
– e.g. ‘Hi Mom’ – 6 bytes
– character: string with length = 1
– DOS Strings MUST ALWAYS end with ‘$’

SYSC-3006

Intel 8086 Assembly Language - Labels

• User-defined names. Represent addresses
– programmer uses logical names (not addresses)
– Assembler: translates names into binary addresses

• Used to identify addresses for:
– Control flow – address of target
– Memory variables – address where data is stored

• Identify the address offset
– Control flow: combined with CS (default)
– Variables: combined with DS (default)

• Appear in 2 roles: definition & reference

SYSC-3006

Intel 8086 Assembly Language – Label Definition

• Represents offset of first allocated byte after definition
• Assembler: translates into exact address
• First non-blank text on a line
• Must start with alpha (A .. Z/a ..z). Then, alpha, numeric, ‘_’
• Careful with reserved words (e.g. MOV and other instructions)
• Control flow target: must append “:”

• Examples (Control Flow):
Continue:
L8R:
Out_2_Lunch:
DoThis: MOV AX, BX DoThis represents

address of first byte of
the MOV instruction

SYSC-3006

Intel 8086 Assembly Language – Label Reference

• Used as operand (part of an instruction)
• Translated into address assigned by during the label definition
• Syntax: do not include “ : ”
• Control flow example: Assume CX contains loop counter

DoWhile:
CMP CX, 0
JE DoneDoWhile

.

.

.
JMP DoWhile

DoneDoWhile:
MOV AX, . . . etc.

• target: labels
• assembler assigns
addresses AND calculates
offsetsreferences

definitions

SYSC-3006

Intel 8086 Assembly Language – Memory Declarations

• Memory Declarations
– Reserves memory for variables
– 2 common sizes on Intel 8086:

DB reserves a byte of memory
DW reserves a word (2 consecutive bytes) of memory

– May also provide an (optional) initialization value as an operand

SYSC-3006

Intel 8086 Assembly Language – Memory Declarations

DB ; reserves one byte
X DB ; reserves one byte – label X

;
Y DB 3 ; reserve one byte – label Y etc.

; and initialize the byte to 3
DW ; reserve 2 consecutive bytes

Z DW ; reserves 2 bytes
W DW 256 ; reserve 2 bytes – label W etc. - &

; initialize the bytes to 256 (little endian)

HUH DW W ; reserve 2 bytes – label etc.
; and initialize the bytes to
; contain the address of the
; variable W above

DB ‘C’ ; reserves 1 byte – initializes
; the byte to 43H

no “:” on variable name definitions

X represents the address of the byte

label Z represents the
address of the first byte

Label
definition

Label Reference

SYSC-3006

Understanding Program Development

Microsoft (R) Macro Assembler Version 6.15.8803
; This program displays "Hello World"

.model small

.stack 100h
0000 .data
0000 48 65 6C 6C 6F 2C message db "Hello, world!", 0dh, 0ah, '$'

20 77 6F 72 6C 64
21 0D 0A 24

0000 .code
0000 main PROC
0000 B8 ---- R MOV AX, @data
0003 8E D8 MOV DS, AX

0005 B4 09 MOV AH, 9
0007 BA 0000 R MOV DX, OFFSET message
000A CD 21 INT 21h

000C B8 4C00 MOV AX, 4C00h
000F CD 21 INT 21h
0011 main ENDp

END main

Address Binary Encoding Assembly Programming

