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Program Development

• Problem:  convert ideas into executing program (binary image in 
memory)

• Program Development Process: tools to provide people-friendly way 
to do it.

• Tool chain:

1. Programming Language 
– Syntax: symbols  + grammar for constructing statements (C=A+B)
– Semantics: what is meant by statements à what happens upon 

execution (add A plus B and store the result in C)
– Assembly Language: simplest readable language. One-to-one 

mapping to machine instructions.
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Program Development

2. Assembler: Program to convert assembly language to object format
• Object Code: program in machine format (i.e. binary)
• May contain unresolved references (variables or functions)

3. Linker: program to combine object files into a single executable file
– All references resolved

4. Loader: program to load executable files into memory. May 
initialize registers (e.g. IP ) and starts it going.

5. Debugger: program that loads and controls execution of the program 
· start/stop execution, view and modify state variables
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Program Development

• Source Code
– Program written in assembly or high-level language

• Object Code
– Output of assembler or compiler
– Executable program in binary format (machine instructions)
– Unsolved external references (Linker: solves these references and 

creates executable file)

• Executable Code
– The complete executable program in binary format.
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Program Development
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Using TASM

A short Demo
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Intel 8086 Assembly Language

• Assembly instructions: readable machine instructions (not binary)
– Mnemonic encoding of instructions in a human-oriented short form
– Examples

MOV (move)
SUB (subtract)
JMP (jump)

• Instructions have two components: 
– operation (what is being done) 
– operands (data for operation), including varied addressing modes

• Translated instruction (in binary): encode operation and operand 
information

• Not only instructions: all aspects of a program
– constant values
– reserve memory to use for variables
– directives to tools in development process
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Intel 8086 Addressing Modes

• Variety of mechanisms to specify Operands
– Simple modes: immediate, register, direct
– More powerful: indirect 
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Addressing Mode : Immediate

• Immediate mode: constant specified as source 

• Example : MOV AL,  5
– AL: 8-bit destination; instruction encoding includes 8-bit value 05h 

• Example :  MOV AX, 5
– AX: 16-bit destination; instruction encoding includes 

16-bit value 0005h

• constant value assembled into instruction (hard-coded; static value)
• constant value loaded into IR as part of instruction
• constant value obtained from IR as instruction executed
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Addressing Modes : Register

Register mode allows a register to be specified as an operand
As a  source operand: instruction will copy register value
As a destination: write value to register

Example : MOV  AX,  DX
AX  :=  DX
Contents of DX is copied to AX

register addressing mode for 
both dest and src
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Instruction Syntax : Operand Compatibility

• For all instructions with two operands, the two operands must be
compatible

– In high level languages: type checking
– In assembly: same size

• Examples :
MOV AH, CL 8-bit src and dest ☺
MOV AL, CX ?????   L

Example uses register mode, 
but compatibility is required 
for all addressing modes to 
come.
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Intel 8086 Instruction Set

1. Data transfer:  copy data among variables (registers, 
memory and I/O ports)

• Do not modify FLAGS

2. Data manipulation: modify variable values 
• Executed within the ALU data path
• Modify the FLAGS

3. Control-flow: determine “next” instruction to execute 
• Allow non-sequential execution
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Learning how to read a reference  manual on assembly 
instructions 

Instructions have restrictions – registers, addressing mode
Each instruction: permitted operands and the side-effects are given

ADD
Instruction Formats :

ADD reg, reg ADD reg, immed
ADD mem, reg ADD mem, immed
ADD reg, mem ADD accum, immed

O  D  I  S  Z  A  P  C

*           *   *   *   *   *
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Learning how to read a reference manual on assembly 
instructions 

MOV
Instruction Formats :

MOV reg, reg MOV reg, immed
MOV mem, reg MOV mem, immed
MOV reg, mem MOV mem16, segreg
MOV reg16, segreg MOV segreg, mem16
MOV segreg, reg16

O  D  I  S  Z  A  P  C
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Data Transfer Instruction 

• MOV  (Move) Instruction

• Syntax: MOV dest ,   src
• Semantics: dest  :=  src

– Copy src value to dest state variable
– register and memory operands only   (I/O ??)
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Data Manipulation Instructions 

Use data to compute new values
– Modify variables to hold results
– Modify flags during on the results

ZF = zero flag set if result = 0
CF = carry flag reflect carry value
SF = sign flag set if result < 0

assumes 2’s complement encoding!
OF = overflow flag

set if signed overflow

set = 1,  clear = 0

What about unsigned overflow ?

specific use of “overflow” – not 
the same as the general concept!
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Data Manipulation : ADD

Syntax : ADD dest, src
Semantics : dest  :=   dest + src     (bitwise add)

– dest is both a source and destination operand

– FLAGS
ZF := 1 if  result = 0
SF := 1  if msbit of result = 1  (sign = negative)
CF := 1  if carry out of msbit
OF := 1  if result overflowed signed capacity
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Data Manipulation : ADD

Example:  AL = 73H, then we execute:

ADD AL, 40H
73 H  +  40 H =  B3H carry?

results: AL :=  B3H   ( = 1011 0011 B)
ZF := 0   result ≠ 0
SF := 1   result is negative (signed)
CF := 0   (no carry out of msbit)
OF := 1 +v  +  +v  =  −v
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Data Manipulation : SUB and CMP

Syntax : SUB dest, src
Semantics : dest  :=   dest - src     (bitwise subtract)

– ZF := 1 if  result = 0
SF := 1  if msbit of result = 1  (sign = negative)
CF := 1  if borrow into msbit
OF := 1  if result overflowed signed capacity

Syntax : CMP dest, src (Compare)
Semantics : Modifies FLAGS only to reflect dest - src  
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Data Manipulation : Logical Operations

Syntax : BOOLEAN dest, src
Semantics : dest = dest BOOLEAN src

where BOOLEAN = { AND, OR, XOR }

Example : AND AL, 80h

Example : OR    Control,  BH

Example : XOR AX, AX
XOR AH, 0FFh
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Data Manipulation : Shift 

• Versions for : Left/Right and Arithmetic/Logical
Logical Shift Right

SHR AL, 1

Arithmetic Shift Right

MOV CL, 2
SAR AL, CL

Cb7 ----------------- b0

Cb7 ----------------- b00

Logical or Arithmetic Shift Left

SHL AL, 1
SAL AL, 1

C b7 ----------------- b0 0
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Data Manipulation : Rotate

• Versions for : Left/Right and with/out carry

Cb7 ----------------- b0

Rotate-Carry-Left

RCL AL, 1

Rotate Left

MOV CL, 4
ROL AL, CL

Cb7 ----------------- b0
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Data Manipulation : DIV
Unsigned Integer Division
• Syntax: DIV src
• Semantics: accumulator / src (integer division)

– src: register, direct or indirect mode (not immediate)
– 8-bit and 16-bit division depending on src

• 8-bit division:  if src = 8-bit
– divide 16-bit value in AX by src
– AL  := AX ÷ src (unsigned divide)

AH  :=  AX  mod  src (unsigned modulus)

– Flags undefined after DIV

Two 
8-bit 
results

16-bit dividend
8-bit divisor
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Data Manipulation: DIV

• 16-bit division : if src = 16-bit operand
– divide 32-bit value in DX:AX by src

AX  := DX:AX ÷ src (unsigned divide)
DX  :=  DX:AX  mod  src (unsigned modulus)

– flags undefined after DIV

Question: What if the result is too big to fit in destination?
• e.g.: AX ÷ 1  ??  AL = ??
• overflow trap – more later!

Two 16-
bit 
results

32-bit dividend
16-bit divisor
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MASM/TASM Assembly Language Syntax - Constants

• Decimal value: default format – no “qualifier”. Digits in 0 . . 9 (e.g. 12345)

• Binary: only 0’s and 1’s, ends with ‘B’ or ‘b’ (e.g.  10101110b)

• Hexadecimal:
– starts with 0 .. 9; may include 0 . . 9, A .. F (a . . f )
– ends with ‘H’ or ‘h’
– Requires leading zero if the first digit is A..F
– e.g.  0FFH

• String: sequence of characters encoded as ASCII bytes:
– enclose characters in single quotes
– e.g.  ‘Hi Mom’ – 6  bytes
– character: string with length = 1
– DOS Strings MUST ALWAYS end with ‘$’
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Intel 8086 Assembly Language - Labels

• User-defined names. Represent addresses
– programmer uses logical names (not addresses) 
– Assembler: translates names into binary addresses

• Used to identify addresses for:
– Control flow – address of target
– Memory variables – address where data is stored

• Identify the address offset
– Control flow: combined with CS (default)
– Variables: combined with DS (default)

• Appear in 2 roles: definition & reference
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Intel 8086 Assembly Language – Label Definition

• Represents offset of first allocated byte after definition
• Assembler: translates into exact address
• First non-blank text on a line
• Must start with alpha (A .. Z/a ..z). Then, alpha, numeric, ‘_’
• Careful with reserved words (e.g. MOV and other instructions)
• Control flow target: must append “:”

• Examples (Control Flow): 
Continue:
L8R:
Out_2_Lunch:
DoThis:   MOV AX,   BX DoThis represents 

address of first byte of 
the MOV instruction
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Intel 8086 Assembly Language – Label Reference

• Used as operand (part of an instruction)
• Translated into address assigned by during the label definition
• Syntax: do not include “ : ”
• Control flow example: Assume CX contains loop counter

DoWhile:
CMP CX, 0
JE DoneDoWhile

.

.

.
JMP DoWhile

DoneDoWhile:
MOV AX, . . . etc.

• target: labels
• assembler assigns 
addresses AND calculates 
offsetsreferences

definitions
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Intel 8086 Assembly Language – Memory Declarations

• Memory Declarations
– Reserves memory for variables
– 2 common sizes on Intel 8086:

DB reserves a byte of memory
DW reserves a word (2 consecutive bytes) of memory

– May also provide an (optional) initialization value as an operand
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Intel 8086 Assembly Language – Memory Declarations

DB ; reserves one byte
X DB ; reserves one byte – label X

;   
Y DB 3 ; reserve one byte – label Y etc.

; and initialize the byte to 3
DW ; reserve 2 consecutive bytes

Z DW ; reserves 2 bytes 
W DW  256 ; reserve 2 bytes – label W etc. - &

; initialize the bytes to 256 (little endian)

HUH DW  W ; reserve 2 bytes – label etc.
; and initialize the bytes to
; contain the address of the
; variable W above 

DB ‘C’ ; reserves 1 byte – initializes 
;      the byte to 43H

no “:” on variable name definitions

X represents the address of the byte

label Z represents the 
address of the first byte

Label 
definition

Label Reference
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Understanding Program Development

Microsoft (R) Macro Assembler Version 6.15.8803
; This program displays "Hello World"

.model small

.stack 100h
0000 .data
0000 48 65 6C 6C 6F 2C  message db "Hello, world!", 0dh, 0ah, '$'

20 77 6F 72 6C 64
21 0D 0A 24

0000 .code
0000 main PROC
0000  B8 ---- R MOV     AX, @data
0003  8E D8 MOV     DS, AX

0005  B4 09 MOV     AH, 9
0007  BA 0000 R MOV     DX, OFFSET message
000A  CD 21 INT     21h

000C  B8 4C00 MOV     AX, 4C00h
000F  CD 21 INT     21h
0011 main ENDp

END main

Address Binary Encoding Assembly Programming


