Programmer's Model

Basic Computer Organization

• The **Von Neumann** Model – The mother of conventional digital computers

Basic Computer Organization

- Von Neumann defined the Stored Program Concept
 - (Before: program was stored externally)
 - Memory contains both **instructions and data**
 - Instructions ARE data: can be manipulated
 - Instructions must be read and then executed (instruction execution cycle)
- Instruction execution cycle: sequence of operations required to execute a single instruction
 - Control unit fetches next instruction from memory, decode it and then execute it
 - Execution of instruction may require further fetches of data from memory and/or storage of data to memory
 - How do we start the instruction execution cycle ?

Simple Computer System Organization (expanded)

Central Processing Unit (CPU)

Data Path (Tanenbaum Figure 2-2)

Data Path (Tanenbaum Figure 2-2)

- Two major categories of instructions
 - Register-memory: transfer information between registers and memory
 - Read: data can be used as **inputs** to the ALU in subsequent instruction(s)
 - Write: results of ALU can be **stored persistently**

– Register-to-Register

- Typically: fetch two operands from programmer's registers, used as two ALU inputs and storing ALU output back in one of the registers
 - Eg. addition, boolean
- Called the data path cycle
 - Defines what the computer can do
 - Faster the data cycle, the faster the machine

Central Processing Unit Organization

Instruction Execution Cycle

- For each machine instruction: control unit uses program counter (PC) and instruction queue to run the **Fetch-Execute Cycle**
- **1. Fetch Phase**: read memory at the address given in the PC. Copy instruction into internal instruction queue.
- 2. Decode Phase: determine type of instruction and number/location of operands.
- **3.** Execute Phase :
 - 1. Fetch **Operands**: [if needed] read memory, copy data into ALU input register
 - 2. Instruction Execution: signal ALU to perform operation. Send data to output register and set status flags
 - **3. Store** output operand: [if needed] write to memory to store data from ALU output register.

Instruction Execution Cycle

- The instruction execution cycle is the "heartbeat" of the computer.
 - It is all synchronized on the CPU clock.

Execution Cycle

Fetch	Decode	Fetch	Execute	Store	Fetch	Decode	Fetch	Execute	Store]
Instr	Instr	Operand	Instr	Result	Instr	Instr	Operand	Instr	Result	

Instruction Execution Phase

Figure 1.9 Dandamudi

• What is the execution time of an instruction ?

Memory

- Central storage for (program) instructions and data
 - Memory **persistent**; changes only as result of a write
 - What are the contents before the first write (during power-on)?
- Memory: sequence of directly **addressable locations**.
 - Organized as 8-bit cells (bytes). Modern processors: "wider" addressable locations (16 bit, 32 bit, 64 bit!), each byte can be accessed.

0	10101010
1	00001111
2	00110011
3	00110011 11001100

8-bit cells With 2-bit addresses

- Wider memories: faster access to the processor.

Memory

• Memory location: **address** and its **contents**.

- Notation: m[addr] represents the contents of a memory location,
 - Example: m[20h] refers to contents of memory location at 20h.
- Two memory-related behaviours :

Memory - and the System Bus

- A memory location has two components: an address and its contents.
- You can read or write a memory location

- · Consequently, the system bus has three components
 - Address bus : Contains the address of the memory location
 - Data bus : Contains the data being read or written
 - Control bus : Contains signals that control the flow of the data (read vs write)

What is a Memory Address ? (A programmer's view)

- Memory cell (byte) is the smallest addressable memory unit
 - You cannot "address" individual bits in a cell
- Address Space?
 - Address bus: given width. Range or capacity of this memory?
 - 2-bit address : 2² different addresses
 - 20-bit addresses: 2^{20} different addresses = 1 Meg address space
 - (Hint : $1K = 2^{10} = 1024$)

What about the Data bus ?

- Memory viewed logically as **array of contiguous bytes**. Many processors 16-bit (and above), meaning
 - They have a **16-bit data bus**
 - They can read/write 16-bit contents all in one read/write cycle.
- How to store binary values wider than 8-bits using 8-bit memory cells ?
 - Use **more than one** consecutive memory locations

Endian Memory Schemes

New Problem: 16-bit values, stored in **two memory locations**. Which location should hold which byte ?

Little Endian Exercise

- What is the byte at address 1201 ?
- What is the word at address 1201 ?
- What is the double-word at address 1201 ?

Semiconductor Memory

- Read and Modify (Random Access Memory RAM): same amount of time required to access any location on the same chip
- Read-only memory (ROM): can only be read; not written

Random Access Memory

 -Dynamic random access memory (DRAM): periodic refresh required to maintain contents of a DRAM chip
-Static random access memory (SRAM): no periodic refresh required

Read-Only Memory

 -Mask-programmed read-only memory (MROM): programmed when manufactured
-Programmable read-only memory (PROM): memory chip can be programmed by end user

Erasable Programmable ROM (EPROM)

- 1. Electrically programmable many times
- 2. Erased by ultraviolet light (through a window)
- 3. Erasable in bulk (whole chip in one erasure operation)

Electrically Erasable Programmable ROM (EEPROM)

- 1. Electrically programmable many times
- 2. Electrically erasable many times
- 3. Can be erased one location, one row, or whole chip in one operation

Flash Memory

- 1. Electrically programmable many times
- 2. Electrically erasable many times
- 3. Can only be erased in bulk