
SYSC-3006 Pearce/Schramm/Wainer

Manipulating Binary Information in Computers

• An operation manipulates the fixed-width binary representation 
of information

– It combines n-bit values to get n-bit results

• Basic Arithmetic Operations : add, subtract, multiply, divide
• Basic Logic Operations : and, or, xor



SYSC-3006 Pearce/Schramm/Wainer

Arithmetic Operations : Binary Addition and Subtraction

• These operations perform a bitwise add/subtract of values of width n 
to give a result of width n

• 8-bit Unsigned Integer Examples:
11710 =  0111 01012

+    9910 =  0110 00112

21610 =  1101 10002

13310 =   1000 01012

– 5110 =   0011 00112

8210 =    0101 00102



SYSC-3006 Pearce/Schramm/Wainer

Arithmetic Operations : Binary Addition and Subtraction

8-bit Signed Integer Examples:

• The computer does exactly the same thing for 2’s complement 
signed integers!  ☺

-11710 =  1000 10112

+       9910 =  0110 00112

- 1810 =  1110 11102 ( 0001 00012 +1 = 12h)

-3210 =   1110 00002

– 510 =    0000 01012

-3710 =   1101 10112 ( 0010 01002 +1 = 25h)

Signed is now being 
used to mean 2’s 
complement signed



SYSC-3006 Pearce/Schramm/Wainer

Arithmetic Operations : Binary Addition and Subtraction

Computers often implement subtraction using “negate and add”
X – Y  =  X +  (– Y)

Example :  32 – 65   = 32 + (-65)

3210 =      0010 00002

+  – 6510 =      1011 11112  ( 0100 00012 +1)
– 3310 =      1101 11112 ( 0010 00002 +1 = 21h)

-3210 =       1110 00002

+ (–5)10 =       1111 10112

-3710 = (1) 1101 10112 



SYSC-3006 Pearce/Schramm/Wainer

Overflow

• Overflow occurs when result of operation outside the range that can 
be represented 

– Problem arising due to limited range of fixed-width representation. 
– Result still produced: meaningless.

• 8-bit Unsigned Integer Example:
25510 =         1111 11112

+      110 =         0000 00012

256 ??     010 =   (1) 0000 00002

– OVERFLOW OCCURRED! (fixed 8-bits) 
– In this case (unsigned) : carry @ MSB is important in the 

INTERPRETATION of the result. 

Question : What is 
the range of an 8-bit 
unsigned number ?

We need 9 bits
to represent result

CARRY



SYSC-3006 Pearce/Schramm/Wainer

Addition and Subtraction Overflow

Is that the only interpretation of the example?

1111 11112

+ 0000 00012

(1) 0000 00002

• What if the values are interpreted as 8-bit signed integers ?
– The result is correct ( – 1  +  1  =  0 ). NO OVERFLOW.
– In this case (signed), carry at MSB still occurs but is not important 

to the interpretation!

Same binary pattern !



SYSC-3006 Pearce/Schramm/Wainer

Addition and Subtraction Overflow

Another example : With Borrow 

8-bit result     3210 =       0010 00002

– 6510 =       0100 00012

– 3310 =  1   1101 11112

(+223 and Borrow 1 if interpreted as Unsigned)

• If values interpreted as unsigned, the borrow implies overflow 
(actually, underflow)

• If values interpreted as signed, no overflow; ignore the borrow.

8-bit result



SYSC-3006 Pearce/Schramm/Wainer

Addition and Subtraction Overflow

Overflow depends on the interpretation of the values.

Another example: unsigned signed
0111 11112 127 127

+ 0000 00012 +  1 +  1
1000 00002 128 – 128

OVERFLOW …
even though 
there is no carry 
outside of fixed 
width!



SYSC-3006 Pearce/Schramm/Wainer

Overflow Cookie Cutters

Unsigned:  Carry or borrow means overflow

Signed :  Ignore carry or borrow
Overflow occurred  if : positive + positive = negative

( positive – negative = negative )
negative + negative = positive
( negative – positive = positive )

Overflow is impossible if :
positive + negative  ( positive – positive )
negative + positive (negative – negative )

borrow
2N-1

carry
0

2N-1-10

-ve +ve

2N-1

|



SYSC-3006 Pearce/Schramm/Wainer

Logical Operations - AND

Perform bit-wise logic operations   (ELEC2607!)

AND
1-bit truth table:

a b a AND b
0 0 0
0 1 0
1 0 0
1 1 1

8-bit example:
1011 0110

AND 1100 0011
1000 0010



SYSC-3006 Pearce/Schramm/Wainer

Logical Operations - OR

1-bit truth table:
a b a OR b
0 0 0
0 1 1
1 0 1
1 1 1

8-bit example:
1011 0110

OR 1100 0011
1111 0111



SYSC-3006 Pearce/Schramm/Wainer

Logical Operations - XOR

1-bit truth table:
a b a XOR b
0 0 0
0 1 1
1 0 1
1 1 0

8-bit example:
1011 0110

XOR 1100 0011
0111 0101



SYSC-3006 Pearce/Schramm/Wainer

Logical Operations : Shift and Rotate

• Shift and Rotate Operations: move bits to the left or to the right
• Difference? Treatment of the most and least significant bits

• Rotates : Bits put into the other side (circular storage)
• Shifts : Bits injected on one end and “drop” off the other end.

• Example : Shift Left

Value before: 1001 1010
Value after being shifted left 4 bits: 1010 0000

What happened to 
the upper 4 bits?

What value was 
injected ?



SYSC-3006 Pearce/Schramm/Wainer

Arithmetic versus Logical Shifts

• When shifting left, zero is always injected.
• When shifting right, two versions.

– Difference ? Value injected.

• Logical Shift: value treated as a logical or unsigned value.  
– Zero is inserted (Shift-right is same as shift-left)

• Arithmetic Shift: value treated as a signed value. 
– MSB is injected when shifting right. Why ?

• Example : Arithmetic Shift Right 2 bits

Value before: 1001 1010    
Value after shift-right-by-2: 1110 0110

MSB = 1 so 
inject 1’s



SYSC-3006 Pearce/Schramm/Wainer

Rotate Operations

• Rotates: shift bits; bit shifted “out” of the value gets injected as new bit
– All bits in original value are saved

• Example : Rotate right 3 bits
Value before : 1001 1110    
Rotated 1st bit: 0100 1111
Rotated 2nd bit: 1010 0111
Rotated 3rd bit: 1101 0011 

1 is rotated out

1 is rotated out 

0 rotated “out”and is 
injected as MSB



SYSC-3006 Pearce/Schramm/Wainer

Example   Suppose that we shift the number 12h left by 1.

0  0  0  1  0  0  1  0

0  0  1  0  0  1  0  00

Example Suppose that we shift the number 95h left by 1

1  0  0   1  0  1  0  1

0  0  1  0  1   0  1  01

Before : 12h
After : 

Before : 95h
After : 



SYSC-3006 Pearce/Schramm/Wainer

Example Suppose that we arithmetic-shift the number EDh right by one.

Example   Suppose that we arithmetic/logical-shift the number 12h right by one.

0  0  0  1  0  0  1  0

0  0  0  0  1  0  0   1 0

Before : 12h
After : 

Before : FDh
After : 

1   1  1  1  1  1  0  1

1   1  1  1  1  1  1  0 1

Example Suppose that we logical-shift the number EDh right by one.

Before : FDh
After : 

1   1  1  1  1  1  0  1

0   1  1  1  1  1  1  0 1


