
SYSC-3006

Hardware Interrupts Programming
Issues

SYSC-3006

Hardware Interrupt Programming Issues

Data Flow: exchanging data with an ISR

• parameters to hardware ISR?
• NO ! – interrupt caused by hardware
• not a software call !

• shared (persistent) state variablesà the only way!

“other”
software

ISR shared
variable(s)

SYSC-3006

INTERFERENCE

• ISR interferes with access!
PROBLEM: when accessing variable shared with an ISR – is it possible (?)

to have the:
• ISR interrupt in the middle of the access
• ISR modify the variable
• net result: the value of the variable is corrupted

Interference Example:
Timer scenario: shared 32-bit count variable

• main: wants to read count: reads count_high
• ISR interrupt main
• modifies both count_high and count_low
• ISR terminates, main continues: reads count_low
• net result: main obtains a corrupted count value !

SYSC-3006

Critical Region: (terminology)

a section of code that has the potential for interference

� • existence of a critical region does not guarantee that
interference will occur

� • just provides the opportunity! (potential for…)
� • occurrence of interference depends on implementation

and requires interruption of a critical region, and
execution of another critical region that interferes

• event-driven thinking!
• interference scenario !

SYSC-3006

Protecting Critical Regions

� • must be able to recognize critical regions
� • must design protection into solutions

Software Protection of Critical Regions:
� • prevent the interruption of critical regions

à eliminate the occurrence of interference!
� • software has limited ability to control occurrence of interrupts:

� • can prevent them by masking interrupts

� • masking interrupts at processor: CLI / STI
� • prevents all interrupts ß overkill? L
� • keep critical regions short ! ☺

SYSC-3006

Protecting Critical Regions

� • masking interrupts at PIC: mask register
� • remember: PIC shared resource too ! Selectively

prevent interrupts that might interfere in with particular
critical region, but still let other interrupts occur

• masking interrupts at I/O components:
� • same approach as PIC, but does not involve modifying PIC

when interrupts enabled & unmasked:
� • no software control
� • interrupts are generated by asynchronous hardware !

SYSC-3006

Protecting Critical Regions

Installing ISR ß a critical region!
• modifying vector table
• vector table is a shared resource !

ISRs & saving registers:
• ISR MUST save and restore all registers used
• interrupted program does not know the interrupt is happening

à cannot “save” registers before interrupt

ISRs & EOI
• ISR MUST send EOI to PIC
• failure to send EOI (or sending more than one EOI) will cause

undesirable behaviour

SYSC-3006

Enabling Interrupts

• event-driven mindset: want interrupts to be generated, and
ISRs to be executed

• if IF = 0 à NO interrupts will occur
• IRET is executed by hardware ISR, IF will be reset to 1

when FLAGS are popped
• lower (or equal) priority interrupts will not be sent by

PIC until EOI is received

Design Questions:
� • When should an ISR set IF = 1 ?
� • When should an ISR send EOI to PIC ?

SYSC-3006

Re-Entrant Code

� • suppose a code fragment is interrupted, and ISR executes
the same code fragment

� • code fragment has been “re-entered” by execution thread
of control, BEFORE interrupted thread of control had

completed the fragment
� • might happen if two threads of control (perhaps main program

and an ISR) call the same function

Re-entrant code: notorious source of critical regions!
– all persistent variables accessed by the code are implicitly

shared! L
– local variables – persist only for duration of a function

invocation? ß exist in stack?

SYSC-3006

Some Common ISR Programming Errors:

1) forgetting to save/restore ALL of the registers altered by ISR

2) forgetting to initialize DS register (or ES for segment overrides)
prior to accessing any variables

3) forgetting to send an EOI command to the PIC.

4) forgetting to enable the interrupts ☺
STI and / or @ PIC and / or @ device

5) interference

SYSC-3006

Buffered I/O

• interrupts allow devices to be serviced independent
of other software activity

• want to minimize interactions between ISR and other software
• interactions must be synchronized
• potential interference
• more interactions = more frequent checking
• tighter coupling
• too slow à lost/over-written data
• e.g. shared variable in keyboard example

• interaction constraints can often be relaxed using buffering
• increase the capacity of shared variables

SYSC-3006

Keyboard example

• suppose keyboard ISR has single character buffer
• other s/w must poll variable

• polling not carried out “fast enough”
• ISR over-writes before other software reads

• suppose keyboard ISR has multiple character buffer: i.e., FIFO queue
• Kybd ISR adds to end of queue as scan codes arrive
• other s/w reads from head of queue
• need to protect access to queue ß shared !
• less risk of losing data
• most operating systems have internal keyboard queue
• e.g. DOS – 8 char’s
• decouples application execution speed from speed of keystrokes

arriving (relaxes interaction constraints)

