
SYSC-3006

Software Interrupts

SYSC-3006

Software Interrupts

• Definition : A software interrupt is a special call to a procedure
previously defined as part of the Operating System

– Alternate Terminology : TRAP, System Call
– Implemented using a hardware mechanism:

interrupt service routine (ISR).

• Examples :
– DOS Functions - BIOS Interrupts

• Print a string message - Video Display Functions
• Exit - Disk I/O functions
• Character Input - Keyboard functions
• Printer Output - Printers functions

SYSC-3006

Running a Program : Running at Different Levels

Application Program

Hardware
CPU Registers
Main Memory
I/O Devices

Application Program

Operating System
Functions

Hardware
CPU Registers
Main Memory
I/O Devices

Application Program

Operating System
Functions

Hardware
CPU Registers
Main Memory
I/O Devices

BIOS Functions

Operating System Operating System Operating System

SYSC-3006

Application Subroutines versus Traps

• Application Subroutines:
– part of a program developed by programmer

– During assembly: assembler determines the target’s address offset
– Static address determined at assembly time

– Application linked with other code (including libraries)
• These subroutines also been assembled (static addresses)

– Loading: segment values initialized (may be different each time)
• offset values: static

– Changes made in the application/libraries, entire application must
be re-built :

• Must be assembled, linked and loaded again. Why ?

SYSC-3006

Application Subroutines versus Traps

• Traps: Subroutines in the Operating System
– Transfer control to encapsulated activity terminated by

a return to the invocation point.

• Differences w/application subroutines
– Not part of the application
– Not part of the program development process

• OS is not a software library.
• Program’s OBJ file not linked with OS

• Key Difference: OS permanent resident of memory;
application is temporary resident

SYSC-3006

Application program NOT LINKED with the OS. How to
“call” the OS Subroutines?

• Use Vector Table: array of addresses at “reserved” global location
with addresses of the OS procedures.
– Analogy: Indirect Memory Addressing.
– OS puts pointers to OS procedures in the array when loaded
– Applications: developed assuming these global variables exist
– Activated using existing hardware (built for HW interrupts)
– What if the OS procedure is revised ?

SYSC-3006

Software Interrupt (or TRAP) Instruction : INT

• Invoke an ISR: cannot simply use the CALL instruction
– ISR is identified by interrupt-type (0..255), not a label

• Software Interrupt Instruction
– dynamic subroutine invocation based on stored pointer
– On the 8086, it is the INT instruction.

• Syntax : INT i
– where i = index into the vector table (0..255)
– executes subroutine with address stored in i-eth

position of Vector Table
– Based on globally assumed vector table at 0:0

SYSC-3006

Example : Software Interrupt (or TRAP)

• INT 5
– Vector table starts at element 0
– Executes ISR whose FAR address stored in 6th element

of vector table
• Address of entry = 0:14h (5*4=20)

SYSC-3006

Subroutines versus Software Interrupts
• Subroutines/Traps similar: both transfer control to encapsulated

activity terminated by return to the invocation point.

; subroutine initialization
none
. . .

; call set up
push arguments
CALL subr
ADD SP, 2*numArgs
. . .

subr:
standard entry code
access param’s [BP + 4+]
standard exit code
RET

; ISR initialization
install address at 0:4*n
. . .

; call set up
push arguments
INT n
ADD SP, 2*numArgs
. . .

subr:
standard entry code
access param’s [BP + 8+]
standard exit code
IRET

n=0..255

SYSC-3006

We’ve already been using DOS Functions

What can you say about parameter passing to DOS Functions ?

.data
message db "Hello, world!", 0dh, 0ah, '$‘

.code
; Print a string

MOV AH, 9
MOV DX, OFFSET message
INT 21h

; Exit to DOS
MOV AX, 4C00h

; AH = 4Ch
; AL= 0 (exit status)

INT 21h

SYSC-3006

INT 21h is the DOS Function Call

How does this one ISR handle all the services?
• The type of service is passed in as a parameter
• But parameters are passed by register, not the stack!!

AH=1 Keyboard input
AH=2 Character output
AH=5 Printer output
AH=9 String output
AH=4Ch Terminate program

• What about ISR return-value?
– Depends on the service code parameter!

SYSC-3006

BIOS Function Calls

Other examples: BIOS Interrupts
• INT 10h for video display functions
• INT 13h for disk I/O functions
• INT 16h for keyboard functions
• INT 17h for printers functions

