Encoding of Counting Numbers (0, 1, 2, 3¹/₄)

Based Number Systems:

- **base**: set of atomic **symbols** + **interpretation** of each symbol as a counting "value" (quantity)
- **number**: string of symbols (digits)

PLUS interpretation rule

- symbols (digits) are numbered right to left, start at 0
 - e.g. 4-digit number: $d_3d_2d_1d_0$
- "value" of a symbol: depends on **value** of the individual symbol and **position** in string
 - value of symbol_i = (value of symbol_i) \times baseⁱ

"value" of number is sum of values of symbols

Base-10 Example: (done this before, but ...)

- symbols = $\{0, 1, 2, 3, ..., 9\}$ usual meaning
- 4-digit example: $d_3d_2d_1d_0 = 1436$ = $d_3 \times 10^3 + d_2 \times 10^2 + d_1 \times 10^1 + d_0 \times 10^0$ = $1 \times 10^3 + 4 \times 10^2 + 3 \times 10^1 + 6 \times 10^0$

Binary Number System:

- set of symbols = { 0, 1 } usual meaning
- 4-digit number example: 1011_2
 - $= 1 \cdot 2^{3} + 0 \cdot 2^{2} + 1 \cdot 2^{1} + 1 \cdot 2^{0}$

= 8 + 2 + 1 = 11

Examples

Write each of the following binary numbers as decimal numbers

11111 101010 1001011001

Write each of the following decimal numbers as binary numbers

7 0 10 15 33

What about the **range** of representation?

- **n-bit values** can represent (at most) **2**ⁿ different counting numbers
- if start representation at 0, then largest value represented is $2^n 1$
- recall 4-bit example: $(2^4 = 16)$
 - range = $0 \dots 15$

Some Observations:

- binary representation often requires lots of bits
 - example: $601_{10} = 1001011001_2$ (10 bits!)
- converting binary $\leftarrow \rightarrow$ decimal is not trivial

binary can be awkward and error prone for use by people!

Hexadecimal (Base-16) Number System:

- 16 symbols = { 0 . . 9, A, B, C, D, E, F}
- interpret: 0..9 usual meaning
 - A 10 C 12 E 14
 - B 11 D 13 F 15

Why use hexadecimal (hex) notation?

- **shorthand** for binary notation
- converting binary \leftarrow > hexadecimal is easy
 - **4 binary digits** required to encode the value of one hexadecimal digit

Converting Binary \rightarrow Hex

- group bits in 4's starting from **least significant**
- **replace** each group by corresponding hex digit **Examples:**

16-bit: 1000101001101110₂ (= 35,468₁₀) group in 4's \rightarrow 1000 1010 0110 1110 replace with hex \rightarrow 8 A 6 E 16

10-bit: 1001011001_2 (= 601_{10}) group in 4's $\rightarrow 0010 0101 1001$ replace with hex $\rightarrow 2 5 9_{16}$

Converting Hex → **Binary**

replace each hex digit by 4-digit binary rep.

(already know this from 267?)

MEMORIZE	
THESE!	

Binary	Decimal	Binary	Decimal
0000	0	1000	8
0001	1	1001	9
0010	2	1010	10
0011	3	1011	11
0100	4	1100	12
0101	5	1101	13
0110	6	1110	14
0111	7	1111	15

Examples

Write each of the following binary numbers as hexadecimal numbers1001011001 101001 101001

Write each of the following decimal number as hexadecimal numbers 7 0 10 15 33 98 167

Write each of the following hexadecimal number as decimal numbers

C 1E 21 148

Binary Math (intro)

Addition and Subtraction proceeds the same as for decimal numbers, except that you carry and borrow 1 (not 10)

> binary addition: $0 + 0 = 0_2$ $0 + 1 = 1_2$ $1 + 1 = 10_2$ (0 carry 1)

binary substraction: $1 - 0 = 1_2$ $0 - 0 = 0_2$ $1 - 1 = 0_2$ $0 - 1 = (1) 1_2$ (1 borrow 1)

Encoding of Integers

- positive and negative values
- must encode sign & magnitude
- 1) N-Bit Signed-Magnitude Encoding:
- use most significant bit to encode sign
 - 0 = positive, 1 = negative
- use remaining n 1 bits to encode magnitude using binary number system (as for counting #s)
- example: 8-bit signed-magnitude

 10000001_{2} -magnitude = 1 $-sign bit = 1 \therefore negative number$ represents -1

Problems with Signed-Magnitude Encoding:

• two representations for 0 😕

positive 0 (sign bit = 0)

```
negative 0 (sign bit = 1)
```

[Is 0 positive or negative?]

- performing arithmetic operations with signed-magnitude values can be awkward ☺
- signed-magnitude not often used in practice

- **<u>2)</u>** N-Bit 2's Complement Encoding: ③</u>
- complement of one bit: b = 1 b

complement of 0 = 1 complement of 1 = 0

- complement of an **n-bit** value: complement **each bit**
- 2's complement of an n-bit value:

complement **each** bit, and then **add 1 ignore** any carry out of most significant bit

Examples:

original value =100111010010binary
addition:complement each bit011000101101 $0 + 0 = 0_2$ add 1+12's complement =011000101110(0 carry 1)

To encode an *integer* in an n-bit value:

- half of binary values for negative values (i.e. 2ⁿ⁻¹ values), rest for positive (and 0)
- encode positive values (and 0) the same way as **counting** numbers
 - range $0 ... 2^{n-1} 1$
 - uses all values that start with 0

- use 2's complement as **negation operation**!
 - to find encoding of -x

form **2's complement of** + x

8-bit example:

Negating a negated number should give the original number $-(-\mathbf{x}) = \mathbf{x}$

Does this work for negating (2's complementing) negative values ?

How many representations for 0?

all negative value encodings start with 1

Consider 8-bit 2's complement encodings:

•
$$2^8 = 256$$
, $2^7 = 128$

• range: -128 . . +127

 (-2^{n-1}) $(2^{n-1}-1)$

Is this expected? Why don't we get +128 ??? (What is 1000 0000₂ as a counting number?)

Examples

Write each of the following decimal numbers

- 8-bit signed integers
- 8-bit two's complement integers

65 -65 42 -42

Encoding of Characters

- want to represent "displayable" characters:
 - characters: $\{A, B, \ldots, Y, Z\}$
 - $26 \times 2 = 52$ (upper and lower case)
 - decimal (10) digits: {0, 1, ..., 8, 9 }
 - punctuation: !"', . ? / : ;
 - math symbols: + * = (- and / above)
 - brackets: () [] { } <>
 - others: @ # \$ % ^ & \ | ~
 - blank space: ""
 - 90⁺ symbols (??)
- various encoding schemes have been used
- ASCII encoding international <u>standard</u> American Standard Code for Information Interchange

7-Bit ASCII Encoding

- 7 bits to encode each character (128 codes)
- often extended to 8-bit (byte) values by making most significant bit
 (msb) = 0

[in following: all codes are given as hex values]

00 – 1F non-displayable control char's

- 00 NULL
- 07 BELL
- 08 backspace
- 09 tab
- 0A line feed
- 0C form feed
- 0D carriage return

others – often serve special purposes in communication applications

30 – 39 decimal digit char's

20 blank space

Other Character Encoding Schemes:

- IBM standardized an 8-bit scheme (256 char's) as <u>defacto</u> standard (PC's !)
 - see inside back cover of text overlaps with 7-bit ASCII for displayable char's
- Java: unicode 16-bit scheme (65,536 char's)
 - multi-lingual character sets

Important Concept !!!!!!

- fixed-width binary values are used to represent information in computers
- the computer works with the **binary representations** (NOT the information!!)
- the **same** binary value can be used to represent **different** information !

8-bit example:	1111 00002
unsigned:	24010
signed:	-16_{10}
8-bit ASCII:	"≡"
other?	

Programmers Must Be Aware!