
Encoding of Counting Numbers  (0, 1, 2, 3…) 

 

Based Number Systems: 

• base:  set of atomic symbols + interpretation  of each symbol as a counting 

“value” (quantity) 

• number:   string of symbols (digits)  

PLUS   interpretation rule 

• symbols (digits) are numbered right to left, start at 0 

• e.g.    4-digit number:  d3d2d1d0 

• “value” of a symbol: depends on value of the individual symbol and 

 position in string 

• value of symboli  =  (value of symboli) × basei 

“value” of number is sum of values of symbols 



Base-10 Example:    (done this before, but … ) 

• symbols = { 0, 1, 2, 3, … , 9}  –  usual meaning   

• 4-digit example:  d3d2d1d0  = 1436     

= d3 × 103  + d2 × 102   + d1 × 101  + d0 × 100 

=  1 × 103  +  4 × 102   +  3 × 101  +  6 × 100 

 

Binary Number System: 

• set of symbols = { 0 , 1 }  –  usual meaning 

• 4-digit number example:    10112 

=  1 × 23  +  0 × 22   +  1 × 21  +  1 × 20 

 =  8 + 2 + 1 =   11 



Examples

Write each of the following binary numbers as decimal 
numbers

11111 101010 1001011001

Write each of the following decimal numbers as binary 
numbers

7 0 10 15 33



What about the range of representation? 

• n-bit values can represent (at most) 2n different counting numbers 

• if start representation at 0, then largest value represented is 2n – 1 

• recall 4-bit example:   ( 24  =  16 ) 

• range  =  0 . . 15  

 

Some Observations: 

• binary representation often requires lots of bits 

• example:   60110 = 10010110012 (10 bits!) 

• converting  binary ßà decimal is not trivial 

binary can be awkward and error prone for use by people! 



Hexadecimal (Base-16) Number System: 

• 16 symbols = { 0 . . 9, A, B, C, D, E, F} 

• interpret:  0 . . 9  –  usual meaning 

A   10      C   12   E   14 

B   11    D   13   F   15 

 

Why use hexadecimal (hex) notation? 

• shorthand for binary notation 

• converting  binary  ßà hexadecimal is easy 

4 binary digits required to encode the value of one 
hexadecimal digit  



Converting  Binary  à  Hex 

• group bits in 4’s starting from least significant 

• replace each group by corresponding hex digit 

Examples: 

16-bit:   10001010011011102  (=  35,46810) 

group in 4’s     à 1000 1010 0110 1110  

 replace with hex  à    8       A       6      E   16   

 

10-bit:    10010110012    (=  60110) 

 group in 4’s     à  0010 0101 1001  

 replace with hex  à    2     5       9   16  
 

Converting Hex à Binary 

replace each hex digit by 4-digit binary rep. 



(already know this from 267?)

     Binary   Decimal     Binary  Decimal

    0000 0     1000  8

    0001   1     1001  9

    0010 2           1010 10

    0011 3     1011 11

    0100 4     1100 12

    0101 5     1101 13

    0110 6     1110 14

    0111 7     1111 15

MEMORIZE
THESE!



Examples
Write each of the following binary numbers as 

hexadecimal numbers
1001011001 101010 111111

Write each of the following decimal number as 
hexadecimal numbers
7 0 10 15 33 98 167

Write each of the following hexadecimal number 
as decimal numbers
C 1E 21 148



Binary Math (intro)
Addition and Subtraction proceeds the same as for 

decimal numbers, except that you carry and borrow  
1 (not 10) 

111 + 10 = 1010 + 111 = 
101 – 10 =                        1001 – 111 = 

binary 
addition:
0 + 0 = 02
0 + 1 = 12
1 + 1 = 102
(0 carry 1)

binary 
substraction:
1 - 0 = 12
0 - 0 = 02
1 - 1 = 02
0 - 1 = (1) 12 
(1 borrow 1)



Encoding of Integers 

• positive and negative values 

• must encode sign & magnitude 

1) N-Bit Signed-Magnitude Encoding: 

• use most significant bit to encode sign 

• 0 = positive,  1 = negative 

• use remaining n – 1 bits to encode magnitude using binary number system 

(as for counting #s) 

• example:  8-bit signed-magnitude   

100000012 

    magnitude = 1 

    sign bit = 1   ∴negative number 

  represents   – 1  



Problems with Signed-Magnitude Encoding: 

• two representations for 0  L 

positive 0   (sign bit = 0) 

negative 0  (sign bit = 1) 

  [ Is 0 positive or negative? ] 

• performing arithmetic operations with signed-magnitude    

   values can be awkward  L 

• signed-magnitude not often used in practice  



2) N-Bit 2’s Complement Encoding:  ☺ 

• complement of one bit:    b = 1 – b   

complement of 0 = 1      complement of 1 = 0 

• complement of an n-bit value: complement each bit 

• 2’s complement of an n-bit value:  

complement each bit, and then add 1 

ignore any carry out of most significant bit 

Examples: 

original value  =     100111010010 

complement each bit 011000101101 

add 1         +       1 

2’s complement =   011000101110 

binary 
addition: 
0 + 0 = 02 
0 + 1 = 12 
1 + 1 = 102 
 (0 carry 1) 



To encode an integer in an n-bit value: 

• half of binary values for negative values (i.e. 2n–1 values),  

 rest for positive (and 0) 

• encode positive values (and 0) the same way as counting 

numbers  

• range  0 . . 2n – 1 – 1  

• uses all values that start with 0 

• use 2’s complement as negation operation!

• to find encoding of   – x

form 2’s complement of  + x



8-bit example: 

 +110       0000 0001 

complement 1111 1110 

add 1      +     1 

– 110   1111 1111 

 

Negating a negated number should give the  

          original number   – (– x)  =  x 

 

Does this work for negating (2’s complementing) negative 

values ? 

2’s complement 
operation 



 

– 110   1111 1111 

complement 0000 0000 

add 1      +     1 

  +110      0000 0001    works!  ☺ 

 

How many representations for 0? 

 010        0000 0000 

complement 1111 1111 

add 1      +     1 

010    0000 0000    ☺ 

• range for negative values 

 – 2n – 1 . .  – 1 

all negative value encodings start with 1  

2’s complement 
operation 

ignore carry out of 
most significant bit 



Consider 8-bit 2’s complement encodings:

• 28 = 256,  27 = 128

• range:    – 128    .  .   + 127

   (– 2n – 1)       (2n – 1 – 1)

 +12710    0111 1111

complement 1000 0000

add 1     +    1

– 12710 1000 0001

2’s complement
operation



How to get encoding for  – 128 ?

  – 127 – 1 =   – 128

– 12710 1000 0001

subtract 1     –    1

– 12810 1000 0000

What if we negate  – 128 ?      [ special case !! ]

 –12810     1000 0000

complement 0111 1111

add 1     +    1

– 12810 1000 0000     ???  huh  ???

Is this expected?  Why don’t we get +128 ???

   (What is  1000 00002 as a counting number?)

binary
subtraction:
0 – 0 = 02

1 – 0 = 12

1 – 1 = 02

 0 – 1 =
  1 borrow 1



Examples

Write each of the following decimal 
numbers 
- 8-bit signed integers
- 8-bit two’s complement integers

65 -65 42 -42



Encoding of Characters

• want to represent “displayable” characters:

• characters:   { A, B , . . . , Y, Z }

• 26 × 2  = 52  (upper and lower case)

• decimal (10) digits:  {0, 1, . . . , 8, 9 }

• punctuation:  ! ″ ′ ,  .  –  ? /  :  ;

• math symbols:  + *  =   ( –  and  /  above)

• brackets:    (  )  [  ]  {  }   <  >

• others:  @  #  $  %  ^  &  \  |  ~

• blank space:    “  ”

• 90+ symbols  (??)

• various encoding schemes have been used

• ASCII encoding – international standard

American Standard Code for Information Interchange



7-Bit ASCII Encoding

• 7 bits to encode each character (128 codes)

• often extended to 8-bit (byte) values by making most significant bit

(msb)  =  0

 [in following: all codes are given as hex values]

00 – 1F non-displayable control char’s

• 00 NULL

• 07 BELL

• 08 backspace

• 09 tab

• 0A line feed

• 0C form feed

• 0D carriage return

others – often serve special purposes in communication applications



30 – 39 decimal digit char’s

• 30 “0”

• 39 “9”

41 – 5A Upper Case Letter char’s

• 41 “A”

• 5A “Z”

61 – 7A Lower Case Letter char’s

• 61 “a”

• 7A “z”

20 blank space

character “0” ≠ number 0



• example:  “3006 is FUN!” 

encoding: 33 30 30      36 20 69 73 20 42 4F 52 49 4E 47 21 

 shorthand       00110000            01110011 

 for binary! 

 

Other Character Encoding Schemes: 

• IBM standardized an 8-bit scheme (256 char’s) as defacto   

standard (PC’s !) 

• see inside back cover of text – overlaps with 7-bit ASCII  

for displayable char’s 

• Java:  unicode – 16-bit scheme (65,536 char’s) 

• multi-lingual character sets 

 



Important Concept !!!!!! 

• fixed-width binary values are used to represent information in computers 

• the computer works with the binary representations (NOT the information!!)

• the same binary value can be used to represent different information ! 

 

8-bit example:  1111 00002 

  unsigned:   24010 

  signed:   – 1610 

  8-bit ASCII:  “ ≡ ” 

  other? 

 

Programmers Must Be Aware! 


