
Encoding of Counting Numbers (0, 1, 2, 3…)

Based Number Systems:

• base: set of atomic symbols + interpretation of each symbol as a counting

“value” (quantity)

• number: string of symbols (digits)

PLUS interpretation rule

• symbols (digits) are numbered right to left, start at 0

• e.g. 4-digit number: d3d2d1d0

• “value” of a symbol: depends on value of the individual symbol and

 position in string

• value of symboli = (value of symboli) × basei

“value” of number is sum of values of symbols

Base-10 Example: (done this before, but …)

• symbols = { 0, 1, 2, 3, … , 9} – usual meaning

• 4-digit example: d3d2d1d0 = 1436

= d3 × 103 + d2 × 102 + d1 × 101 + d0 × 100

= 1 × 103 + 4 × 102 + 3 × 101 + 6 × 100

Binary Number System:

• set of symbols = { 0 , 1 } – usual meaning

• 4-digit number example: 10112

= 1 × 23 + 0 × 22 + 1 × 21 + 1 × 20

 = 8 + 2 + 1 = 11

Examples

Write each of the following binary numbers as decimal
numbers

11111 101010 1001011001

Write each of the following decimal numbers as binary
numbers

7 0 10 15 33

What about the range of representation?

• n-bit values can represent (at most) 2n different counting numbers

• if start representation at 0, then largest value represented is 2n – 1

• recall 4-bit example: (24 = 16)

• range = 0 . . 15

Some Observations:

• binary representation often requires lots of bits

• example: 60110 = 10010110012 (10 bits!)

• converting binary ßà decimal is not trivial

binary can be awkward and error prone for use by people!

Hexadecimal (Base-16) Number System:

• 16 symbols = { 0 . . 9, A, B, C, D, E, F}

• interpret: 0 . . 9 – usual meaning

A 10 C 12 E 14

B 11 D 13 F 15

Why use hexadecimal (hex) notation?

• shorthand for binary notation

• converting binary ßà hexadecimal is easy

4 binary digits required to encode the value of one
hexadecimal digit

Converting Binary à Hex

• group bits in 4’s starting from least significant

• replace each group by corresponding hex digit

Examples:

16-bit: 10001010011011102 (= 35,46810)

group in 4’s à 1000 1010 0110 1110

 replace with hex à 8 A 6 E 16

10-bit: 10010110012 (= 60110)

 group in 4’s à 0010 0101 1001

 replace with hex à 2 5 9 16

Converting Hex à Binary

replace each hex digit by 4-digit binary rep.

(already know this from 267?)

 Binary Decimal Binary Decimal

 0000 0 1000 8

 0001 1 1001 9

 0010 2 1010 10

 0011 3 1011 11

 0100 4 1100 12

 0101 5 1101 13

 0110 6 1110 14

 0111 7 1111 15

MEMORIZE
THESE!

Examples
Write each of the following binary numbers as

hexadecimal numbers
1001011001 101010 111111

Write each of the following decimal number as
hexadecimal numbers
7 0 10 15 33 98 167

Write each of the following hexadecimal number
as decimal numbers
C 1E 21 148

Binary Math (intro)
Addition and Subtraction proceeds the same as for

decimal numbers, except that you carry and borrow
1 (not 10)

111 + 10 = 1010 + 111 =
101 – 10 = 1001 – 111 =

binary
addition:
0 + 0 = 02
0 + 1 = 12
1 + 1 = 102
(0 carry 1)

binary
substraction:
1 - 0 = 12
0 - 0 = 02
1 - 1 = 02
0 - 1 = (1) 12
(1 borrow 1)

Encoding of Integers

• positive and negative values

• must encode sign & magnitude

1) N-Bit Signed-Magnitude Encoding:

• use most significant bit to encode sign

• 0 = positive, 1 = negative

• use remaining n – 1 bits to encode magnitude using binary number system

(as for counting #s)

• example: 8-bit signed-magnitude

100000012

 magnitude = 1

 sign bit = 1 ∴negative number

 represents – 1

Problems with Signed-Magnitude Encoding:

• two representations for 0 L

positive 0 (sign bit = 0)

negative 0 (sign bit = 1)

 [Is 0 positive or negative?]

• performing arithmetic operations with signed-magnitude

 values can be awkward L

• signed-magnitude not often used in practice

2) N-Bit 2’s Complement Encoding: ☺

• complement of one bit: b = 1 – b

complement of 0 = 1 complement of 1 = 0

• complement of an n-bit value: complement each bit

• 2’s complement of an n-bit value:

complement each bit, and then add 1

ignore any carry out of most significant bit

Examples:

original value = 100111010010

complement each bit 011000101101

add 1 + 1

2’s complement = 011000101110

binary
addition:
0 + 0 = 02
0 + 1 = 12
1 + 1 = 102
 (0 carry 1)

To encode an integer in an n-bit value:

• half of binary values for negative values (i.e. 2n–1 values),

 rest for positive (and 0)

• encode positive values (and 0) the same way as counting

numbers

• range 0 . . 2n – 1 – 1

• uses all values that start with 0

• use 2’s complement as negation operation!

• to find encoding of – x

form 2’s complement of + x

8-bit example:

 +110 0000 0001

complement 1111 1110

add 1 + 1

– 110 1111 1111

Negating a negated number should give the

 original number – (– x) = x

Does this work for negating (2’s complementing) negative

values ?

2’s complement
operation

– 110 1111 1111

complement 0000 0000

add 1 + 1

 +110 0000 0001 works! ☺

How many representations for 0?

 010 0000 0000

complement 1111 1111

add 1 + 1

010 0000 0000 ☺

• range for negative values

 – 2n – 1 . . – 1

all negative value encodings start with 1

2’s complement
operation

ignore carry out of
most significant bit

Consider 8-bit 2’s complement encodings:

• 28 = 256, 27 = 128

• range: – 128 . . + 127

 (– 2n – 1) (2n – 1 – 1)

 +12710 0111 1111

complement 1000 0000

add 1 + 1

– 12710 1000 0001

2’s complement
operation

How to get encoding for – 128 ?

 – 127 – 1 = – 128

– 12710 1000 0001

subtract 1 – 1

– 12810 1000 0000

What if we negate – 128 ? [special case !!]

 –12810 1000 0000

complement 0111 1111

add 1 + 1

– 12810 1000 0000 ??? huh ???

Is this expected? Why don’t we get +128 ???

 (What is 1000 00002 as a counting number?)

binary
subtraction:
0 – 0 = 02

1 – 0 = 12

1 – 1 = 02

 0 – 1 =
 1 borrow 1

Examples

Write each of the following decimal
numbers
- 8-bit signed integers
- 8-bit two’s complement integers

65 -65 42 -42

Encoding of Characters

• want to represent “displayable” characters:

• characters: { A, B , . . . , Y, Z }

• 26 × 2 = 52 (upper and lower case)

• decimal (10) digits: {0, 1, . . . , 8, 9 }

• punctuation: ! ″ ′ , . – ? / : ;

• math symbols: + * = (– and / above)

• brackets: () [] { } < >

• others: @ # $ % ^ & \ | ~

• blank space: “ ”

• 90+ symbols (??)

• various encoding schemes have been used

• ASCII encoding – international standard

American Standard Code for Information Interchange

7-Bit ASCII Encoding

• 7 bits to encode each character (128 codes)

• often extended to 8-bit (byte) values by making most significant bit

(msb) = 0

 [in following: all codes are given as hex values]

00 – 1F non-displayable control char’s

• 00 NULL

• 07 BELL

• 08 backspace

• 09 tab

• 0A line feed

• 0C form feed

• 0D carriage return

others – often serve special purposes in communication applications

30 – 39 decimal digit char’s

• 30 “0”

• 39 “9”

41 – 5A Upper Case Letter char’s

• 41 “A”

• 5A “Z”

61 – 7A Lower Case Letter char’s

• 61 “a”

• 7A “z”

20 blank space

character “0” ≠ number 0

• example: “3006 is FUN!”

encoding: 33 30 30 36 20 69 73 20 42 4F 52 49 4E 47 21

 shorthand 00110000 01110011

 for binary!

Other Character Encoding Schemes:

• IBM standardized an 8-bit scheme (256 char’s) as defacto

standard (PC’s !)

• see inside back cover of text – overlaps with 7-bit ASCII

for displayable char’s

• Java: unicode – 16-bit scheme (65,536 char’s)

• multi-lingual character sets

Important Concept !!!!!!

• fixed-width binary values are used to represent information in computers

• the computer works with the binary representations (NOT the information!!)

• the same binary value can be used to represent different information !

8-bit example: 1111 00002

 unsigned: 24010

 signed: – 1610

 8-bit ASCII: “ ≡ ”

 other?

Programmers Must Be Aware!

