Encoding of Counting Numbers (0, 1, 2, 3%)

Based Number Systems:
- base: set of atomic symbols + inter pretation of each symbol as a counting
“value” (quantity)
- number: string of symbols (digits)
PLUS interpretation rule
- symbols (digits) are numbered right to left, start at O
- e.g. 4-digit number: dsdxd:do
- “value’ of asymbol: depends on value of the individua symbol and
position in string
. value of symbol; = (value of symbol;) ~ base

“value” of number is sum of values of symbols

Base-10 Example: (done this before, but ¥4)
- symbols={ 0,1, 2, 3, Y, 9} — usua meaning
- 4-digit example: dzd.d;d, = 1436
=d;” 10° +d,” 10° +d;” 10" +d,” 10°
=1"10°+ 4~ 10° + 3" 10" + 6~ 10°

Binary Number System:

- set of symbols={ 0,1} — usua meaning

- 4-digit number example: 1011,
=1"2+0 22+1"2"+1" 2
=8+2+1 = 11

Examples

Write each of the following binary numbers as decimal
numbers

11111 101010 1001011001

Write each of the following decimal numbers as binary
numbers

What about the range of representation?
. n-bit values can represent (at most) 2" different counting numbers
1 . if start representation at 0, then largest value represented is 2" — 1
. recall 4-bit example: (2* = 16)
- range = 0..15

Some Observations:

- binary representation often requires lots of bits
I - example: 601, = 1001011001, (10 bits!)

. converting binary €-> decimal isnot trivial

binary can be awkward and error prone for use by people!

Hexadecimal (Base-16) Number System:
- 16 symbols={ 0..9,A,B,C,D, E, F}
- Interpret: 0..9 — usua meaning

A 10 C 12 E 14

B 11 D 13 F 15

Why use hexadecimal (hex) notation?
- shorthand for binary notation
- converting binary < -> hexadecimal is easy

4 binary digitsrequired to encode the value of one
hexadecimal digit

Converting Binary - Hex
- group bitsin 4’s starting from least significant
! - replaceeach group by corresponding hex digit
Examples:
16-bit: 1000101001101110, (= 35,468,0)
groupin4d’s -> 1000 101001101110
replace with hex - T8 ,L % IT:' 16

10-bit: 1001011001, (= 601,y
groupin4d’s - 00100101 1001
replace with hex - E g B 16

Converting Hex = Binary
i replace each hex digit by 4-digit binary rep.

(already know this from 2677)

MEMORIZE
THESE!

Binary Decimal

Binary Decimal

0000
0001
0010
0011
0100
0101
0110
0111

~ o oo A WO N P+ O

1000
1001
1010
1011
1100
1101
1110
1111

10
11
12
13
14
15

Examples

" Write each of the following binary numbers as
hexadecimal numbers

1001011001 101010 111111

Write each of the following decimal number as
hexadecimal numbers

I / 0 10 15 33 98 167

Write each of the following hexadecimal number
as decimal numbers

C 1E 21 148

Binary Math (intro)

Addition and Subtraction proceeds the same as for
decimal numbers, except that you carry and borrow

1 (not 10)

111 +10 = 1010 + 111 =
101 -10 = 1001 - 111 =
binary binary
addition: substraction:

0+0=0, 1-0=1,
0+1=1, 0-0=0,
1+1=10, 1-1=0,
(Ocarry 1) 0-1=(1)1,
(1 borrow 1)

Encoding of Integers
- positive and negative values

- must encode sign & magnitude
1) N-Bit Signed-Magnitude Encoding:

- use most significant bit to encode sign
- 0 =positive, 1 = negative
- use remaining n — 1 bits to encode magnitude using binary number systen
(as for counting #s)
. example: 8-bit signed-magnitude
10000001,

_magnitude=1
signbit=1 \ negative number

represents —1

Problems with Signed-M agnitude Encoding:
- two representationsfor 0 ®
positive 0 (sign bit = 0)
negative 0 (sign bit =1)
[1s O positive or negative? |
- performing arithmetic operations with signed-magnitude
values can be awkward ®

- signed-magnitude not often used in practice

2) N-Bit 2’s Complement Encoding: ©

- complement of one bit: b=1-b
complementof 0=1 complementof 1=0
- complement of an n-bit value: complement each bit
- 2's complement of an n-bit value:
complement each bit, and then add 1

Ignor e any carry out of most significant bit

Examples:

original value = 100111010010 | |binary
addition:

complement each bit 011000101101 8 : Cl) = (1)2

add 1 + 1 1+1= 162
(Ocarry 1)

2'scomplement = | 011000101110

To encode an integer in an n-bit value:
. half of binary values for negative values (i.e. 2" values),
rest for positive (and 0)
- encode positive values (and 0) the same way as counting
numbers
.range 0..2" " *-1
- uses al values that start with O

- use 2's complement as negation oper ation!

- to find encoding of —X

form 2's complement of + x

8-bit example:
+1,, —— 0000 0001

complement 1111 1110 <: 2's complement
odd 1 N 1 operation

-1 — 111111711

Negating a negated number should give the

original number —(—x) = X

Does thiswork for negating (2's complementing) negative

values ?

-1 — 11111111

Compl ement 0000 0000 ya 2' s complement
dd 1 N 1 \— operation
+140 0000 0001 works! ©

How many representations for 0?
O —— 0000 0000

complement 11111111 ignore carry out of

most significant bit

add 1 + 1 \1/]:
O10 0000 0000 ©
- range for negative values

2t -1

all negative value encodings start with 1

Consider 8-bit 2's complement encodings:.
. 2°=256, 2" =128

- range: —128
(=2"7)

+127,0— 0111 1111

. +127
(2" -1)

complement
add 1

+

1000 0000
1

2’ s complement
operation

How to get encoding for — 128 ?

— binary
—-127-1= -128 subtraction:

0—0=0,

1-0=1,
— 127,— 1000 0001 i

subtract 1 — 1 0—1=
1 borrow 1
—128,,— 1000 0000

What if we negate —128? [special case!!]
—128,,— 1000 0000

complement 0111 1111
add 1 + 1

—128,,— 1000 0000 ??7? huh ?7?7?

|s this expected? Why don’t we get +128 77?
(What is 1000 0000, as a counting number?)

Examples

Write each of the following decimal
numbers

- 8-bit signed integers
- 8-bit two’s complement integers

65 -65 42 -42

Encoding of Characters

- want to represent “displayable” characters:
- characters:. { A,B,...,Y,Z}

- 26~ 2 =52 (upper and lower case)

- decimal (10) digits: {0,1,...,8,9}
- punctuation: '2 ¢, . — ?/ : ;
- math symbols. +* = (— and / above)
- brackets. () []{} <>
-others: @ #$ % &\ | ~
- blank space:
- 90" symbols (??)

- various encoding schemes have been used

- ASCII encoding — international standard

American Standard Code for Information Interchange

7-Bit ASCI| Encoding
- 7 bits to encode each character (128 codes)
- often extended to 8-bit (byte) values by making most significant bit
(msb) = O
[in following: all codes are given as hex values]
00—-1F non-displayable control char’s
- 00 NULL
- 07 BELL
- 08 backspace
- 09 tab
- OA linefeed
- 0C form feed
- 0D carriage return

others — often serve special purposes in communication applications

20

30 -39
- 30

- 39

41 —5A
.41

- DA

61— 7A
- 61

|

- (A

decimal digit char’s
(11 OH

l character “0” * number O

1 9”

Upper CaseLetter char’s
HA”

|

1 ZH

Lower Case Letter char’s

11 a:!

|

1 Z”

blank space

- example: 30§)6 IS FUN!”
encoding: 33 %O 36 20 69 73 20 42 4F 52 49 4E 47 21
shorthand 00110000 01110011

for binary!

Other Character Encoding Schemes:
- IBM standardized an 8-bit scheme (256 char’s) as defacto
standard (PC’s!)
- seeinside back cover of text — overlaps with 7-bit ASCI|
for displayable char’'s
- Java. unicode — 16-bit scheme (65,536 char’s)

- multi-lingual character sets

- fixed-width binary values are used to represent information in computers
1 - the computer works with the binary representations (NOT the information!!

- the same binary value can be used to represent differ ent information !

8-bit example: 1111 0000,
unsigned: 2401
signed: — 1610
I 8-bit ASCII: ‘o
other?

Programmers Must Be Awar el

