
SYSC-3006 

The Keyboard



SYSC-3006 

PC Keyboard : I/O Programmer’s Model

• PC keyboard: interrupt driven  
– Cannot run in polled mode: no status port
– Connected to IR1 of the PIC (details later), 

through 8255 Parallel Peripheral Interface (PPI)
• 8255: our programming interface to the keyboard

– Generates Hardware Interrupt 9

• 2 interrelated 8255 PPI ports:
Data Port (Port PA) : I/O address 60H
Control Port (Port PB) : I/O address 61H



SYSC-3006 

PC Keyboard : I/O Programmer’s Model

• The keyboard data port (Port A) has dual functionality :

– Dual = Different values read from the same port!

– Value read depends on the setting of Port B, Bit 7!
• Port B, Bit 7 = 0    “Scan Code” read.

(i.e. identify keystroke)
• Port B, Bit 7 = 1   “Configuration switch data” is read 

• In this course, we never use configuration data, so why don’t we 
set Port B, Bit 7 = 0 and leave it there ?



SYSC-3006 

PC Keyboard : Hardware Requirement

• Keyboard will not send next scan code until previous one “acknowledged”

• To acknowledge scan code:
– Toggle PB bit 7 0 à 1 and then 1 à 0

• CAREFUL!   All bits in PB have important values

1. Read Port B :  PB_value
2. Force bit 7 = 1: PB_value  OR  80H
3. Write modified value back to Port B
4. Write original value (with bit 7 = 0) back to Port B

• NB. The keyboard hardware is initialised when DOS boots



SYSC-3006 

PC Keyboard : Scan Codes 

• Scan code: code sent from keyboard whenever keys change state
– Scan codes are NOT ASCII codes!!
– The scan codes runs from  0 – 53H

• e.g. “A” key scan code = 1EH

• Scan codes “make/break coded”
– one code sent when key pressed (make)
– different code sent when key released (break)
– Only difference: most-significant bit

• If MSBit = 0 à key pressed
• If MSBit = 1 à key released

– Example : Letter A
• Make ‘A’ =  1EH (0001 1110b)
• Break ‘A’ =  9EH (1001 1110b)



SYSC-3006 

PC Keyboard : Multiple Key Combinations

• Multiple key combinations
– <SHIFT> ‘A’
– <CTRL><ALT><DEL>

• Software must manage multiple key combinations.
• Left Shift key press, make code = 2AH
• Right Shift key press, make code = 38H
• Ctrl key press, make code = 1DH
• Alt key press, make code = 3AH

• Keyboard software must track control keys for correct interpretation
– Example: letter key pressed while one shift key was down?  

If yes:  – how should scan code be interpreted?



SYSC-3006 

Example : A Simple Keyboard Driver

• Requirements  
– prints uppercase char’s representing keys pressed
– ALT, SHIFT, CTRL keys (and a few others) not managed 
– exit program by resetting
– ISR ignores key released scan codes
– uses lookup table to convert key released scan code 

to uppercase ASCII representation



SYSC-3006 

Example : A Simple Keyboard Driver

• Program architecture 
– Duties divided between main program and keyboard ISR

• Keyboard ISR gathers data as user enters keystrokes
• Main prints the keystrokes

– Data shared in variable KEYBOARD_CHARACTER
• Variable initialised to 0FFh to represent “no data”

– (0FFh is not an ASCII code for any key)
• Keyboard ISR puts ASCII code in variable
• Main program polls variable until valid data found
• When main reads ASCII code, it must reset variable 

to “no data” value

How does 
it know 
when ?



SYSC-3006 

Keyboard : Code Fragments

LF EQU 0AH
CR EQU 0DH

.data  
KEYBOARD_CHARACTER DB 0FFH
SCAN_TABLE ; lookup table

DB 0,0,'1234567890-=',8,0
DB 'QWERTYUIOP[]',CR,0
DB 'ASDFGHJKL;',0,0,0,0
DB 'ZXCVBNM,./',0,0,0
DB '  ',0,0,0,0,0,0,0,0,0,0,0,0,0
DB '789-456+1230'

shared variable initialized to “no data” value

Use 0 for keys to ignore



SYSC-3006 

Keyboard : Code Fragments

.code
CLI ; disable ints while installing ISR
MOV AX , 0
MOV ES , AX
MOV DI , 09H*4
MOV WORD PTR ES:[DI] , OFFSET  KISR
MOV WORD PTR ES:[DI+2] , @code

; enable keyboard and timer interrupts @ PIC
IN AL, 21h
AND AL , 0FCH
OUT 21H , AL
STI ; let ints happen !



SYSC-3006 

Keyboard ISR : Code Fragments

FOR_EVER: ; press reset to exit ☺
CALL GET_CHAR ; returns ASCII in AL
PUSH AX ; save char
CALL DISPLAY_CHAR ; displays char in AL
POP AX ; restore char
CMP AL , CR ; check for Enter key
JNZ REPEAT_LOOP
MOV AL , LF ; if Enter – do LF too !
CALL DISPLAY_CHAR

REPEAT_LOOP:
JMP FOR_EVER

• Exercise: Modify to exit if a particular char is found.



SYSC-3006 

Keyboard ISR : Code Fragments

GET_CHAR PROC NEAR
; poll until char received from ISR 
; check for “no data” value
CMP KEYBOARD_CHARACTER, 0FFH
JZ  GET_CHAR

; get ASCII character
MOV AL , KEYBOARD_CHARACTER
MOV KEYBOARD_CHARACTER , 0FFH
RET

GET_CHAR ENDP

Is this a critical region? 
Should it be protected?



SYSC-3006 

Keyboard : Code Fragments

KISR PROC FAR
; Standard ISR Setup(Save registers, initialise DS)

IN AL , 60H ; get scan code

; Acknowledge Keyboard : Toggle PB bit 7
PUSH AX ; save scan code
IN AL, 61H ; read current PB value
OR AL, 80H ; set bit 7
OUT 61H, AL ; write value back + bit 7=1
AND AL, 7FH ; clear bit 7–back to original
OUT 61H , AL ; write original value back
POP AX ; restore scan code



SYSC-3006 

Keyboard : Code Fragments

TEST AL , 80H ; ignore break codes
JNZ SEND_EOI

; Convert make code to ASCII
LEA BX , SCAN_TABLE
XLAT
CMP AL , 0 ; some keys ignored !
JZ SEND_EOI

; Put ASCII encoded value in shared variable
MOV KEYBOARD_CHARACTER , AL

SEND_EOI: 
MOV AL , 20H
OUT 20H , AL

; Standard ISR exit code
IRET

KISR ENDP



SYSC-3006 

The 5 Dedicated Interrupts (0..4)

• Interrupt 0 (divide error)
– Invoked by CPU after DIV or IDIV if the calculated quotient 

is larger than the destination 
– How big is the quotient if an attempt is made to divide by 0?

• Interrupt 1 (single step)
– Used by debuggers to support single stepping 
– TF flag set: CPU invokes this ISR after executing 

most instructions
• TF cleared as part of INT execution (after flags are pushed)
• Why is TF cleared ?

– When ISR starts, processor no longer in single-step mode
– Avoids an infinite loop!



SYSC-3006 

The 5 Dedicated Interrupt (0..4)

• Interrupt 2 (non-maskable interrupt)
– Hardware interrupt which cannot be disabled. 

• Interrupt 3 (breakpoint interrupt)
– A special version of the INT instruction encoded in one byte: CEH
– Used to provide breakpoint capabilities for debuggers

• Interrupt 4 (overflow interrupt) INTO
– OF set when INTO instruction is executed: CPU invokes this ISR
– Used in numeric libraries to trap overflow errors

• Higher processors (80186, 80286, etc.) have additional dedicated interrupts
– IBM/Microsoft decided to use interrupts reserved by Intel for their 

own purposes. Caused problems when AT was released  L


