
SYSC-3006

The Programmable Interrupt Controller

SYSC-3006

Interrupt Controller

• Before : The 8086 processor has two hardware interrupt signals
• We’ve seen at least 2 interrupt sources.

• “Decides from which vector table location to load ISR address”

8086

NMI INTR

bus

Timer

(INT 8)

Keyboard

(INT 9)

SYSC-3006

Interrupt Vectors: Deciding which ISR to run

• Auto-vectored interrupts: vector predefined as part of CPU design

– For each HW signal, CPU goes to a particular interrupt-type
in vector table.

– 8086 Example: NMI (auto-vectored -> Interrupt-type 2)
• NMI asserted, 8086 executes INT type 2 interrupt behaviour:

– save processor state
– obtain ISR address from vector 2 (memory address 0:8)
– execute type 2 ISR

• More than one device shares the NMI signal?
(e.g. RAM and power supply)

– NMI ISR must check (poll) each device
(which one caused the interrupt?)

SYSC-3006

Interrupt Vectors: Deciding which ISR to run

• Vectored interrupts: vector determined during systems design.

– CPU performs “interrupt-acknowledge” cycle
-> reads interrupt-type from data bus

• Interrupting device can provide interrupt-type
• 8086: interrupt controller (IC)

– Vectored interrupts: robust method for multiple devices connected
to single interrupt line (no polling!)

• Interrupt-type: mapping to unique ISR for each device
• Interrupt controller acts as a multiplexer

– 8086 Example: INTR is a vectored interrupt

External hardware

SYSC-3006

Interrupt Controller

• Interrupt controller acts as a funnel for multiple device interrupts
– Allows many devices to share the 8086’s single INTR signal

8086
processor

INTR

bus

interrupt
controller

device

device

. . .

interrupt signals from devices

SYSC-3006

Interrupt Controller – INTA cycle

• Interrupt Acknowledge Cycle (INTR line asserted by IC)

– CPU and interrupt controller “handshake” in hardware
• No software involved

– Interrupt controller “knows” which device caused INTR signal

– Interrupt controller “tells” CPU a unique interrupt-type associated with
interrupting device

• It writes the interrupt-type on the data bus

– CPU uses interrupt-type to execute appropriate interrupt behaviour
(i.e. device’s ISR)

More in ELEC-3601

SYSC-3006

Interrupt Controller

Interrupt controllers can have complex behaviour

– programmable (select mode of operation)
• must be initialised before use
• PIC: I/O devices that are read and written to.

– Example: specific interrupt-type associated with each
interrupting device is often programmable

SYSC-3006

The Intel Programmable Interrupt Controller (PIC)

In 80x86 based PCs, the interrupt controller used is the Intel 8259A

It supports 8 device inputs : IR0 à IR7

8259
PIC

Interrupting
Device

Interrupting
Device

. . .

IR0
IR1
IR2
IR3
IR4
IR5
IR6
IR7

D0..D7 Data bus

INTR

SYSC-3006

Daisy-Chaining or Cascading the PIC

• Maximum configuration: 1 master PIC and up to 8 slave PICs,
allowing up to 64 devices to generate interrupts

– Modern PC’s have a master + (at least) one slave

CPU

INTR

bus

Master
PIC

Interrupting Device

. . .

Interrupting Device
Slave
PIC

slave PIC’s
INTR signal

interrupt signals from devices

value exchanged during interrupt
acknowledge hand-shake

SYSC-3006

The PC configuration of 80x86 and 8259 PIC

(NB The PC is one particular configuration of 8086 and PIC)

During power-up, BIOS programs (initialises) the master PIC:
IR0 à IR7 mapped to interrupt types 08h à 0Fh

8086
processor

INTR

bus

8259
PIC

Timer

LPT1
Printer

. . .

IR0
IR1
IR2
IR3
IR4
IR5
IR6
IR7

Keyboard

SYSC-3006

PC Example : Keyboard

• Assume interrupts enabled (IF = 1)

• Keyboard hardware asserts IR1 at PIC, PIC generates INTR signal to CPU
– Interrupt acknowledge: PIC identifies interrupt source as type 9
– CPU executes the INT 9h behaviour

• Saves the flags
• Clears IF and TF (Disabling interrupts at processor)
• Saves CS and IP
• Reads interrupt-type = 9h from the Data bus and vectors to ISR

pointed to by double word at 0:9h*4
• Execution of ISR 9 caused by hardware interrupt mechanism

– No software involved in the invocation of ISR 9 ! Interrupts
disabled
when ISR
begins
execution

SYSC-3006

Some (as yet) Unanswered Questions:

1. Two devices generate interrupts at the same time:
which ISR executed first?

2. CPU executing ISR; second device interrupts:
when should the second ISR be executed?

order?

interrupting an ISR?

not possible unless ISR
re-enables interrupts !

i.e. IF = 1

SYSC-3006

Interrupt Priority

• Interrupting Devices are assigned priorities
– Higher priority devices take precedence over lower priority ones
– Priority applied whenever interrupts coincide

• Multiple interrupts occur at the same time
• New interrupts occur while processing ISR of previous interrupts.

• Typically, interrupt controllers manage priority issues.
– In PC’s

• Devices have pre-configured connections to PIC
– Timer always IR0 and Keyboard is always IR1

• DOS programs 8259A to assign priority based on device
connection

– IR0 == highest priority and IR7 == lowest priority

the lower the number,
the higher the priority

SYSC-3006

Interrupt Priority Scenarios

1. Two devices generate interrupts at the same time:
which ISR should be executed first?

Main INT 8 ISR INT 9 ISR Main INT 9 ISR INT A ISR Main

Time

IR0 IR1 IR1 IR2

SYSC-3006

Interrupt Priority Scenarios

2. CPU executing ISR; second device interrupts, when should the second ISR
be executed?

• Two inputs to PIC: IRm and IRn where m < n
– m higher priority than n!

• Device n asserts IRn; PIC generates interrupt. Device m asserts IRm;
PIC generates another interrupt !

• PIC will try to allow higher priority interrupt to interrupt a lower priority ISR !
– Second interrupt will not be recognized by processor until interrupts are

re-enabled (IF = 1)

Main INT 9 ISR INT 8 ISR Main INT 9 INT 8 ISR Main

IR1 IR0 IR1 IR0

9 ISR

When is this ?

SYSC-3006

Interrupt Priority Scenarios

• Device n asserts IRn (low priority) while IRm ISR (high priority) running.

• Low priority assertion “remembered” (latched) by PIC until high priority
ISR finished (regardless of interrupts being enabled/disabled)

• Then, PIC generates another interrupt on behalf of device n

• Two More Questions:
1. How many interrupts can the PIC remember?
2. How does the PIC know when higher priority ISR is finished?

Main INT 8 ISR INT 9 ISR Main

IR0 IR1

INT 8 ISR INT 9 ISR

IR0 IR1

With STI in ISRNo STI in ISR

SYSC-3006

Pending Interrupts

• “Pending” Interrupt: interrupt signal latched somewhere in the system,
but not yet been acknowledged by the processor

– Interrupts can be pending at device and/or at the PIC

• Example: The Intel 8259 has an internal 8-bit register
– one bit per IR input
– When IR is asserted, associated bit is set
– When interrupt on IR acknowledged, associated bit is cleared
– In summary, the PIC has 1-bit memory for each IR

• It can remember up to 1 pending interrupt for each IR

SYSC-3006

End-of-Interrupt (EOI)

• After sending interrupt to processor, PIC needs to know when it
is safe to generate a lower priority interrupt

– PIC requires feedback from the CPU

• End Of Interrupt (EOI): a command sent to PIC from the CPU
– Not part of the INTA cycle; not done in hardware
– Software command: i.e. something your program must do.

SYSC-3006

PIC Programmer’s Model

• PIC: I/O Device (I/O port addresses)
– Two 8-bit ports:

Interrupt Mask Register (Port 21H) read/write
– Enable/disable individual interrupts at the PIC
– bit i = 1 IRi is masked (not recognized by the PIC)
– bit i = 0 IRi is unmasked (recognized by the PIC)

Command Register (Port 20H) - write-only
– Write 20H to inform PIC of end of interrupt (EOI)

Simple version here –
on a need-to-know basis.
Complete details in ELEC 3601

Beware : mask at PIC à bit = 1 mask at processor à IF = 0

