
The Timer

SYSC-3006

Intel 8253 Programmable Interval Timer (PIT)

• 8253 component has 3 independent timer components

– Each timer counts ticks on the same master clock input

– Each timer generates its own output signal

• Can be programmed for one of 6 modesthat determine
the shape of the output signal.

8253

timer 0

3 independent
output signals

SYSC-3006

timer 0
16-bit counter

timer 1
16-bit counter

timer 2
16-bit counter

Input Clock
(crystal oscillator)

counts
ticks

Basic Timing Function of 8253

• Each timer’s counter is a 16-bit unsigned value
• Timer decrements counter every tick on input clock

(typically from crystal oscillator)

• Counter reaches zero: output signal changes (if 1, now 0; if 0, now 1)

• “Modes” automatically reload counter and start again,
=> digital patterns.

SYSC-3006

• Counter value related to the period of the output signal

16-bit Counter (decrements)

16-bit Reload Value

0 or 1

• In this mode, 8253 generates a square wave on output signal.

– Square wave: approx. 50% duty cycle

– Master clock input signal “ticks”: timer counter decremented

– Counter reaches half of original value: output signals toggle

– Counter reaches 0: output signal toggled and counter reloaded.

Square Wave Generator Mode (Mode 3)

SYSC-3006

– Last value written to counter used as reload (original) value

16-bit Counter = 4, 3, 2, 1, 0

16-bit Reload Value = 4
4 3 2 1 0 4 3 2 1 0

Square Wave Generator Mode (Mode 3)

• Output: scaled down version of input clock
– One output cycle every n input cycles (n called the scaling factor)

output freq. = input freq. ÷÷÷÷ n

• Usually, we need to find scaling factor to program timer component

– Determine initial counter value to generate desired output frequency

SYSC-3006

– Determine initial counter value to generate desired output frequency

n = input freq. ÷÷÷÷ output freq.

8253 PIT Programmer’s Model

• PIT: I/O device with four 8-bit ports (registers)
– On the PC: port addresses are 40H � 43H

• Three 8-bit Data Registers
Timer 0 Counter Register 40H
Timer 1 Counter Register 41H
Timer 2 Counter Register 42H

SYSC-3006

Timer 2 Counter Register 42H

• Question: How can 8-bit data registers be used to initialise
16-bit internal counters ?

8253 PIT Programmer’s Model

Control Register (43H) write-only

SC1 SC0 RL1 RL0 M2 M1 M0 BCD

7 0

timer
select

read/load
sequence

mode

SYSC-3006

SC1 SC0 timer select
0 0 select timer 0
0 1 select timer 1
1 0 select timer 2

select sequence

8253 PIT Programmer’s Model

RL1 RL0 read/load sequence
0 1 read/load LSB only
1 0 read/load MSB only
1 1 read/load LSB first, then MSB

M2 M1 M0 mode (6 modes)
x 1 1 mode 3: square wave generator (x = don’t care)

SYSC-3006

x 1 1 mode 3: square wave generator (x = don’t care)
(other modes in ELEC-3601)

BCD
0 16 bit binary count
1 BCD count (4 decimal digits)

8253 Hardware Configuration and Limits on the PC

• On a PC, 8253 wired such that

– master input signal = 1.19318 MHz

– output from timer 0 connected to IR0 on PIC

• Scaling factor: unsigned number from 0 … FFFFh (65,535)
but …0000H = 65,536 (i.e. 10000H, with implied MS bit)

Generate timer interrupts!

SYSC-3006

• Question: What is the maximum frequency ?

• Question: What is the minimum frequency ?

min output = input ÷ max scaling factor

= 1.19318 MHz ÷÷÷÷ 65,535
= 18.2 Hz

Hardware Timing Example : DOS Time-of-Day

• The DOS maintains the time-of-day feature HH:MM:SS

– > date

– Provide file timestamps.

• DOS uses Timer 0: real-time clock interrupting at a frequency
of 18.2 Hz.

SYSC-3006

– DOS boots: Timer 0 programmed for Mode 3 (square wave)
and “initial time” is loaded

– The Timer 0 ISR counts “ticks” (at 18.2 Hz)

– “initial time + ticks” used to calculate “current” time-of-day

Let’s Review : Hardware Timing Example

1. How was the 8253 programmed ? (Which timer, what mode?)

Write to the timer’s control register: (at 43H)
SC1 SC0 = 00 (select timer 0)

RL1 RL0 = 11 (LS byte then MS byte)

M2 M1 M0 = 011 (square wave)

– could also use M2 M1 M0 = 111

SYSC-3006

– could also use M2 M1 M0 = 111

BCD = 0 (16 bit binary count)

Control Register : 00 11 011 0 � 36H

select load mode BCD

Let’s Review : Hardware Timing Example

2. What frequency was programmed ?

Determine initial (reload) counter value:

scaling factor = input freq. ÷ output freq.

= 1.19318 MHz ÷ 20 Hz

= 59,659 (decimal) = 0E90BH

SYSC-3006

• After writing control register, write timer 0 counter value

(at 40H)

– First write LSB: 0BH

– Then write MSB: E9H

Let’s Review : Use of STI/CLI in Main Program

; Main program
; count = 0;

; Save original vectors

CLI

; Install new ISR at INT 8

; Enable interrupts

. . .

Why ?

SYSC-3006

. . .

CALL get_ticks ; Returns tick count
; count_high->dx count_low->ax

; Use value as needed

. . .

Let’s Review : Use of STI/CLI in Main Program

get_ticks PROC NEAR

CLI ; Lock out ints while accessing shared data

; (ensure mutual exclusion)

MOV DX , count_high ; Return 32 bit count

MOV AX , count_low
event-
driven
thinking !

SYSC-3006

STI ; Re-enable ints

RET

get_ticks ENDP

thinking !

Event-Driven Thinking : An Interference Scenario

• Suppose CLI / STI protection not there , and:
count_high = 0010H
count_low = FFFFH

• Suppose main program was executing getTicks() with the following:
MOV DX , count_high
MOV AX , count_low

What’s special about this value ?

SYSC-3006

• Suppose Timer interrupt occurs during /after MOV DX, count_high
– At this point, DX = 0010H
– For count to be correct, AX = FFFFH

• BUT . . .

Event-Driven Thinking : An Interference Scenario

• In response to the interrupt, timerISR increments count, to become:
count_high = 0011H

count_low = 0000H

• When main program resumes, it executes MOV AX,count_low

DX = 0010h (from before interrupt)

SYSC-3006

DX = 0010h (from before interrupt)
AX = 0000H (from after interrupt)

• The value returned from get_ticks() is:

– count_high before Timer interrupt DX = 0010H

– count_low after Timer interrupt AX = 0000H

