
SYSC-3006

Hardware Interrupts

SYSC-3006

The Particular Challenges of I/O Programming

• With “memory” programming :
1. Data transfers between memory occur as result of

instruction fetch-execute cycle
• Time to complete: (order of) microseconds

– Program runs synchronously: instructions
fetched then executed.

• CPU controls the data transfers between memory.

SYSC-3006

The Particular Challenges of I/O Programming

1. Input/output often involve physical movement of I/O devices
(keypads, sensors, switches)

• Response times determined by physical nature of device
(e.g. switches bouncing, A/D conversion, movement of disk

head)
• Response times an order of magnitude slower than

instruction execution

2. I/O devices operate asynchronously from the processor
(and the program being run)

• Availability of data for input OR device for output not under
control of CPU

• Data transfer: processor and I/O device must
synchronize or “handshake”

SYSC-3006

Example : Polled Keyboard

• Simple Keyboard model:
– Key pressed on keyboard
– ASCII encoded character (associated with key) available in

keyboard data port.
– Bit in status port indicates “Key Ready”.
– Bit in status port cleared when key read from data port

• Pseudo-Code for Polling Keystrokes :

LOOP
UNTIL status port == KEYSTROKE_ENTERED

Read Keystroke from Data port

SYSC-3006

CPU
Keyboard

Data Port

Status Port

Control Port

Address Bus

Data Bus

Example : Polled Keyboard

SYSC-3006

Example : Polled Timing Loop
• In a program, what is time?

• Example : software-only solution for a timing loop

– Write a loop that simply counts to waste time (busy waiting)
for (int i = 0; i < 10000; i++) {
for (int j = 0; j < 10000; j++) {

} // empty body
}

• Advantage: simple software; no explicit h/w involved
• Disadvantage:

– Timing based on execution speed of the processor.
– Not portable: execution speed varies on different machines

(download old DOS games?)

SYSC-3006

Polling : CPU-centric Handshake

• Program tests status of device before transferring data

while (!(getSwitches() & 1000 0000B)) ;
processSwitch()

• Or
loop

if (getSwitches() & 1000 0000B)
processSwitch()

else
doOtherWork()

endif
endLoop

Is Switch E up?

CPU does nothing
but wait

CPU does other work
“in-between” waiting but may

miss instant when
Switch E changes

SYSC-3006

Example : Interrupt-Driven Keyboard

• Simple Keyboard model:
– Key pressed on the keyboard device: ASCII character

available in keyboard data port; bit in status port
indicate “Key Ready”.

– Interrupt sent to the CPU.
– Bit in status port cleared when key read from the data port

CPU
Keyboard

Data Port

Status Port

Control Port

Address Bus

Data Bus
•Hardware Interrupts

require hardware
signal from device

to the processor.

SYSC-3006

Hardware Interrupts

• Hardware Interrupts: require hardware interrupt mechanism
– hardware signal (i.e. wired connection to the CPU)
– I/O component uses signal to inform CPU an event has happened.

• No busy waiting, no polling.
• Programming requires an “event-driven” mindset

• Processor responds to hardware interrupt; stops current processing and
– Saves current processor state (CS, IP, FLAGS)
– Clears IF and TF
– Decides from which vector table location to load ISR address
– Executes ISR
– When ISR executes IRET: processor state restored; execution

returns to “interrupted” processing

More later

SYSC-3006

Learning the Event-Driven Mindset

• Interrupted processing: doesn’t “know” it was interrupted
– Processor:

1. temporarily suspended current thread of control
2. ran ISR
3. resumed suspended thread of control

• Polling: CPU asks devices whether there is anything to do.
– sequential programming: next instruction determined by

control transfer instructions.

• Interrupts: device tells CPU it is time to do something … NOW.
– event-driven programming.
– external hardware spontaneously cause control transfer

(interruption in default program sequence).

SYSC-3006

Interrupt Mechanism on the Intel 8086

• 8086 has two hardware interrupt signals
– NMI non-maskable interrupt
– INTR maskable interrupt

8086

NMI INTR

bus

Inside the computer
system

Outside the
computer system

SYSC-3006

Interrupt Mechanism on the Intel 8086

• Interrupt signals can occur anytime.
• When does processor consider interrupt signals?

The complete instruction execution cycle :
1. Fetch instruction & adjust IP
2. Decode instruction
3. Execute instruction
4. Check NMI: if NMI asserted, perform related behaviour
5. If IF = 1 check INTR: if INTR asserted,

perform related behaviour

SYSC-3006

8086 Vector Table

• Array of 256 entries (reserved memory)
location 0:0

– Each entry: address of an interrupt
service routine (ISR).

– Address: FAR Pointer (CS:IP pair)
(32-bits = 4bytes)

– Array occupies addresses from 0:0
to 0:3FF (256*4)

• Each entry identified by unique
"interrupt-type" (number; 0-255)
– Interrupt-type = i, offset to entry

in vector table = 0000H + 4*i

0 : 0 IP

0 : 2 CS

IP at low
CS at high

Address of type 0

0 : 4 IP

0 : 6 CS

Address of type 1

0 : 3FC IP

0 : 3FE CS

Address of type 255

Just another example of
Array Programming

SYSC-3006

Intel 8086 Vector Table

• The 256 vector table has been mapped out
• A brief look:

Interrupt Types Descriptions
0 … 1F Reserved by Intel

Includes : BIOS 10-16h
20h Terminate a COM program
21-24h DOS Functions
33h Mouse Functions
60-6Bh Available for Applications
80-F0h Reserved
F1-FFh Available for Applications

SYSC-3006

• ISR stack frame: different from subroutines!
– Return address: a FAR address (CS:IP)
– FLAGs are also pushed.

– What does this mean about parameter access if we passed
parameters to the ISR on the stack ?

• Can we pass parameters to an ISR for a software interrupt ?

INT Stack Frame

old BP
return IP
return CS

flags
arguments

BP

Return
Address

+ 8

SYSC-3006

Returning from an ISR

• RET instruction will not work
– Why?

• When writing ISRs, use IRET.
1. Pops 32-bit return address (CS:IP)
2. Pops flags

• Example :
isr PROC FAR

IRET
isr ENDP

• Never use "CALL" to invoke ISR; IRET at the end will cause
incorrect return.

BP

Restores FLAGS value to
what they were before IF
and TF were cleared !

old BP
return IP
return CS

flags
arguments

SYSC-3006

Installing an ISR

• INT mechanism only works if ISR address loaded
into correct vector!

– This is called “installing” the ISR in the vector table

SYSC-3006

Installation of an ISR

myint_type EQU 40 ; install as vector
myvector EQU myint_type * 4

.code
myisr PROC FAR

IRET
myisr ENDP

main PROC
MOV AX, 0
MOV ES, AX ; ES à vector table segment
MOV ES:myvector , OFFSET myisr
MOV ES:myvector+2 , @code

. . .
INT myint_type ; invoke ISR

segment override for
destination segment !

SYSC-3006

Installing the ISR

• When installing ISR, you over-write previous value (inserted by
OS during startup)

– Entry may have a useful DOS value .
– Even “unused” entries have address of a default ISR

(consisting of a simple return)

• Existing contents should be saved before installing new vectors.
– Saved values: restored before the program exit
– Save/restore not done: the OS (eg. DOS) might not

run properly.
– Does this sound familiar?

(Hint : Consider SYSC-3006 Subroutine Policies)

SYSC-3006

Timer (8253)

Data Port

Control Port

Example : Hardware Timing on a PC

• Applications use 8253 to provide timing information
– eg. DOS time-of-day

• What does the ISR do?
• How does the application get the time-of-day?

8086
CPU

Address Bus

Data Bus

• Provides timing signals
• When connected to

CPU, provides regular
interrupts.

•Programmable :
different interrupt rates

• On a PC, invokes
INT 8 ISR.

SYSC-3006

Typical Timing Software

• Two software components - main program and timerISR
• Shared variable: long unsigned ticks
• timerISR increments count every “tick”
• Main program reads count whenever it needs to

– Subroutine: double getTicks()

Main Program
Install ISR
Program Timer
do work (usually a loop){

current= getTicks()
}
exit

timerISR

count++count

SYSC-3006

Skeleton Timing Software

; PIC registers and constants
PIC_COMMAND_REG equ 20H
PIC_IMR_REG equ 21H
EOI equ 20H

; Timer registers and constants
TIMER_0_REG equ 40h
TIMER_CTRL_REG equ 43H
TIMER_0_MODE equ 36H

PIC –
Programmable

Interrupt
Controller

(Details later)

EOI – End of
interrupt

(Details later)

SYSC-3006

Skeleton Timing Software

.code
SUB AX , AX ; trick! AX = 0 !
MOV count_low , AX ; tick count = 0
MOV count_high , AX

; Save original INT 8 vector
CLI ; Disable interrupts

; Install ISR as new INT 8 vector
MOV AX, 0 ; Not necessary in this case
MOV ES, AX
MOV BX, 8*4
MOV ES:[BX], offset timerisr
MOV ES:[BX+2], CS

SYSC-3006

; Program timer 0 to interrupt at 20 Hz
MOV AL , TIMER_0_MODE ; Control Register
MOV DX , TIMER_CTRL_REG
OUT DX , AL
MOV AL , 0BH ; scaling factor = E90BH
MOV DX , TIMER_0_REG
OUT DX , AL ; write low byte
MOV AL , 0E9H
OUT DX , AL ; write high byte

; Enable Interrupts at PIC and at processor
MOV DX , PIC_IMR_REG
IN AL , DX
MOV old_pic_mask, AL ; Save for later restore
AND AL , 0FEH ; clear bit 0 of imr
OUT DX , AL
STI ; Enable Interrupts
. . .
CALL get_ticks

SYSC-3006

timerisr PROC FAR
STI
PUSH DS ; Save EVERY register used
PUSH DX
PUSH AX
MOV AX, SEG DATA
MOV DS, AX
INC count_low
JNC done
INC count_high

done:
CLI ; Lock out all ints until IRET
MOV AL, EOI ; Send EOI to PIC (Details later)
MOV DX, PIC_COMMAND_REG
OUT DX, AL
POP AX ; Restore registers
POP DX
POP DS
IRET

timerisr ENDP

SYSC-3006

20Hz Real-Time Clock : A Timing Analysis

• CPU Utilization Diagram

time

main init timerISR main timerISR main timerISR main …

Timer 0 tick Timer 0 tick Timer 0 tick

What is this value ?

SYSC-3006

20Hz Real-Time Clock : A Timing Analysis

• Thread Diagram

main ISRTime
init
main work

count++

count++

Timer0
signal

What is this value ?

What does count
represent ?

SYSC-3006

Interrupt Maskability

• Maskable interrupts can be ignored by the CPU
• Enabled before interrupting the CPU

(set an associated flag).
• 8086 Example : INTR is maskable

– INTR is masked (disabled) when IF=0

• NonMaskable interrupts cannot be ignored by the CPU
• 8086 Example: NMI is non-maskable

– Used for catastrophic errors (e.g. RAM failure, etc).

Interrupt request can be pending: signal is active but it has not yet serviced
– maskable interrupts: may/not be serviced until/if it is enabled

SYSC-3006

8086 Instructions for Interrupt Masking

CLI - clears IF bit in flags register (IF = 0)
– disables (masks) interrupts at the processor
– processor does not monitor INTR line while IF = 0

STI - sets IF bit in flags register (IF = 1)
– enables (unmasks) interrupts at the processor
– processor monitors INTR line while IF = 1
– state of IF: does not affect NMI, software interrupts or

dedicated interrupts (0..4)
– CLI/STI instructions disable/enable interrupts at the processor

