Hardware Interrupts

SY SC-3006

The Particular Challenges of 1/0 Programming

e With “*memory” programming :

1. Datatransfers between memory occur as result of
Instruction fetch-execute cycle

* Timeto complete: (order of) microseconds

— Program runs synchronoudly: instructions
fetched then executed.

e CPU controlsthe data transfers between memory.

SY SC-3006

The Particular Challenges of 1/0 Programming

1. Input/output often involve physical movement of 1/O devices
(keypads, sensors, switches)

» Response times determined by physical nature of device
(e.g. switches bouncing, A/D conversion, movement of disk
head)

* Responsetimesanorder of magnitude slower than
Instruction execution

2. 1/0 devices operate asynchronously from the processor
(and the program being run)

o Avallability of datafor input OR device for output not under
control of CPU

« Datatransfer: processor and I/O device must
synchronize or “handshake”

SY SC-3006

Example: Polled Keyboard

o SimpleKeyboard model:
— Key pressed on keyboard

— ASCII encoded character (associated with key) available in
keyboard data port.

— Bit in status port indicates “Key Ready” .
— Bit in status port cleared when key read from data port

« Pseudo-Code for Polling Keystrokes :

LOOP
UNTI L status port == KEYSTROKE ENTERED
Read Keystroke from Data port

SY SC-3006

Example: Polled Keyboard

Keyboard
CPU Address Bus
+ |Data Port
Data Bus
Status Port
Control Port

SY SC-3006

Example: Polled Timing L oop

In a program, what is time?
Example : software-only solution for atiming loop

— Write aloop that ssmply counts to waste time (busy waiting)
for (int i =0; 1 < 10000; i++) {
for (int j = 0; j < 10000; j++) {
} /1l enpty body
}
Advantage: ssimple software; no explicit h/w involved
Disadvantage:
— Timing based on execution speed of the processor.

— Not portable: execution speed varies on different machines
(download old DOS games?)

SY SC-3006

Polling : CPU-centric Handshake

Is Switch E up?
e Program tests status of device before transferring data

while (!(getSwitches() & 1000 0000B)) : CPU does nothing

processSw t ch() but wait
e Or
| oop
i f (getSwitches() & 1000 0000B)
processSwi tch()
el se CPU does other work
doQ her Vor k() “in-between” waiting but may
endi f miss instant when
endLoop Switch E changes

SY SC-3006

Example: Interrupt-Driven Keyboard

o SimpleKeyboard model:

— Key pressed on the keyboard device: ASCII character
available in keyboard data port; bit in status port

Indicate “Key Ready”.

— Bit in status port cleared when key read from the data port

CPU

— Interrupt sent to the CPU.
Keyboard
Address Bus
+ |Data Port
Data Bus R
Status Port
Control Port

SY SC-3006

eHardware Interrupts
require hardware
signal from device
to the processor.

Hardware Interrupts

Hardware Interrupts: require hardwar e interrupt mechanism
— hardwaresignal (i.e. wired connection to the CPU)
— 1/O component uses signal to inform CPU an event has happened.

* No busy waiting, no polling.
e Programming requires an “event-driven” mindset

Processor responds to hardware interrupt; stops current processing and

Saves current processor state (CS, IP, FLAGYS)
ClearsIFand TF

Decides from which vector table location to load | SR address
Executes ISR

When | SR executes IRET: processor state restored; execution
returns to “interrupted” processing

SY SC-3006

More later

L earning the Event-Driven Mindset

e Interrupted processing: doesn’'t “know” it was interrupted
— Processor:
1. temporarily suspended current thread of control
2. ran ISR
3. resumed suspended thread of control

e Polling: CPU asks deviceswhether thereisanythingto do.

— sequentia programming: next instruction determined by
control transfer instructions.

e Interrupts: devicetells CPU it istimeto do something ... NOW.
— event-driven programming.

— external hardware spontaneously cause control transfer
(interruption in default program sequence).

SY SC-3006

Interrupt Mechanism on the Intel 8086

8086 has two hardware interrupt signals

— NMI non-maskabl e interrupt
— INTR maskable interrupt
8080 Inside the computer
NMI INTR system
bus
ﬂk
Outside the

SY SC-3006

computer system

Interrupt Mechanism on the Intel 8086

Interrupt signals can occur anytime.

When does processor consider interrupt signals?

The complete instruction execution cycle .

1.

o &~ b

Fetch instruction & adjust IP

Decode instruction

Execute instruction

Check NMI: if NMI asserted, perform related behaviour

If IF =1check INTR: if INTR asserted,
perform related behaviour

SY SC-3006

8086 Vector Table

Just another example of
Array Programming

o Array of 256 entries (reserved memory)

location 0:0
— Each entry: address of an interrupt -
service routine (ISR). 0:0] IP | Address of type 0
— Address. FAR Pointer (CS:IP pair) 0: 92 cs
(32-bits = 4bytes) 3
_ Array occupies addressesfrom0:0 04 P ~ Addressof type 1
to 0:3FF (256*4) 0:6 CS)
+ Each entry identified by unique Co o
"Interrupt-type" (number; 0-255)
— Interrupt-type = i, offset to entr :
in vecF:)torthz)able = 0000H + 4*?/ e P Adaress of type 255
0: 3FE CS

SY SC-3006

Intel 8086 Vector Table
o The 256 vector table has been mapped out

o A brief look:
Interrupt Types Descriptions
0...1F Reserved by Intel
Includes : BIOS 10-16h
20h Terminate a COM program
21-24h DOS Functions
33h Mouse Functions
60-6Bh Available for Applications
80-FOh Reserved
F1-FFh Avalilable for Applications

SY SC-3006

INT Stack Frame
e |SR stack frame: different from subroutines!

— Return address: a FAR address (CS:IP)
— FLAGsare aso pushed.

BP > old BP
return P Return
return CS Address

flags
+8 arguments

— What does this mean about parameter access if we passed
parametersto the | SR on the stack ?

« Can we pass parametersto an ISR for a software interrupt ?

SY SC-3006

Returning from an ISR

RET instruction will not work

— Why? BP . old BP
return IP
Whenwriting ISRs, use IRET . return CS
1. Pops 32-bit return address (CS:1P) flags
2. Popsflags arguments
Restores FLAGS value to
Example: what they were before |F
i sr PROC FAR and TF were cleared !
| RET
| sr ENDP

Never use"CALL" toinvoke ISR: IRET at the end will cause
Incorrect return.

SY SC-3006

Installing an | SR
« INT mechanism only works if ISR address |oaded

Into correct vector!
— Thisiscalled “installing” the ISR in the vector table

SY SC-3006

| nstallation of an | SR

nyi nt _type EQU 40 , Install as vector
nmyvect or EQU nyint _type * 4
. code
myl sr PROC FAR
| RET
myl sr ENDP
mai n PRCC
MOV AX O
MOV ES, AX ;, ES - vector table segnment
MOV ES:. nyvector , OFFSET nyi sr
MOV ES: nyvector+2 , @ode segment override for

destination segment !

| NT nyi nt _type , I nvoke | SR

SY SC-3006

Installing the ISR

 Wheninstalling ISR, you over-write previous value (inserted by
OS during startup)

— Entry may have a useful DOS value.

— Even “unused’ entries have address of a default ISR
(consisting of a simple return)

« Existing contents should be saved before installing new vectors.
— Saved values:. restored before the program exit
— Save/restore not done: the OS (eg. DOS) might not
run properly.
— Does this sound familiar?
(Hint : Consider SY SC-3006 Subroutine Policies)

SY SC-3006

8086
CPU

Example: Hardware Timing on a PC

Address Bus

+ |Data Port

Data Bus

Timer (8253)

Control Port

* Providestiming signals
* When connected to
CPU, providesregular
Interrupts.
*Programmable :
different interrupt rates
* On aPC, invokes
INT 8 ISR.

o Applications use 8253 to provide timing information

— eg. DOS time-of-day
 What doesthe ISR do?

* How does the application get the time-of-day?

SY SC-3006

Typical Timing Software

e Two software components - main program and timerlSR
o Shared variable: long unsigned ticks
e timerlSR increments count every “tick”
e Main program reads count whenever it needs to
— Subroutine: doubl e get Ti cks()

Main Program _

| nst al | IgS.R timerl SR

Program Ti mer

do work (usually a | oop) —rcount ++
current= getTi cksrﬁ/{/

2 &

exit

SY SC-3006

Skeleton Timing Software

PI C regi sters and constants

Pl C_ COWAND REG
Pl C_ | MR REG
EQ

equ
equ
equ

Timer registers and constants

TI MER 0_REG
TI MER_CTRL_REG
TI MER_0_MODE

equ
equ
equ

SY SC-3006

20H
21H
20H

40h
43H
36H

PIC —
Programmable
| nterrupt
Controller
(Details later)

EOI — End of
Interrupt
(Details |ater)

Skeleton Timing Softwar e

. code
SUB AX , AX ; trick! AX = 0!
MOV count low, AX ; tick count = O

MOV count _high , AX

; Save original |INT 8 vector

CLI ;, Disable interrupts
; Install 1SR as new I NT 8 vector

MOV AX, O ; Not necessary in this case

MOV ES, AX

MOV BX, 8*4

MOV ES.[BX], offset tinerisr
MOV ES:. [BX+2], CS

SY SC-3006

Programtinmer O to interrupt at 20 Hz

MOV AL , TI MER O MODE ;, Control Register

MOV DX , TIMER CTRL_REG

QUT DX, AL

MOV AL , OBH ; scaling factor = E90BH
MOV DX , TIMER O REG

QUT DX , AL ;, wite |low byte

MOV AL , OE9H

QUT DX , AL ; wite high byte

Enable Interrupts at PIC and at processor
MOV DX , PIC I MR REG

IN AL , DX

MOV ol d pic_nmask, AL , Save for |ater restore
AND AL , OFEH ; clear bit O of inr

QUT DX , AL

STI ; Enable Interrupts

CALL get ticks

SY SC-3006

timerisr PROC FAR

STI

PUSH DS ; Save EVERY register used
PUSH DX

PUSH AX

MOV AX, SEG DATA
MOV DS, AX

| NC count | ow
JNC done

| NC count _hi gh

done:
CLI : Lock out all 1ints until | RET
MOV AL, EO ; Send EO to PIC (Details |ater)

MOV DX, Pl C_COMMAND REG
ouT DX, AL

POP AX ; Restore registers
POP DX

POP DS

| RET

timerisr ENDP

SY SC-3006

20Hz Real-Time Clock : A Timing Analysis

e CPU Utilization Diagram

main init timerlSR man timerlSR man timerlSR main ...

_ NS e, e

Timer O tick Timer O tick Timer O tick

What isthisvaue ?

SY SC-3006

20Hz Real-Time Clock : A Timing Analysis
e Thread Diagram

Time main | SR
TimerQ Init
sgna .. manwork
I count++
e I count++

What is this value ? "
What does count
represent ?

SY SC-3006

Interrupt Maskability

« Maskable interrupts can be ignored by the CPU

» Enabled before interrupting the CPU
(set an associated flag).

o 8086 Example: INTR is maskable
— INTR is masked (disabled) when IF=0

 NonMaskable interrupts cannot be ignored by the CPU
o 8086 Example: NMI is non-maskable
— Used for catastrophic errors (e.g. RAM failure, etc).

Interrupt request can be pending: signal isactive but it has not yet serviced
— maskable interrupts: may/not be serviced until/if it is enabled

SY SC-3006

8086 Instructionsfor Interrupt Masking

CLI - clearsIF bitin flagsregister (IF=0)
— disables (masks) interrupts at the processor
— processor does not monitor INTR linewhilelF =0

STl - sets|F bit in flagsregister (IF =1)
— enables (unmasks) interrupts at the processor
— processor monitors INTR linewhile IF =1

— state of IF: does not affect NM|I, software interrupts or
dedicated interrupts (0..4)

— CLI/STI instructions disable/enabl e interrupts at the processor

SY SC-3006

