
SYSC-3006

Subroutines

SYSC-3006

Subroutines

- Sequence of instructions that can be called from various places
in a program

- Same operation to be performed with different parameters
- Simplifies design of complex program
- Simplifies testing and maintenance: separation of concerns
- Data structures handled by different subroutines:

information hiding

- In a high-level language, called: function, procedure, method

- In assembly languages, called : subroutine

SYSC-3006

Subroutine Processing

.

.

.
<call> subroutine_x

.

.

.

.

.

.

.

.
<return>

caller

subroutine_x

Figure4.8 Program flow during a subroutine call

Subroutines are a form of control flow
• Control is passed to the activity
• The activity is executed
• Control is returned to the invocation point

SYSC-3006

Multiple Subroutine Calls

program

activity:

done

first
invocation

second
invocation how can the activity

know which one to
“return” to?

multiple
invocation
points ???

During invocation, the invocation point must be saved.
During return, the invocation point must be restored.

SYSC-3006

Machine Level Implementation of Subroutines

CALL target ; invoke target subroutine

Execution Semantics:

1. Save return address (address of next instruction)
on run-time stack

PUSH IP

2. Transfer control to activity
JMP target

RET ; return from subroutine
Execution Semantics:
1. Return control to address saved on top of stack

POP IP

IP value AFTER
fetching CALL
instruction!

SYSC-3006

Subroutine Processing

program

CALL activity
Next:

activity:

RET

CALL activity
after fetch

IP = = Next
PUSH IP
JMP activity

after execution
IP == activity

Stack

SP Next

old top

SP

Next

old top

N.B. Only works if
return address is on top
of stack when RET is

executed !!!

responsibility of
subroutine !!

RET
POP IP

after execution
IP = = Next

Stack

SP

Next

old top

SYSC-3006

Nested Subroutine Calls

program

CALL
Next1:

activity1:

CALL
Next2:

RET

activity2:

RET

old top
Next1
old top

Next2
Next1
old top

Runtime Stack

SYSC-3006

Assembly Support : PROC Directive

• Informally: a subroutine is any named sequence of instructions
that end in a return statement

• Intel Assembly: additional directives that provide more
structure for encapsulation of the subroutine

main PROC subr PROC
... ...
MOV AX, 4C00h RET
INT 21h subr ENDP

main ENDP

SYSC-3006

Issues in Subroutine Calls

We shall define subroutines using C-like prototypes. Include as
comments in Assembly programs.

; void display (word number, byte base)
; Display the given number
; base = 0 for binary, =1 for HEX

; byte absoluteValue (word number)
; Return absolute value of given number

; boolean getSwitches (byte &settings)
; Return current settings of switches and
; true if the switches bounced.

Return TYPE name Argument list: type name

SYSC-3006

Issues in Subroutine Calls : Scope and Arguments

unsigned int displayAddress;

int main() {
int number = 5, number2 = 6;
display(number2, 0);
…

}

void display(word number, byte base){
int divisor, digit;
if (base == 0) divisor = 2
else divisor = 16;
digit = number / divisor;
…
displayAddress++;

}

Global variable

number2 is a PARAMETER

number is an ARGUMENT

Local
variable

SYSC-3006

Issues in Subroutine Calls : Value versus Reference

int main (){
int number = 5, number2 = 6;
display1(number2,0);
display2(&number,0);

}

void display1 (word number, byte base){
...

number = number / divisor;
}

void display2 (word &number, byte base){
...

number = number / divisor;
}

By Value

By Reference

SYSC-3006

Implementing Parameter Passing

• Parameters can be passed in various ways :
1. Global Variables
2. Registers
3. On the stack.

• Global Variables
– The parameter is a shared (static) memory variable
– Parameters is passed when

• Caller puts the value in the variable
• Callee reads the value from the variable.

SYSC-3006

Parameter Passing using Global Variables

Value DW
Caller MOV Value, 245

CALL activity
. . .

Callee activity PROC
MOV AX, Value
. . .
RET

activity ENDP

Passing parameters via global variables: not widely used in practice
– Consider nested subroutines (a subroutine that calls itself)
– Consider large programs with many subroutines, each with many

parameters;
– However, sometimes it is the only way (e.g. interrupts)

C prototype: void activity(word Value)

SYSC-3006

Parameter Passing using Registers

• Parameters alternatively be passed in registers
– Each parameter assigned to a particular register
– Caller load registers with appropriate values
– Callee read registers to get values.

• Register Parameters used in DOS
MOV AH, 9 ; AH = OS Function (9=Print)
MOV DX, OFFSET message ; DX = Address of msg
INT 21h ; “Call” DOS function

• Advantage: little overhead (values in registers)
• Disadvantage: a finite number of registers

– What to do if more parameters than registers?

SYSC-3006

Parameter Passing using the Runtime Stack

• Parameters alternatively passed on the runtime stack
– Caller pushes parameters onto the stack
– Callee indexes into stack to access arguments

Caller MOV DX, 245
PUSH DX
CALL activity

. . .

Callee activity PROC
MOV AX, [SP + ?]
. . .
RET

activity ENDP

C prototype: void activity(word aValue)

Indirect addressing!

POLICY for SYSC-3006

SYSC-3006

SYSC-3006 Subroutine Policies – Register Save/Restore

• Problem: Subroutines use registers. What if registers contain
values needed by the caller upon return?

• Solutions:
1. Caller save useful values before calling the subroutine.

• Upon return, caller restores useful values

2. Callee (subroutine) save any register before it uses it. Restores
original value before returning.

• Caller guaranteed that its registers are the same
before and after subroutine call.

• More efficient: subroutine knows what registers it uses.

• 3006 Policy: Solution 2 with one exception: register(s) used to
pass out return TYPE cannot be preserved

SYSC-3006

SYSC-3006 Subroutine Policies – Local Variables

• Problem: Subroutines often have local variables that exist only for
the duration of the subroutine.

– Example
double average(double array[], int number) {

double total = 0;

for (int i=0; i< number; i++) {
total += array[I];

}

double result = total/number;
return result;

}

• SYSC-3006 Policy: local variables maintained as register variables
or by using the stack as a temporary storage buffer.

Local Variables

SYSC-3006

SYSC-3006 Subroutine Policies – Parameter Passing

• 3006 Policy: Parameters passed on the stack.
– Caller push parameters on the stack before calling

• multiple parameters: parameters are pushed right-to-left
– Caller remove parameters from the stack upon return.

Example: void display (word number, byte base)
Caller: MOV AL, 0 ; 0 represents binary

PUSH AX
PUSH [BX+SI]
CALL display
ADD SP, 4

Byte parameters passed in
LSB of a word

Parameters can cleared by
POPping or simply adjusting SP.

Why ADD? Why 4?

SYSC-3006

SYSC-3006 Subroutine Policies – Parameter Passing

– Callee must index into the stack to access parameter values,
using a stack frame.

– Stack frame: consistent view of the stack upon beginning
the core code of the subroutine.

• Provides uniform method for accessing parameters
passed on the stack.

• Uses BP based indirect addressing regardless of number
of arguments and/or number of registers

saved/restored by subroutine

SYSC-3006

SYSC-3006 Subroutine Policies – Stack Frame

• The stack frame associated with the subroutine skeleton

arguments

return address

old BP

saved registersSP

BP

After PUSH BP

After saving registers

BP – constant

BP + 0

BP + 2

BP + 4 or moreCaller

Callee

BP+4 is always the
leftmost argument

Stack Frame is another policy

SYSC-3006

SYSC-3006 Subroutine Policies – Stack Frame

anySub proc
PUSH BP
MOV BP, SP
; PUSH any registers used
; Core code of subroutine where work is done
; POP all registers that were saved
; (reverse order!)
POP BP
RET

anySub endp

Standard Entry Code

Standard Exit Code

SYSC-3006

SYSC-3006 Subroutine Policies – Stack Frame

• Example : Recall our previous example
void display(word Value, byte Base);

Call set up: (By the caller)

MOV AL, 0 ; Base = binary
PUSH AX
PUSH [BX + SI] ; Value to display
CALL Display16

Value = mem[BX+SI]

return address

?

SP

?

Base = 0

SYSC-3006

SYSC-3006 Subroutine Policies – Stack Frame

Subroutine Implementation (In body of Display)
display PROC

PUSH BP
MOV BP, SP
PUSH AX
PUSH BX
; Get value
MOV AX, [BP + 4]
; if (base == binary)
MOV BL, [BP+6]
CMP BL, 0
…
POP BX
POP AX
POP BP
RET

display ENDP

Value

return address

old BP

SP
saved value of AX

Base

saved value of BX

BP

BP + 2

BP + 4

BP + 6

SYSC-3006

Issue : pass by value vs. pass by reference

• Definition: pass by value
– Argument: a copy of the value of interest
– High-level languages (C++), pass-by-value is default to pass

simple variables (primitive types like int, char, float)

• Example:

int myValue = 245; myValue dw 245
display(MyValue, 0); MOV AL,0

PUSH AX
PUSH myValue
CALL display
ADD SP, 4

245

return addressSP

0

SYSC-3006

Issue: pass by value vs. pass by reference

Passing-by-value: Inside subroutine, arguments in the stack treated
like local variables

– Contents of stack can be read and modified
– Variable: local and exists ONLY during the subroutine execution

• Why ?
• Consequence: any modifications to arguments on stack are

non-persistent; cannot be seen by the caller

SP

245

return address

old BP

SP
saved value of AX

0

saved value of BX

BP

BP + 2

BP + 4

BP + 6

Previous Display Example
- Subroutine can change copy of MyValue

MOV [BP + 4], AX
- Change made to copy on the stack, and

not to the original variable.

SYSC-3006

Issue : pass by value vs. pass by reference

• Definition: pass by reference
– Argument: address of a memory variable
– Used to access caller’s variables if:

• Purpose of subroutine: modify caller’s variables
• Pass large composite structures (would require too much

time/space on the stack if passed-by-value).

• In high-level languages,
– Default: Pass-by-value int value;
– Pass-by-reference requires additional syntax: & operator.

int & value;

SYSC-3006

Issue : pass by value vs. pass by reference
• Example : Pass by reference

; void SortArray (int & SortMe[], int Size);

; array declaration
X: DW

DW
. . .

SizeOfX: DW

Caller : ; SortArray (X[], SizeOfX);
PUSH SizeOfX
MOV AX, OFFSET X
PUSH AX
CALL SortArray
ADD SP, 4

pass offset of array X

why not: PUSH X????

SYSC-3006

Issue : pass by value vs. pass by reference

• Example: Pass by reference

Callee : Inside subroutine SortArray:

MOV BX, [BP + 4] ; get array address
MOV SI, 0 ; array index = 0
. . .
MOV AX, [BX + SI] ; get array element

address of X

return address

old BPBP
BP + 2

BP + 4

SP saved registers

copy of
SizeOfX

BP + 6

SYSC-3006

SYSC-3006 Subroutine Policies – Return Types

Subroutines can return information to the caller in two ways
1. Return values in a variables passed-by-reference
2. Return a value via the subroutine’s return type

Example :
boolean AbsValue(int & X, int Y);
where boolean is usually a byte, with 0 = false,

non-zero = true

SYSC-3006

SYSC-3006 Subroutine Policies – Return Types

• Passing return type back from subroutine to caller done in any
of the three ways used to pass parameters in:

– Global variables (same troubles as before)

– On the stack
• For example, after passing parameters, caller could

allocate extra word in stack before call
SUB SP, 2

• callee could return value there

– Via registers (only one return type, need only one register)

SYSC-3006

SYSC-3006 Subroutine Policies – Return Types

• High Level Languages: registers to pass return type of a subroutine.
• So will SYSC-3006

• Return-Value POLICY in this course
– return 8-bit value in AL
– return 16-bit value in AX
– return 32-bit value in DX:AX (as with 32-bit values for DIV)

• Implications of Return-Value Policy
– do not save/restore register(s) used for return-value
– purpose of the subroutine is to return a value in the register(s)
– 8-bit value (returned in AL) – subroutine not responsible for

persistence of AH value

