
Communications Network ManagementCommunications Network Management

Introduction to Network Management

Basic Management Architecture

Communication Environment

PING Packet Internet Groper

Traceroute

Socket Interprocess Communication

© Bernard Pagurek 2001

The Manager/Agent Model

MIB (Management Information Base)

The term refers to the definition (or schema) of the managed objects. It is some-
times used loosely to refer to the collection of instances of managed objects.

The protocols do not specify how the agent maintains the managed objects which
might very well be distributed.

A Managed Object is an abstraction. It is the managers view of a network element
which can be managed.

Manager requests include : Get , GetNext, Set, Create, Delete, etc. depending on
the management protocol in use.

Traps represent asynchronous agent initiated notifications.

Notifications can be asynchronous or synchronous.

Agent

Request

Response

Notification or
Trap

MIB

Process Process

Managed Objects

MIB

CLIENT SERVER

Manager

OSI management functional areas (X.700)

Introduction

OSI management is required for a number of purposes. These require-
ments are categorized into a number of functional areas:

a) fault management
b) accounting management
c) configuration management
d) performance management
e) security management

Specific management functions, within these functional areas, are pro-
vided by OSI management mechanisms. Many of the mechanisms are
general in the sense that they are used to fulfil requirements in more than
one functional area. Similarly, managed objects are general in the sense
that they may be common to more than one functional area.

Each of these functional areas is described briefly below. The lists of
functions are not necessarily exhaustive.

Fault management

Fault management encompasses fault detection, isolation and the correc-
tion of abnormal operation of the OSI environment. Faults cause open
systems to fail to meet their operational objectives and they may be per-
sistent or transient. Faults manifest themselves as particular events (e.g.
errors) in the operation of an open system. Error detection provides a
capability to recognize faults. Fault management includes functions to

a) maintain and examine error logs;
b) accept and act upon error detection notifications;
c) trace and identify faults;
d) carry out sequences of diagnostic tests; and
e) correct faults.

Accounting management

Accounting management enables charges to be established for the use of
resources in the OSIE, and for costs to be identified for the use of those
resources. Accounting management includes functions to

a) inform users of costs incurred or resources consumed;
b) enable accounting limits to be set and tariff schedules to be associated
 with the use of resources; and
c) enable costs to be combined where multiple resources are invoked to
 achieve a given communication objective.

Configuration management

Configuration management identifies, exercises control over, collects data from and
provides data to open systems for the purpose of preparing for, initializing, starting,
providing for the continuous operation of, and terminating interconnection services.
Configuration management includes functions to

a) set the parameters that control the routine operation of the open system;
b) associate names with managed objects and sets of managed objects;
c) initialize and close down managed objects;
d) collect information on demand about the current condition of the open system;
e) obtain announcements of significant changes in the condition of the open system;
f) change the configuration of the open system.

Performance management

Performance management enables the behaviour of resources in the OSIE and the
effectiveness of
communication activities to be evaluated. Performance management includes func-
tions to

a) gather statistical information;
b) maintain and examine logs of system state histories;
c) determine system performance under natural and artificial conditions; and
d) alter system modes of operation for the purpose of conducting performance
 management activities.

Security management

The purpose of security management is to support the application of security poli-
cies by means of functions which include

a) the creation, deletion and control of security services and mechanisms;
b) the distribution of security-relevant information; and
c) the reporting of security-relevant events.

Note - Recommendation X.800 provides further information on the placement of
OSI management functions within the overall security architecture.

Application

Link Link

IP IP
UDP

UDP

Managed Objects Application
Management

Management System Managed System

G
et

G
et

-B
ul

k

S
et

T
ra

p

G
et

Resources

SNMP

SNMP AgentSNMP Manager

Se
t

Communications Network

Manages Objects

Managed

SNMP Architecture

T
ra

p

R
es

po
ns

e

G
et

 B
ul

k

G
et

-N
ex

t

G
et

-N
ex

t

R
es

po
ns

e

Object Registration Tree

Root

ccitt (0) iso (1) joint-iso-ccitt (2)

org (3)

dod (6)

internet (1)

directory (1) mgmt (2) experimental(3) private (4)

mib-II (1)

system (1) interfaces (2) ip(4). . . .

sysDescr (1) sysObjectId (2)

All objects in the system group have identifiers with prefix 1.3.6.1.2.1.1

Application

Link Link

IP IP
UDP

UDP

Application

Management System

In
fo

rm
-R

eq
ue

st

SNMP ManagerSNMP Manager

S
et

Communications Network

SNMPv2 Management to Management

R
es

po
ns

e

In
fo

rm
-R

eq
ue

st

Management

Management System

Application
Management

R
es

po
ns

e

 Communication

Application

 Link Link
Network Network

Managed Objects Application
Management

Management System Managed System

Resources

CMIP (OSI)

Communications Network

Manages Objects

Managed

CMIP Architecture

 Session

Presentation Presentation

ROSEACSE ACSE

CMISECMISE
CMIP

Messages

CMIS CMIS

Transport Transport

 Session

SNMP Philosophy

Simple:

Simple enough to be very widely deployed.
 Hence MIB2 for example reflects a minimal set of objects.
 Uses in band messaging.

Devices are purchased for purposes other than management

Agents must not be burdened with complexity. This is the managers job.

Robust:

Must be robust under adverse conditions. Manager must continue to operate if at all
possible even if all else fails.

Datagram oriented (CL as opposed to CO)
 No setup phase needed
 No connection to fail
 Minimal dependency on other services.

Manager application has full control over retransmission requests. If not critical,
can ignore. If critical can keep requesting retransmission until.......

Messages limited to what can fit into a single UDP datagram.
 Must fit into 576 byte IP datagram

Polling Oriented: (Request - Response)

Manager can’t respond to traps if they are lost and it didn’t even know it was sent.
It can respond to lack of a reply to a request.

Limited number of trap types. Only for most importantant situations where
increased vigilence is needed.

Concept is trap-directed polling.

Re SNMP and CMIP coexistence and translation from one to the other.

The basic philosophy is different.

The Entity models are different.

The information Models are different.

The naming mechanisms are different.

The SMIs are different.

The protocol operations are different.

The transport assumptions are different.

Other than that, they both have managers and agents.

Agent

Request

Response

Notification or
Trap

MIB

Manager

ManagedMIB

Proxy

 Objects

Network Device Workstation

Manager Proxy Agent Communication

Note: Network Device may be Native or Foreign

 protocol

 Proxy may communicate with network device using proprietary

C
o
m
m
u
n
i
c
a
t
i
o
n
s

N
e
t
w
o
r
k

M
a
n
a
g
e
m
e
n
t

C
o
m
m
u
n
i
c
a
t
i
o
n
s

N
e
t
w
o
r
k

M
a
n
a
g
e
m
e
n
t

In
tr

od
uc

ti
on

 t
o

N
et

w
or

k
M

an
ag

em
en

t

B
as

ic
 M

an
ag

em
en

t A
rc

hi
te

ct
ur

e

C
om

m
un

ic
at

io
n

E
nv

ir
on

m
en

t

PI
N

G

Pa
ck

et
 I

nt
er

ne
t G

ro
pe

r

T
ra

ce
ro

ut
e

So
ck

et
 I

nt
er

pr
oc

es
s

C
om

m
un

ic
at

io
n

Process/Application
Layer

Host-to-Host
Layer

Internet Layer

Network Interface
Layer

Host A

Internet
Layer

NI

A B

NI

Router B

Process/Application
Layer

Host-to-Host
Layer

Internet Layer

Network Interface
Layer

Host Z

Internet
Layer

NI

ZY

NI

Router Y

The Internet Connection

ISO 9040/9041
VT

ISO 8831/8832
JTM

ISO 8571/8572
FTAM

ISO 9595/9596
CMIP

Application

Presentation

Session

Transport

Network

Data Link

Physical

ISO 8823/CCITT X.226

Connection-Oriented Presentation Protocol

ISO 8327/CCITT X.225

Connection-Oriented Session Protocol

ISO 8073/CCITT X.224

Connection-Oriented Transport Protocol

ISO 8208/CCITT X.25

Packet Level Protocol
ISO 8473

Connectionless Network Service

ISO 8802-2

ISO 9314-2
FDDI

ISO 8802-3
CSMA/CD

BUS

ISO 8802-4
TOKEN

BUS

ISO 8802-4
TOKEN

RING

ISO 7778
CCITT X.25
LAP/LAPB

ISO 7809
HDLC

Options from EIA, CCITT, IEEE, etc.

FT
P

S
M

T
P

T
E

L
N

E
T

T
FT

P

S
N

M
P

TCP UDPHost-to-Host

Process/
Application

Internet IP

Network
Interface

LAN, MAN and WAN
Options

DARPA Layer Example Internet Protocols Example ISO Protocols OSI Layer

 The Internet and the ISO Protocols Suites

L
oc

al
N

et
w

or
k

H
ea

de
r

IP
H

ea
de

r

U
D

P
or

T
C

P
H

ea
de

r

A
pp

lic
at

io
n

D
at

a

L
oc

al
N

et
w

or
k

T
ra

ile
r

U
D

P
 D

at
ag

ra
m

or
T

C
P

 S
eg

m
en

t

IP
 D

at
ag

ra
m

L
oc

al
 N

et
w

or
k

Fr
am

e

T
he

 I
nt

er
ne

t T
ra

ns
m

is
si

on
 F

ra
m

e
an

d
IP

 H
ea

de
r

Po
si

ti
on

Internet Protocol (IP) Datagram

0 8 16 31

Total Length

.......

Service TypeIHLVer

4

Flags

19

Fragment Offset

Header ChecksumProtocol

Identification

Time To Live

Source IP Address

Destination IP Address

24

Padding

Data

IP Options (If Any)

0 1 2 3 4 8 16 24 31

0

1 0

1 1 0

1 1 1 0

1 1 1 1 0 reserved for future use

multicast address

netid hostid

netid hostid

netid hostid

The five forms of Internet (IP) addresses. The three primary forms,

Classes A, B, and C, can be distinguished by the first two bits

Class A

Class B

Class

Class D

 C

Class E

 Problems with IPv4

Not Enough IP Adresses available

 IPv4 address has fixed boundary between ID of network and ID of node

 e.g. class B allows for 65,536 host addresses
 class C allows for 256 addresses

 Most sites are somewhere between so many addresses are wasted

Routing Memory Requirements Increasing
and Router Performance Deteriorating

 e.g. 16,384 possible class B networks
 over 2,000,000 class C networks

 One entry is needed in a backbone router for each existing network
 Subnet masks used for hierarchical routing within network

CIDR Classless Inter-Domain Routing

 Introduced as interim solution to help alleviate problems
 Uses subnet masks for "sharing classes"
 Permits arbitrary aggregation of network and subnetwork numbers
 Requires fewer router table entries

Header - only 40 bytes. Uses Extension Header for less used options

Prior - desired delivery priority relative to other packets from same source

Flow Label - Used by source to identify sequence of packets requiring
 special handling
 e.g. non-default quality of service or "real-time" service.
 Handling may be specified to routers by control protocol like
 a resource reservation protocol

Internet Protocol (IPv6) Header

0 8 16 31

 Flow LabelPriorVer

4

 Next Header

19

 Hop LimitPayload Length

Source IP Address

Destination IP Address (128 bits)

24

 (128 bits)

 IPv6 Addressing

Basic Addressing Types - unicast
 - multicast
 - anycast

Unicast address denotes a single host interface

FP Format Prefix denotes which address format is
 being used

TLA Top-level Aggregation ID denotes top-level transit providers
 who make up backbone network

NLA Next-level Aggregation ID assigned by transit providers to
 identify transit networks and sites
 serviced by provider

SLA Site-level Aggregation ID assigned by site to individual net-
 works within the site

Interface ID assigned by site

 3
 FP

 32
 NLA
 ID

 13
 TLA
 ID

 16
 SLA
 ID

 64
 Interface ID

IPv6 Aggregatable Global Unicast Address Format

IPv6 prefix-based route aggregation

 mechanism is based on on CIDR

Hex representation with colon separators (16 bytes - 2 hex digits per byte)

 3FFE:0900:0001:0000:0260:97FF:FE6C:57BF

or in compressed format

 3FFE:900:1::260:97FF:FE6C:57BF

Standard prefix notation

 3FFE:0900::0/24

would mean that the first 24 bits of the address is the prefix

For unicast addresses, the prefix either identifies

 a transit network if prefix length is between 1 and 64 bits long

or

 a specific address if prefix is 128 bits long.

For other types of address, the prefix has different meanings.

IPv6 prefix routing reduces table size but not algorithm complexity

User Datagram Protocol (UDP) Fields

0 16 31

UDP Message Length

UDP Source Port

 Data

UDP Destination Port

.......

UDP Checksum

INTERNET Transmission Frame and UDP/TCP Header Position

Local
Network
Header

IP
Header

UDP or
TCP

Header

Application Date
Local

Network
Trailer

UDP Datagram
 or
TCP Segment

IP Datagram

Local Network Frame

 SNMP Message Within A Transmission Frame

Local
Network
Header

IP
Header

UDP or
TCP

Header

SNMP Message
Local

Network
Trailer

UDP Datagram

IP Datagram

Local Network Frame

TCP
Input

Process

IP

Process

Ports for UDP
 Datagrams

SNMP
161

Buffers

Controlled
by

Semaphores

Queues for Packets
Sent to IP

IPC

Application
Programs

Port for Segments
Sent to TCP

Internet Packet Flow at Higher Levels

Typical UDP Ports

 21 FTP File Transfer (Control)

 68 TFTP Trivial File Transfer

161 SNMP SNMP net monitor
162 SNMP SNMP traps

 53 DOMAIN Domain Name Server

111 SUNRPC SUN Microsystems RPC

Communications Network ManagementCommunications Network Management

Notes:

Communications Network ManagementCommunications Network Management

Introduction to Network Management

Basic Management Architecture

Communication Environment

PING Packet Internet Groper

Traceroute

Socket Interprocess Communication

 Internet Ping Program

"ping" stands for Packet InterNet Groper.

We ping a system by sending it ICMP echo requests that it
must respond to with ICMP echo replies.

ICMP is at the same layer at IP.

The operation of ICMPdoesn't depend on the higher level pro-
tocols - TCP and UDP.

The echo request and echo reply messages are only two of the
13 currently defined ICMP messages.

ICMP messages are sent in IP packets:

IP ICMP ICMP data

 header header

ICMP message

IP datagram

ICMP Echo Request and Reply Message Format

0 8 16 31

Sequence Number

Optional Data

.............

Identifier

ICMP Destination Unreachable Message Format

0 8 16 31

Code (0-5)

Unused (Must be Zero)

Type (3)

Internet Header + First 64 Bits of Datagram

Checksum

.......

Type (8 or 0) Code (0-5) Checksum

The format of the ICMP message:

struct icmp (

u_char icmp_type; /*type of message */

u_char icmp_code; /* type of code */

u_short icmp_cksum; /* checksum of structure */

u_short icmp_id; /* identifier */

u_short icmp_seq; /* sequence number */

char icmp_data[1]; /* start of optional data */

);

icmp_type specifies the type of the ICMP message

The two values used by the ping program are ICMP_ECHO
and ICMP_ECHOREPLY.

icmp_code is a subcode for some of the ICMP messages.

Not used by echo request or echo reply.

icmp_id and icmp_seq are set by the client, and returned by
the server.

The identifier field identifies the sender of the ICMP echo
requests; we set it to the Unix process ID of the ping program.

If the ping program is being run multiple times on a given host,
each instance generates messages with a unique ID field.

We use icmp_seq as a sequence number to identify each mes-
sage that a client transmits.

There is no guarantee that successvie packets travel the same
route, so the return packets can arrive in a different order from
which they were transmitted.

This sequence number field lets us identify each message.

The ping program stores the time that each message is trans-
mitted in the optional data portion, and uses this when the
packet is returned to calculate the round-trip time.

The ping program contains two logical portions; one transmits
an ICMP echo request message every second and the other
receives any echo reply messages that are returned.

The transmit portion is simple - it uses the Unix alarm func-
tion to generate a SIGALRM signal every second.

The receive portion is an infinite loop that receives every
ICMP message on a socket.

 A Simple Procedure for Connectivity Check Using PING, TRACEROUTE

 This procedure is for isolating a TCP/IP connectivity problem. In this pro-
cedure, a series of tests methodically examine connectivity from a host, starting
with nearby resources and working outward. The steps in our connectivity-test-
ing procedure are:

 1. As an initial sanity check, ping your own IP address and the loopback
 address.

 2. Next, try to ping other IP hosts on the local subnet. Use numeric addresses
 when starting off, since this eliminates the name resolvers and host tables
 as potential sources of problems. The lack of an answer may indicate either
 that the destination host did not respond to ARP (if it is used on your LAN),
 or that a datagram was forwarded (and hence, the destination IP address
 was resolved to a local media address) but that no ICMP Echo Reply was
 received. This could indicate a length-related problem, or misconfigured IP
 Security.

 3. If an IP router (gateway) is in the system, ping both its near and far-side
 addresses.

 4. Make sure that your local host recognizes the gateway as a relay. (For BSD
 hosts, use netstat.)

 5. Still using numeric IP addresses, try to ping hosts beyond the gateway. If
 you get no response, run hop- check or traceroute, if available. Note
 whether your packets even go to the gateway on their way to the destina-
 tion. If not, examine the methods used to instruct your host to use this gate-
 way to reach the specified destination net (e.g., is the default route in place?
 Alternatively, are you successfully wire-tapping the IGP messages broadcast
 on the net you are attached to?)
 If traceroute is not available, ping, netstat, arp, and a knowledge of the
 IP addresses of all the gateway’s interfaces can be used to isolate the cause
 of the problem. Use netstat to determine your next hop to the destination.
 Ping that IP address to ensure the router is up. Next, ping the router inter-

 face on the far subnet. If the router returns “network unreachable” or other
 errors, investigate the router’s routing tables and interface status. If the
 pings succeed, ping the close interface of the succeeding next hop gateway,
 and so on. Remember the routing along the outbound and return paths
 may be different.

6. Once ping is working with numeric addresses, use ping to try to reach a few
 remote hosts by name. If ping fails when host names are used, check the
 operation of the local name-mapping system (i.e., with nslookup or DiG).
 If you want to use “shorthand” forms (“myhost” instead of “myhost.mydo-
 main.com”), be sure that the alias tables are correctly configured.

7. Once basic reachability has been established with ping, try some TCP -
 based applications: FTP and TELNET are supported on almost all IP hosts,
 but FINGER is a simpler protocol. The Berkeley-specific protocols (RSH,
 RCP, REXEC and LPR) require extra configuration on the server host before
 they can work, and so are poor choices for connectivity testing.

If problems arise in steps 2-7 above, rerunning the tests while executing a line
monitor (etherfind, netwatch, or tcpdump) can help to pinpoint the problem.

 The above procedure is sound and useful, especially if little is known about
the cause of the connectivity problem. It is not, however, guaranteed to be the
shortest path to diagnosis. In some cases, a binary search on the problem might be
more effective (i.e., try a test “in the middle,” in a spot where the failure modes
are well defined). In other cases, available information might so strongly suggest
a particular failure that immediately testing for it is in order. This last “approach,”
which might be called “hunting and pecking,” should be used with caution: chas-
ing one will o’ the wisp after another can waste much time and effort.

 Note that line problems are still among the most common causes of connec-
tivity loss. Problems in transmission across local media are outside the scope of
this note. But, if a host or workstation loses or cannot establish connectivity, check
its physical connection.
 From RFC1147

Communications Network ManagementCommunications Network Management

Notes:

Communications Network ManagementCommunications Network Management

Introduction to Network Management

Basic Management Architecture

Communication Environment

PING Packet Internet Groper

Traceroute

Socket Interprocess Communication

 Traceroute Program

Originally written by Van Jacobson.

It is used to determine exactly what route a packet takes to a
specified destination.

A UDP datagram is sent to the destination, however the first
time it is sent, the time-to-live field is set to 1.

This causes the first gateway to discard the packet and return
an ICMP "time exceeded".

The ICMP reply will have the gateway's IP address as the
source IP address, so we know the identify of the first gate-
way.

Additionally, the time required to reveive the ICMP reply is
also measured, to give an estimate of the round-trip time
(RTT) to the gateway.

This procedure is repeated two more times, to give three RTT
estimates for this gateway.

Next the TTl is set to 2, to determine the identity of the sec-
ond gateway.

Three measurements are made for this gateway.

When the UDP datagram finally reaches the destination host
an ICMP "port unreachable" reply should be returned, since
the destination UDP port number is chosen so that it is
unlikely that any process on the destination is using that port
(UDP port 33434, by default).

Note that the program must be looking for two types of ICMP
messages to be returned: "time exceeded" and "port unreach-
able".

This program requires a kernel modification to run under
many Berkeley-derived systems.

An option also exists to specify a loose source route for the
datagram, however many gateways don't handle source rout-
ing correctly.

An example output is:

[yak 71]% traceroute nis.nsf.net

o nis.nsf.net, 30 hops max, 56 byte packet

1. helios.ee.lbl.gov 19 ms 19 ms 0 ms

2. lilac-dmc.Berkeley.EDU 39 ms 39 ms 19 ms

3. lilac-dmc.Berkeley.EDU 39 ms 39 ms 19 ms

4. ccngw-ner-cc.Berkeley.EDU 39 ms 40 ms 39 ms

5. ccn-nerif22.Berkely.EDU 39 ms 39 ms 39 ms

6. 128.32.197.4 40 ms 59 ms 59 ms

7. 131.119.2.5 59 ms 59 ms 59 ms

8. 129.140.70.13 99 ms 99 ms 80 ms

9. 129.140.71.6 139 ms 239 ms 319 ms

10. 129.140.81.7 220 ms 199 ms 199 ms

11. nic.merit.edu 239 ms 239 ms 239 ms

The dotted decimal addresses on each line have been removed to save
space

Note that lines 2 and 3 are the same. This is because of a bug on the sec-
ond system (csam) that forwards packets to the third system (lilac-dmc)
even if the TTL field is zero..

When the initial TTL is two, we have

 yak

 TL=28 TTL=2

 TTL=1 TTL=0

helios csam lilac

 TTL=29 TTL=30

hen the initial TTL is three, we have

 yak

 TL=28 TTL=3

 TTL=2 TTL=1

helios csam lilac

 TTL=29 TTL=30

This is why both lines of output, for TTL values of two and three, are
both returned by lilac.

Communications Network ManagementCommunications Network Management

Notes:

Communications Network ManagementCommunications Network Management

Introduction to Network Management

Basic Management Architecture

Communication Environment

PING Packet Internet Groper

Traceroute

Socket Interprocess Communication

socket()

bind()

sendto()

recfrom()

Server

blocks until data
received from a client

 data (request)

process request

data (reply)
sendto()

recfrom()

bind()

socket()

Client

(connectionless protocol)

Socket System calls for connectionless protocol

socket()

connect()

write()

read()

Server

blocks until connection
 from a client

 data (request)

process request

data (reply)

listen()

bind()

socket()

Client

(connection-oriented protocol)

Socket System calls for connection oriented protocol

accept()

connection

write()

establishment

read()

/* Example of client using UDP protocol. */

#include “inet.h”

main(argc, argv)
int argc;
char *argv[];
{
int sockfd;
struct sockaddr_in, cli_addr, serv_addr;
pname = argv[0];

/* Fill in the structure “serv_addr” with the address
 of the server that we want to send to. */

bzero((char *) &serv_addr, sizeof(serv_addr));
serv_addr.sin_family = AF_INET;
serv_addr.sin_addr.s_addr = inet_addr(SERV_HOST_ADDR);
serv_addr.sin_port = htons(SERV_UDP_PORT);

/* Open a UDP socket (an Internet datagram socket). */

if ((sockfd = socket(AF_INET, SOCK_DGRAM, 0)) < 0)
 err_dump(“client: can’t open datagram socket”);

/* Bind any local address for us. */

bzero((char *) &cli_addr, sizeof(cli_addr));/*zero out*/
cli_addr.sin_family = AF_INET;
cli_addr.sin_addr.s_addr = htonl(INADDR_ANY);
cli_addr.sin_port = htons(0);
if (bind(sockfd, (struct sockaddr *) &cli_addr,
 sizeof(cli_addr)) < 0)
 err_dump(“client: can’t bind local address”);

dg_cli(stdin, sockfd, (struct sockaddr *) &serv_addr,
 sizeof(serv_addr));
close(sockfd);
exit(0);
}

/* Example of server using UDP protocol. */

#include “inet.h”

main(argc, argv)
int argc;
char *argv[];
{
int sockfd;
struct sockaddr_in, serv_addr, cli_addr;

pname = argv[0];

/* Open a UDP socket (an Internet datagram socket). */

if ((sockfd = socket(AF_INET, SOCK_DGRAM, 0)) < 0)
 err_dump(“server: can’t open datagram socket”);

/*Bind our local address so that the client can send to
 us. */

bzero((char *) &serv_addr, sizeof(serv_addr));
serv_addr.sin_family = AF_INET;
serv_addr.sin_addr.s_addr = htonl(INADDR_ANY);
serv_addr.sin_port = htons(SERV_UDP_PORT);

if (bind(sockfd, (struct sockaddr *) &serv_addr,
 sizeof(serv_addr)) < 0)
 err_dump(“server: can’t bind local address”);

dg_echo(sockfd, (struct sockaddr *) &cli_addr,
 sizeof(cli_addr));

/* NOTREACHED */
}

/* File inet.h */
/* Definitions for TCP and UDP client/server programs.*/

#include <stdio.h>
#include <sys/types.h>
#include <sys/socket.h>
#include <netinet/in.h>
#include <arpa/inet.h>

#define SERV_UDP_PORT 6000
#define SERV_HOST_ADDR“192.43.235.6”/*server host addr*/

char *pname;

struct sockaddr_in {

 short sin_family; /* AF_INET */
 u_short sin_port; /* 16 bit port # */
 struct sin_addr; /* 32 bit netid/hostid */
 char sin_zero; /* unused */

};

 Raw Sockets

We create raw internet socket and specify one particular Inter-
net protocol as the final argument to the socket function.

This protocol is used by IP to demultiplex the data it receives:

user user

process process

TCP UDP

 specified protocol

 protocol = TCP protocol = UDP

 IP

Only superuser processes can open raw sockets.

IP prepends an appropriate IP header to any data we write.

The protocol field in this IP header is the value specified
when the socket was created.

When data is received by the kernel for this protocol, when IP
is finished with the data, a copy is passed to all processes that
have raw sockets for this protocol.

This data contains the received IP header.

Newer kernels (4.3BSD , SunOS 4.1) allow the protocol to be
IPPROTO_RAW.

This allows the user process to build its own IP header.

Traceroute needs this to set its TTL field:

traceroute

 protocol = IPPROTO_RAW protocol = PROTO_ICMP

 IP

R/W IP Hdr. R only IP Hdr.

 Broadcasting

Broadcasting is only allowed on datagram sockets.

The network being used must support braodcasting, such as
an Ethernet or a token ring.

The user process must specify that a socket can be used for
broadcasting: the SO_BROADCAST socket option must be
enabled.

4.3BSD does not allow a broadcast IP datagram to be frag-
mented.

By convention, an Internet address with a host ID of all 1 bits
is considered a broadcast address.

A program should use the SIOCGIFBRDADDR ioct1 to
obtain the broadcaast address for a given interface.

