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Chapter 3 Summary
(Random Variables)

1 The Notion of a Random Variable

s q/ X(¢)

Figure 1. X maps outcomes in a sample space to numbers on the real line.

A random variable is a function that assigns a real number X ({) to each outcome ¢ in the sample
space of a random experiment. The range of X is denoted by Sx.

2 The Cumulative Distribution Function (cdf)

Fx(z) 2 P[X < ]

Properties of the cdf:

1. 0 < Fx(z) < 1;

N

im0 Fix (2) = 1

3. limy_s_oo Fix () = 0;

4. Fx(z) is a nondecreasing function of z;

5. Fx(z) is continuous from the right;

6. Pla < X <b| = Fx(b) — Fx(a);

7. P[X =b] = Fx(b) — Fx(b~) = height of jump discontinuity at b;

8. P[X >z] =1— Fx(z).

Three types of random variables:




discrete: These types of random variables have a cdf that is a stair-case function, Fx(z) =
Yspesy Px (Tr)u(r — 7)), where Px (zy) 2 P[X = zi] is the probability mass function (pmf)

of X and
u(z) = 1 >0
10 z<0

is the unit step function.

continuous: Fx (z) is continuous, and smooth enough so that for some function fx (),
T
Fx(@) = [ fx(@t.
—00

For continuous random variables, P[X = z] = 0 for all z, since there are no jump discontinu-
ities in the cdf.

mixed-type: These random variables are a mixture of discrete and continuous random variables,
and have a cdf of the form

Fx(z) = pFp(z) + (1 —p)Fo(z)

where 0 < p < 1, Fp(z) is the cdf of a discrete random variable, and F(x) is the cdf of a
continuous random variable.

3 The Probability Density Function (pdf)

Properties of the pdf:

1. Plz < X <z + Az] ~ fx(z)Az;

2. fx(x) > 0;

3. Pla < X <b] = [? fx(z)dz = Fx(b) — Fx/(a);

4. Fx(z) = [ fx(t)dt;

5. [%% [x(@)dz = 1;

6. for discrete random variables, we can define

fx(@) = Y Px(zx)d(z —z1),
TRESx
where §(¢) is the delta function defined by u(z) = [*_ d(t)dt.
Conditional cdf’s and pdf’s:
If A is an event with P[A] > 0,
Fy (24) 2 PIX < 2|4] = P[{le[;f]} N4l



and p
A
A)=—F A).
Fx(ald) 2 £ Fx(s])
Conditional cdf’s and pdf’s have all the properties of ordinary cdf’s and pdf’s.

4 Some Important Random Variables

A. Discrete Random Variables

1. Bernoulli
Sx ={0,1}
px(0) =1-p;px(1) =p
E[X]=p; VAR[X]=p(1-p); ®x(w)=(1—p+pe™)

2. Binomial
Sx =1{0,1,2,...,n}

px (k) = (Z)pk(l —p)"kk=0,1,...,n

E[X] =np; VAR[X]=np(1—p); Bx(w)=(1—p+pe’)"
3. Geometric
(a)
Sx =1{1,2,3,...}

px(k) =p(l—p)F Tt k=1,23,...

1 1—p pelv
= — = M @ =
E[X] p7 VAR[X] ’ X(w) 1_ (1 _p)e]w

(b)
Sx =1{0,1,2,3,...}
pX(k) :p(]- _p)kak = 07]-’273""
_1-p _1-p _ p
E[X]_ D ’ VAR[X]_ pg ’ (I)X(w)_ 1—(1—p)ej“’

This is the only discrete random variable with the memoryless property:
PIX > k+j|X > j] = PIX > kJ; Vj,k.

4. Poisson
Sx =40,1,2,3,...}

ake—@

pxb) ="

E[X]=0a; VAR[X]=0o; ®x(w) = exp(a(e’” —1))

,k=0,1,2,... and a >0



B. Continuous Random Variables

1. Uniform
Sx = [a,b]
1
_ ) 57 a<z< b;
Fx(z) = { 0 otherwise.
a+b (b—a)? ewb — giwa
EX == . A X = . (I) - @@
[X] === VAR[X] 2 W) =TTy
2. Exponential
Sx = [Oa OO)

e ™ >0
fx(@) = { 0 otherwise. where A >0

E[X]z%; VAR[X]:%; By (w) = —2

This is the only continuous random variable with the memoryless property:

A —jw

P[X >t+ h|X >t]=P[X >h]; t,h>0.
3. Gaussian (or Normal)
Sx = (_007 OO)

fx(.’lj) = Le—(x—m)Q/(Qo'z)
2o

E[X]=m; VAR[X]=0" &x(w)=em™ 7w/
The cdf of a Gaussian can be expressed in terms of the tabulated function ®(z):

r—m

Fx(z) = O e~ 2t

), where () & [ —

, where ®(z) = —
—o0 V21

(Do not confuse ®(z) with @ x(w); they are two different functions.) For electrical engineering

applications, we are often interested in the complement, Q(z), of ®(z), defined as

o

1-0(z) = ; \/—Q_We*ﬁ/?dt.

5 Functions of a Random Variable

If X is a random variable and g(z) is a real function, ¥ = ¢g(X) is a random variable.

Let g(z) be a differentiable real function, and take ¥ = g(X).



)
>
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Figure 2. Example of a function.
Fix y as in Fig. 2. If the equation g(z) = y has n solutions, z1,z9, ..., Ty, then

fr(y) = Xn: [fX(a:)

i Llg' ()]

L=

6 Expected Value
The ezpected value or mean of a random variable X is defined as:
o
EX|=z= / zfx(z)dz .
—0oQ

For a discrete random variable, this reduces to Z = 3_, .5, = px(z).

For a function of a random variable,

Blo(x)] = [

o0

9@ fx(@)dz,

which yields E[g(X)] = Y ,cs, 9(z)px (), for a discrete X.
Notes:

1. E[c] = ¢ for any constant c;

2. Elc g(X)] = ¢ E[g(X)] for any constant c;
3. B[ k=1 9x(X)] = Y=t Elgr(X)]-

Moments:

mp[X] = E[X™] is the nth moment of X. We have m[X] = 1; m1[X] = E[X]; ma[X] = E[X?] =
mean squared value.



pn [ X] 2 E[(X — Z)"] is the nth central moment of X. We have po[X] = 1; pu1[X] = 0;
w[X] 2 VARIX] = B[(X - 2)] = 22 - (2)".
VAR[X] is the variance of X; STD[X] =ox = VAR[X] is the standard deviation of X.
Notes:
For any constant c:
1. VAR|[c] = 0;
2. VAR[X + ] = VAR[X];
3. VAR[cX] = 2V AR[X].

7 The Markov and Chebyshev Inequalities

Let X be any non-negative random variable. For any a > 0, the Markov inequality states:
PX>ad <>
a

We can use the Markov inequality to prove the Chebyshev inequality, which states that, for any
random variable X,

2
P[|X-z|>b] < 7X.

b2
8 Transform Methods
The characteristic function of a random variable X is
Px(w) = BN
00 .
= / fx(z)e!“dzx ,
—0oQ

where j = v/—1. The characteristic function of X and the pdf of X constitute a Fourier transform
pair. The pdf can be recovered as

fx(z) i/oo D x(w)e M“%dw.

- 21 J
For an integer-valued discrete random variable X,

Sxw)= 3 px(k)et

k=—00
is a periodic function of w with period 27. The pmf can be recovered as
1 2w

px (k) = Cy Ox(w)e *dw, k=0,+1,+2,....
0
Moment Theorem:
B = o [ ex )]
B ]n dw™ X w=0



9 Computer Generation of Random Variates

Many computer languages have a function (rand or rnd or something else) that returns a pseudo-
random floating point number, uniformly distributed in [0, 1].

To generate a random variable with cdf F(z) by the “transformation method,” let U be uniformly
distributed in [0,1], and let Z = F~!(U). Then Z has the desired distribution. This method is
effective when F~! can be easily computed.
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10 Vector Random Variables

S C. /\X(C\)Z(Cﬂl,m,...,xn)

X maps outcomes in a sample space to vectors in R".

A vector random variable is a function that assigns a vector X (¢) = (z1, 2, ..., Z,) to each outcome
¢ in the sample space of a random experiment.

Product-Form FEvents: An event A C R™ has product-form if
A=A1(X7)NA(X2) NN AR(Xy)

where A;(X;) is a one-dimensional event involving the random variable X; only. Product form
events are “rectangular,” involving the intersection of “strips:”

7,
Q;. 3
DX

.’L'QA

A2
_4%

A1 N Ay is a product-form event.




Independence: the random variables X7, Xo, ..., X, are independent if and only if, for every product
form event A;(X;)N---N A,(X,), we have

P[A1(X1) N+ N Ap(Xp)] = P[A1(X1)] X -+ x P[An(X)].

11 Pairs of Random Variables, (X,Y)

A. Discrete Random Variables

XESXI{.Il,:L'Q,...,.’L'k,...}

finite or countably infinite
YESy:{yl,yQ,...,yj,...} } Y

The joint probability mass function (pmf) of X and Y is

=

pX,Y(xk:ayj P[X = .Z'k-,Y = y]]

Note:

Z Z px,v(Tg,yj) = 1.

T €Sx Yj €Sy

For any event A,
PlAl= > pxy(®k )

(zk,y;)EA
Marginal pmf’s:
A
px(zp) SPX =z] = > pxy(@k,y))
Y; €Sy
A
py(y) EPY =y;] = . pxy(zey;),
TLESx

i.e., sum over the undesired component.

The Joint Cumulative Distribution Function (cdf):

Fxy(z,y) £ P[X <z,Y <y

Properties of the joint cdf:

1. 0< Fxy(z,y) <1;

2.
Am lim Fxy(z,y) = Fxy(co,00) =1
yli_g)lo Fxy(z,y) = Fxy(z,00) = Fx(x)
mli{lgoFX,Y(xay) = FX,Y(OO,y) :Fy(y)



lim Fx,y(ac,y) =0
Tr—r—00
Jm Fxy(zy) = 0

4. Fxy(z,y) is nondecreasing in the “northeast direction,” i.e., if 1 < z9 and y; < yp then
Fxy(z1,y1) < Fxy(®2,92)-

5. Fxy(z,y) is continuous from the “north” and from the “east,” i.e.,

lim nyy(:l?,y) = FX,Y(aay)
z—at

lim FX,Y(.’IJ, y) = FX,Y('Ta b)
y—bt

6. Plr1 < X <mo,y1 <Y <] = Fxy(z2,y2) — Fxy(z2,y1) — Fx,y(®1,92) + Fx,y(z1,y1)-

B. Jointly Continuous Random Variables
The joint pdf of X and Y, if it exists, satisfies

62FvX,Y(£% y)

fX,Y(‘T’y) = axay

Properties of the joint pdf:
L fxy(z,y) =20
2. P[(X,Y) e Al = [ s fx,y(z,y) dz dy; in particular,
/ / fxy(z,y)dydz = 1
—00 J—00

T y
| pxyodedu = Fxy(ay)
u v

=—o0 Juv=—00

b d
/ / fxy(z,y)dydr = Pla<X <b,c<Y <d]
Tr=a JYy=c¢
3. Ple < X <z+dr,y <Y <y+dy| = fxy(z,y)dzdy;

fx(z) = [2_ [x,y(z,y)dy . ’
YR = IR () }mafgmal pdf’s.

C. Joint Random Variables that Differ in Type

If the types of the two random variables are different, that is, e.g., X is discrete and Y is continuous,
it is usually easier to work with the joint cdf, Fx y(z,y), or events such as {X =k,Y < y}.

12 Independence of Two Random Variables

X and Y are independent if and only if:

Discrete Either Continuous
px.v(zk,y5) = px(@r)py(y;) | Fxv(z,y) = Fx(2)Fy(y) for | fxy(z,y) = fx(z)fr(y) for
for all x, y; all z,y all z,y

If X and Y are independent, g(X) and h(Y') are independent.



13 Conditional Probability and Conditional Expectation

Discrete Continuous
py (yjlon) = PEXEY) = By (y;lmp) — By (v |ow) | fr(yls) = 2550 = L Ry (ylw)
px (wely;) = BB = Py (ay|y;)— Fx (g |yy) | Fx(aly) = BEE = LFx(aly)

If X and Y are independent, py (y;|zx) = pv (v;)

and px (zx|y;) = px(xk).

If X and Y are independent, fy(y|z) =
fr(y) and fx(z|y) = fx(=).

PY € Alzg] = 3y capy (yjlzk)
P[X € Bly;] = ¥p,enPx(wkly;)

PIY € Ala] = [, fv (yl2) dy
PIX € Bly| = [yep fv(aly) d

PV € 4] =5, PIV € Alzpx ()
PIX € B] =¥, P[X € Bly;lpv (1))

PlY € Al = [%_P[Y € Alz]fx(z) dz
P[X € B] = [, P[X € Blylfv(y) dy

Eh(Y)|zi] = Xy, h(y;)py (yjlzs)

Eh(Y)|z] = [Z, h(y) v (y|z)dy

E[h(Y)] = E[E[MY)|X]]
= >a, E[R(Y)|z]px (k)

E[h(Y)] = E[E[n(Y)|X]]
= [ E[h(Y)|z]fx (x)dx

14 Multiple Random Variables

Discrete Either Continuous
Description: | Joint pmf Joint cdf Joint pdf
PX1,Xn (B2, Tn) = Px(X) | Fxy, X (@150, %) = Fx(X) | fxg,0x0 (@1, .-, 20) = fx (%)
Properties: | Total sum =1 Fx,, . . x,(00,...,00) =1 Total integral = 1
P[A]: | Sum over A Integrate over A
Marginals: | Sum over undesired compo- | Set undesired component(s) to | Integrate over undesired com-
nent(s) () ponent(s)
Conditionals: | px, (Tn|T1,...,Tn-1) = | Fx,(zn|Z1,...,Zn-1) = | fx,(@n|z1,...,Zn=1) =
PXq,..., Xp (@152 n) on e Tn—1)d fxq,..., Xp (E15-52n)
PX1,..1.,Xn—1(w1 ..... Tp_1) f—oo an(u|$1: v 1) Y le,..l.,Xn—1(ml’---amn—l)
Independence: | Xi,...,X, are inde- | X1,...,X, are inde- | X1,...,X, are inde-
pendent if and only if | pendent if and only if | pendent if and only if
DPX1,eXn (X150, Tn) = | Fxy,...x,(Z1,...,Zxn) = | fxi,xn(Z1,...,Zn) =
px; (1) X -+ X px, (Tn) Fx,(#1) X -+ X Fx,, (%n) fx,(21) X - X fx, (Tn)
15 Functions of Several Random Variables
A. One Function of Several Random Variables
Let Y = g(X4,...,X,). Then
Fy(y) = P[Y <y
= // le,...,Xn(fL'l,---rTn) d.’L‘ld.'IIn

——
,Zn) such that

all ({L’l, s

g(x1,...,zp) <y

= / fx(x)dx .
x:g(x)<y

10



Also, fy(y) = %y(?/)_
For example, if Y = X7 4+ X5, then
oo
fr () :/ fxi.x,(z,y — 7) dz.
—00

If X7 and X5 are independent,
o

) = [ @i —o)da.
—00

v

convolution!

As another method for finding the pdf of a function of several random variables, one can use the

conditional pdf. For example, let Z = ¢g(X,Y), then

o0

f26) = [ 12l Wy = [ falelo)fx(a)d.

- —00

B. Transformations of Random Vectors

Let X = (X1,...,Xp) and Z = (Z1, ..., Zn) = (91(X), ..., gn(X)) = g(X). Then

Fy(z) = / f
x:gx (x) <2k, Vk

Pdf of Linear Transformations

Let Z = AX. Then fz(z) = %gtl(_f;;)

Pdf of General Transformations

Let the set of equations z = g(x) have a unique solution given by x = (z1, ...

h(z). Then
_ fx(h(z))
P20 =6

or equivalently

f2(2) = fx(b(2))|J(2)] ,

where
91 .. 9¢ o
dx1 dxn 021
J(x) = det S e and J(z) = det .
99n .. Ogn Ohn
ozt Oxn 0z1

are the Jacobians of the transformation and its inverse, respectively.

Ohy
Ozn,

Oh,
Ozn

If the equation z = g(x) has more than one solution, the pdf is equal to the sum of terms of the

form (1), with each solution providing one such term.

16 Expected Value of Functions of Random Variables

Y =g(X1,....Xp)

Discrete: E[Y] =3, --->, 9(®1,---,Ta)Pxy,...X0 (T15- - - s Tn)
Continuous: E[Y]= [ - [* g(z1,...,2n) fx1,.. X0 (Z1,. .., Zn)dx

11



e B3 Xi]=>% E[X;] (independence not required).
e If X;,..., X, are independent and ¢(X3,...,X,) is separable, i.e.,
g(X17 s aXn) = 91(X1)92(X2) e gn(Xn)a

then
Elg(Xi,...,Xn)] = Elg1(X1)]E[g2(X2)] - - - E[gn(Xn)]-

Moments, Correlation, Covariance:

e The j, kth joint moment of X and Y is

m; [ X,Y] = E[X?Y*].
e The j, kth joint central moment of X and Y is

Hik[X, Y] = B [(X - BIX])))(Y - E[Y])F].

e my1[X,Y] = E[XY] is the correlation of X and Y.

o If E[XY] = E[X]E[Y], then X and Y are said to be uncorrelated.

o If E[XY] =0, then X and Y are said to be orthogonal.

o u11[X, Y] =E[(X — E[X])(Y — E[Y])] 2 COV[X,Y] = oxy is the covariance of X and Y.
e COV[X,Y] = E[XY] - E[X]E[Y] (=0 if X and Y are uncorrelated.)

e The correlation coefficient px,y is

A COV[X, Y] Xy
PX)Yy = = -
oxoy agxoy

It can be shown that —1 < pxy < 1, and the bounds are achieved if X and Y are related
linearly.

Facts:

e If X and Y are independent, then X and Y are uncorrelated.

e If X and Y are uncorrelated, then X and Y may or may not be independent. However if X
and Y are jointly Gaussian, and X and Y are uncorrelated, then X and Y are independent.

12



17 Jointly Gaussian Random Variables

A. Two Random Variables
Let X and Y be random variables with
E[X] =mx; VAR[X]=o0%; COV[X,Y] _
BlY]=my; VARY|=o}; ~ oxoy  ©
Then X and Y are said to be jointly Gaussian if and only if

_ 1
fxy(z,y) = QW%%MX
exp{ ~1__[(@=mx)?  2p(@—mx)@y=—my) , (y_mY)z] } .

2(17p2) o'i_ oxX0oy o'f,
Properties:

e X and Y are Gaussian random variables with means mx and my, and variances 0—3( and 0%,
respectively. (Marginal distributions are Gaussian.)

e If p=0, X and Y are independent.

e The conditional pdf’s fx(z|y) and fy(y|z) are also Gaussian, e.g., fx(z|y) is Gaussian with
mean mx + p(ox /oy)(y — my) and variance 0% (1 — p?).

B. n Random Variables

The random variables X1,..., X,, are called jointly Gaussian if their joint pdf is given by

_ exp{—1(x —m)"K~'(x — m)}

x
fx(x) (2r)"det(K) ’
where x and m = (E[X1], ..., E[X,])T are column vectors, and K is the covariance matriz defined
by
Ug(l 0xX1Xe: " 0XiX,
K= 0X5X, 03(2 Tt OXe Xy,
O.XnXI DR O'%,n

Properties:

e The pdf is completely specified by the individual means and variances and pairwise covari-
ances.

¢ The marginal distributions are all (jointly) Guassian.

e The linear transformation of a set of jointly Guassian random variables results in another set
of jointly Guassian random variables. In particular, the linear combination of a set of jointly
Gaussian random variables is Gaussian.

e All the conditional distributions are also (jointly) Guassian.
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