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Chapter 1 Summary
(An Introduction to the Notion of Probability)

1 Random experiments

An experiment is a procedure which results in an outcome. The outcome of an experiment depends
on the conditions under which the experiment is performed. In a deterministic experiment, the
observed result is not subject to chance. If we repeat a deterministic experiment under exactly the
same conditions, we expect the same result. In a random experiment the outcome is always subject
to chance. If the experiment is repeated the outcome may be different.

Many random experiments can be defined in terms of an “urn model”. The urn contains a number
of balls, which are identified in some way, for example, by a color scheme or by a numbering scheme.
Consider an urn containing three balls, labeled 0, 1, and 2.

An urn experiment is defined as follows.

1. Shake the urn.
2. Draw a ball from the urn (without looking into the urn, of course).

3. Record the ball label.
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. Return the ball to the urn.

The last step corresponds to the situation in which we perform “sampling with replacement;” this
is in contrast to the situation in which we do “sampling without replacement,” and don’t return
the ball to the urn.

Assume that the “urn experiment” (with replacement) is performed seven times, and the following
sequence of outcomes are obtained:
{2,0,0,0,0,1,2}. (1)

2 Outcomes and Sample Spaces

In a given random experiment, the result of the experiment is called the outcome of the experiment.
The set of all possible outcomes is called the sample space corresponding to the given experiment’,
and is often denoted as S. In the urn experiment, the sample space S is given by

S ={0,1,2}.

!Sometimes it might be convenient to include impossible outcomes in a given sample space. This poses no problem:
we simply assign zero probability to these outcomes. (See later in the course.)




In a die-rolling experiment, the sample space S can be denoted by

S =1{1,2,3,4,5,6}.

3 Counting the Outcomes in a Sequence of Trials, and Relative
Frequency

Suppose, now, that we perform a random experiment with sample space S. If we perform this
experiment n times, i.e., we perform n trials, we get a sequence of outcomes

{01,02,03,...,0n}. (2)
We denote by Ni(n) the number of times outcome k occurs in the list (2) for all k € S.

For example, in the urn experiment, S = {0, 1,2}, and the sequence of outcomes was given in (1).
For this particular sequence of seven trials,

No(7T) =4, Ni(7) =1, No(7)=2.

A couple of observations about the numbers Ni(n) can be made:

0 < Ng(n) <mn, (3)
Z Ni(n) =n. (4)
keS

Often, we are interested in the proportion of trials that had a given outcome k. This number is
called the relative frequency of outcome k, and is defined as

fe(n) = %Nk(n)-
In the urn experiment,
fo(7) =4/7, f1(7) =1/7, f2(7) =2/7.

The notion of relative frequency is an important one in probability; in fact, the axioms of probability
are modeled based on the properties of relative frequency, some of which are noted below.

4 Events

An outcome is an element of the sample space; an event is a subset of the sample space. Thus, an
event is a collection of outcomes. Events allow us to group together several outcomes into a single
set of interest. For example, in a die-rolling experiment, the event “the outcome is even” is the set
{2,4,6}. In the urn experiment, the event “the outcome is even” is the set E = {0, 2}.

The following table lists all of the 2/5! events associated with the urn experiment:

{0,1,2} the sample space itself is an event;
{0,1},{0,2},{1,2} events with two outcomes, including event E;
{0}, {1}, {2} “singletons” are events;
o={} the empty or “null event” is useful, but never occurs.



Just as we can count the number of times that a particular outcome occurs, we can count the
number of times that a particular event occurs. If A is an event, we denote by N4(n) the number
of times that A occurs in n trials. Similarly,

fa(n) = - Na(0)

denotes the relative frequency of occurrence of the event A. In the urn experiment fg(7) = 6/7.
Note that we always have fs(n) =1 and f4(n) = 0.

5 Statistical Regularity

Even though we cannot predict the outcome of a given trial, we would notice after many trials
that the relative frequencies of the various outcomes in the urn experiment are quite close to 1/3.
Intuitively, if the experiment were to be performed n times, we would expect that approximately
n/3 of the outcomes would be 0, approximately n/3 of the outcomes would be 1, and approximately
n/3 of the outcomes would be 2. (Usually, not ezactly n/3, though.) Furthermore, one would expect
that, as n becomes large, the relative frequencies would “settle down” to 1/3. This phenomenon,
in which the relative frequencies “converge” to a fixed value is called statistical regularity.

The phenomenon of statistical regularity can be observed experimentally. Figs. 1.3 and 1.4 of the
textbook illustrate the relative frequencies of the various outcomes after n trials, for various values
of n. One can see a “convergence” of the relative frequencies to the value of 1/3, for large values of
n. This “limiting value” of the relative frequency of a particular outcome is called the probability
of that outcome. That is, (for now) we define

pe = lim fi(n)

to be the probability of the outcome k, without worrying too much about how this limit can be
carried out?. Since we think of probabilities as the limiting case of relative frequencies, probabilities
will share many of the properties of relative frequencies.

In the urn experiment, pg = p; = p2 = 1/3. On the other hand, if the urn experiment were changed
so that the urn initially contained two balls labeled 0, one ball labeled 1, and one ball labeled 2,
we would have pg = 1/2, and p; = p2 = 1/4. Thus, changing the experimental conditions changes
the probabilities.

6 Properties of Relative Frequency

Let k be a typical outcome in a sample space S, and let fix(n) = Ni(n)/n be the relative frequency
of outcome k after n trials of the random experiment. We can list a few of the most important
properties of fx(n).

L. 0< fr(n) < 1.
2. ZkES fk(n) =1.

%In fact, it can’t be carried out, since it is impossible to carry out an infinite number of trials. To get around this,
we define probabilities aziomatically later in the course.




3. Let A be the event {i} U {j}, where i and j are two different outcomes from the sample space,
i.e., 2 # j. Then
fa(n) = fi(n) + f;(n).

3'. Property 3 can be generalized as follows. Let A and B be two disjoint events, i.e., two events
having no outcomes in common (AN B = ¢), and let C be the event AU B. Then

fe(n) = fa(n) + f(n).

Chapter 2 Summary
(Basic Concepts of Probability Theory)

7 Sample Spaces

e sample space S S e o o

e outcomes or elementary events: € S . el ——— outcomes
e events: C S °

e S finite, countable infinite = discrete ° o«

e S uncountably infinite = continuous

\/

events

8 Set Operations

e union (A U B), intersection (A N B), complement (A¢ = S\ A), containment or “A implies
B” (AC B)

commutativity and associativity of union and intersection

distributive laws

DeMorgan’s rules

mutually exclusive (disjoint) events: AN B = ¢

9 The Axioms of Probability

A probability law is a real-valued function P defined on the set of events which satisfies

I. 0 < P[A], for any event A;

II. P[S] =1,

ITI. given events A1, Ag,... with A;NA; = ¢, 1 # 7, then P[Us2; 4i] = >°2¢ P[A;]. In particular,
if AN B = ¢, then P[AU B] = P[A] + P[B].

4



Corollaries

1. P[A¢] =1 - P[A]
2. P[A]<1
3. P[¢] =0
4. If Aq,..., A, is a collection of pairwise disjoint events, then
n n
P[U Ai] = ZP[AZ]
i=1 i=1

5. P[AU B] = P[A] + P[B] — P[AN B] (see page 34 of the textbook for generalization).
. (Union bound) P[AU B| < P[A] + P[B].
7. It A C B, then P[A] < P[B].

(=]

10 Probability Assignments

e Discrete Sample Spaces: probabilities of elementary events (events containing a single out-
come) determine all the other probabilities. In many cases, the outcomes are equally likely.
In such cases,

P(A) = %, (5)

where |A| denotes the cardinality of A.
¢ Continuous Sample Spaces: probabilities are assigned to intervals of real line, or regions in
the plane, or more generally, n-dimensional regions in R".

11 Counting

Fundamental Rule:

A number of multiple choices are to be made. There are m1 possibilities for the first choice, mq for
the second, m3 for the third, etc. If these choices can be combined freely, then the total number of
possibilities for the whole set of choices is equal to

mi1 Xmg Xmg X ---.

Sampling problems—Sample & from a population of n distinct objects.



1. Sampling with replacement and with ordering;:

n* distinct ordered k-tuples.

2. Sampling without replacement and with ordering;:

nn—1)---(n—k+1) = 7 distinct ordered k-tuples.

(n—k)
This is also denoted by PJ' or (n)g, referred to as the permutation of k objects out of n
(distinct) objects. For k = n, we get the no. of permutations of n objects which is equal to
nl.

3. Sampling without replacement and without ordering (partitioning n distinct objects into two
subsets of sizes k and n — k): “n choose k”

|
(n) _ ﬁ distinct possibilities.

(3) is called the binomial coefficient. Note that () is equal to the number of subsets of size
k from a set of size n. It is also denoted by C}}, referred to as the combination of £ objects

out of n (distinct) objects.
Binomial theorem:

(a+0b)" = 2”: (:) akpnk.

k=0

k=0
" n L n
—_ = = = n—1
et o 3 () 5 (0) -
k=0 k=1
k even k odd

Partitioning n distinct objects into & subsets B, ..., Be, where |B;| = k;,¢ = 1,...,&, and

k1+...+k§:n:
n!

kylkgl - kel

Equation (6) is called the multinomial coefficient.

(6)

4. Sampling with replacement and without ordering:

SRRy

This is the number of subsets of size k from a set of size n, where in subsets, the elements are
allowed to occur with multiplicity greater than one. This is also equivalent to the number of
different arrangements of k£ ‘x’s and n — 1 ‘/’s (slash symbols).



12 Conditional Probability

A and B are events, P[B] > 0. Given that B occurred, what is the probability that A occurred?
Answer:

P[AN B]

PIAIB] = =5

Note that P[B|A] = ng[g]B], hence

P[AnN B] = P[A|B|P[B] = P[B|A]|P[A].
Suppose By, By, ..., B, are disjoint events that partition a sample space S, i.e., B;NB; = ¢, i # j,
and U, B; = S. Then, for any event A, the “total probability theorem” states
P[A] = P[A|Bi]P[B1] + P[A|B2]|P[Bs] + - -- + P[A| By] P[By]

= Y P[A|Bj]P|B].

=1

By _+— ]

Bs

32 /A

Hllustrating the total probability theorem.

B,

Bayes’ Rule:

P[Bj N A]
P4]
P[A|B;]P[B]
iz1 P[A|Bi| P|B;]

PB;|A] =

13 Independence of Events

A and B are independent if and only if P[AN B] = P[A]P[B]. (For the generalization to more than
two events, see page 59 of the textbook). If P[B] # 0 and A and B are independent, then

P[A|B] = P[4],

i.e., occurrence of B does not affect P[A] (and vice-versa).

Clearly, independent experiments result in independent events.



14 Sequential Experiments

Sequences of Independent Experiments

Bernoulli trial: perform an experiment once and note if a particular event A occurs. Define
“success” if A occurs and “FAILURE” if A does not occur. Let P[A] = P[SUCCESS|] = p; then
P[FAILURE| =1 —p.

Binomial Probability Law

Perform n independent Bernoulli trials and note the number of successes. The probability of having
exactly k successes is

n —

Multinomial Probability Law

Let By, ..., By be a partition of the sample space S of some random experiment and let P[B;] = p;.
Thus p1 4+ - -+ pp = 1. Perform n independent repetition of the experiment. Let k; be the number
of times event B; occurs. The probability of having the vector (ki,...,ka) is

n! ki, k k
P[(ky, ..., km)] = mﬁf?gzwpz\% ;
where k; > 0,Vi, and k1 + ko +--- + kpr = n.
Geometric Probability Law
Repeat independent Bernoulli trials until the first success and record the number of trials needed.
Then the probability that exactly m trials are needed is
p(m) = p(l—p)m_1, m:172’37"'7 and’
Pim>K] = (1-p)¥~

Sequences of Dependent Experiments

Let Aq,..., A, denotes a sequence of dependent events. It is usually helpful to use the following
chain rule to compute the probability of the sequence.

P(A1 N AsN-+-NAn) = P(A1)P(Az|A1) -+ P(Ap|A1 N ... An_t) -

Often, sequences of dependent experiments can be described via the “state” of the experiment, in
which the probabilities of the experimental outcomes depend only on the state. Such sequences
are called Markov chains. For a Markov chain, a “trellis diagram” can be used to compute the
probability of any sequence of outcomes.
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