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Problem Set #3 Solutions

o Textbook: Ch. 4: 4, 10, 14, 22, 25, 32, 46, 48, 51, 61, 78, 8L.

4.4 (a)
.. 1/36 1<3<6, 1<556
Px1,X(6,7) = 0 otherwise
(b)
1/36 i=j, 1<4,5<6
pxy(i,j) =4 2/36 1<i<j<6
0 otherwise

j=1 2 3 4 5 6
1/36  2/36 2/36 2/36 2/36 2/36
1/36 2/36 2/36 2/36 2/36
0 1/36 2/36 2/36 2/36
0 0 1/36 2/36 2/36
0 0 0 1/36 2/36
0 0 0 0 1/36
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= 1/36 +5+2/36 = 11/36
1/36 + 4+ 2/36 = 9/36
1/36 + 3+ 2/36 = 7/36
1/36 + 2+ 2/36 = 5/36
1/36 + 1+ 2/36 = 3/36
= 1/36
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In general, Px (k) = (13—2k)/36, 1 < k < 6. By symmetry, Py (k) = Px(7—k) = (2k—1)/36.

4.10 (a) k =1, since

1/k = /01/01(x+y)dyda:
= [ v

= /01(:1:+ 1/2)dz
= 1/2+1/2=1.

1
dr
0



(b) The cdf is zero outside the first quadrant. In the first quadrant, after integrating the pdf,

we obtain
zy(z+y)/2 0<z<1,0<y<1
_Jyly+1/2 z>1,0<y<1
Fxy (z,y) = z(r+1)/2 0<z<1, y>1
1 z>1, y>1

(c) Fx(z) =0,z < 0. Fx(z) =limy_,o Fxy(z,y) =z(z+1)/2for 0 <z <1,and Fx(z) =1
for £ > 1. Thus, fx(z) =z +1/2, 0 <z <1, and fx(z) = 0, otherwise. By symmetry,
fy (@) = fx ().

4.14 With p =0, fxy(z,y) = %6_(1‘24_3/2)/2. Then,
1
PX?+Y2<R? = / / e 2y d
—— 4
z2+y?<R?

27 R 1
= / / e "2 drd
0=0Jr=0 27

772/2‘R

0
_p2

— 1—e¢ R2/2
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4.22 For X and Y to be independent, it is necessary (but not sufficient) that the joint pdf for
X and Y be nonzero over a product-form region. For the regions of Fig. P4.1, this is never
the case, hence X and Y are not independent for these regions.

4.25
(a) If p =0 in Problem 15, we have

1 emmp? g @omy)?

202 e 2‘75 = f;c(x)fY(y) ) Vx,y .

1
2moq 2mog

Thus X and Y are independent.

(b) PIXY > 0] = [° [° fx,y(z,y)dzdy + [° [°. fxv(z,y)dzdy. Using the result of part
(a), it is not then difficult to see that

PIXY > 0] = 1= Q( DI = QC 2 + Q1A

fX,Y(xa y) =

ma

) -
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4.32 (a) From problem 4.11, we know that fxy(z,y) = 1/m, z2+y? < 1, and zero otherwise.
We also know that fx(z) =2v1—22/7, =1 <z < 1. Thus

frix(yle) = f)})y(iﬁ)y)

1/m
2V1—2?%/w

= 27% —Vi-#sy<vi-at

2



i.e., the conditional pdf of Y given X = z is uniform.

(b) From problem 4.11, we know that fxy(z,y) = 1/2 inside the given region and zero
otherwise. We also know that fx(z) =1 — |z| for —1 <z < 1. Thus

fxy(z,y)
fx(z)
1/2
1—|z|
1

= s - 1<y<1-—lz,
2(1 — =)

frix(ylz) =

i.e., the conditional pdf of Y given X = z is uniform.

(c) From problem 4.11, we know that fx y(z,y) = 2 inside the given region and zero otherwise.
We also know that fx(z) =2(1 —z) for 0 <z < 1. Thus

frx(le) = f);j(i%)y)

2
2(1-2)

1

i.e., the conditional pdf of Y given X = z is uniform.

Note: in any problem in which fxy = k (i.e., uniform over some region), the conditional
pdf of Y given X = z will be a function only of z; hence Y will have a uniform conditional
distribution along the line X = z where fxy # 0. Once the limits are known, the conditional
pdf is easily computed.

4.46 (a) p(k1, k2) = X157 p(ki, ko, k) = % Jfor ki, ko > 0,k1 4 k2 < n.
3

(b) p(ky1) = ZZ;% n—ki—kotl Tet j=n—k —ko+ 1. Then

(")
n—ki1+1 .
—k 2 —k 1
p(k1) = Z nz_3 :(n 1+7)lsg Lt ),forOSklgn.
j=1 ( 3 ) 2( 3 )
(C) p(kQak3|k1) = p(k;(’Ziika) = (n_k1+2)2(n_k1+1)a for k27k3 Z OakQ + k3 S n— kl-

4.48 Since X is exponentially distributed, the marginal pdf for X is fx(z) = ae™**, z > 0,
a > 0. Although the problem does not state this, let us assume that Y has the same distri-
bution as X. Then, since X and Y are independent, their joint pdf is given by

fxy(@,y) =a’e M), >0, y>0.

Let Z =|X —Y]|. For 2 <0, P[Z < z] =0. For z > 0, the region where Z < z is bounded
by the lines indicated in the figure.



z X
For z > 0,

Fz(z) = /0 /0 fXYHCydydx‘l'/ / fxy(z,y)dydz
= [Cacemcemtias s [T (e mjtida
0

_ /z(ae_az o ae—Qaz—az)dm +/ (ae—Qaw—l—az . ae—2aw—az)d$
0 z

— [_6_‘“3 + (1/2)e—aze—2a$]g +[ (1/2) az —Zam (1/2) —az —2(11]20
= —eT0% 4 (1/2)€—aze—2az +1-— (1/2) —az (1/2) az —2uz _ (1/2)e—aze—2az

= 1—e %

Thus, fz(z) = ae™*, z > 0, i.e., Z is also exponentially distributed with parameter a.

4.51 The cdf of Z = X + Y can be computed, for z > 0, as
Fz(z) = P[X+Y <Z|

z/2 z Z—T
= / / 2e e ydyd:z:—l—/ / 2e " Ydy dx
=z/2 Jy=0

z/2
= / 27" (1—e ®)dz + / 2¢7%(1 — " *)dx
z z=z/2
z

=0
z/2
= / (2e7% — 2e7 ) dx + (2e7% — 2e™*)dz
z=0 r=z/2
z z/2 z
= 2 e Ydx — 2 e %dx — 2e7? / dz
=0 z=0 =2z/2

= 201—-e?*)—-(1—-€e?)—2z2e”

= 1l—e?—2ze% 2>0
Hence,

fz(z) = dFz(z)/dz
= e —e *4ze’ "

= ze % 22>0

4.61 Since X and Y are independent, E[X?Y] = E[X?]E[Y]=1x1=1.
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4.78 (a) e
dzdy .

PR Vi< = [ [

224y <r? 2T
Let £ = rcosf and y = rsinf. Then

P[\/Wgr]:/o%/or

6772/2

2T

rdrdgd=1—e"/* = 1/2,

which results in 7 = /2In(2). (Note that v/ X2 4+ Y2 has a Rayleigh distribution.)
(b) Using (a), we have P[R 2VXT1Y?> r]=e /2. Also,

_ fxylzy) e @2
.fX,Y(‘,I"ay|R>T) - P[R>T‘] - ot
4.81
e~ (@ —2p12y+y?)/2(1-p}) e—(@®—2p20y+y?)/2(1-p3)

h(z,y) = , g(z,y) =
2my/1 — p? 2my/1 — p3

9] 9] —2?/2 ..
(a) fx(@) = 5 [% bz, y)dy + 5 [% g(w,y)dy = 7. Similarly, fy(y) = . Thus,
each X and Y is, individually, a Gaussian random variable.

(b) However,

J1 = ple (@ =2012y+y?)/20-01) | [1 — p2e—(a®~2p22y+y%)/2(1-p3)
fxy(z,y) = - -
4my /1 — piy1—p;

does not have the form required for jointly Gaussian random variables.

Supplementary:

(b) P[Z > 2] = PX1 > z,....,X, > 2] = (1 — Fx(2))". So, Fz(z) = 1—-P[Z > z] =
1—(1-Fx(2)".

2 The mapping (y1,y2) = g(z1,z2) = (z1/x2,z122) has the inverse

(z1,22) = h(y1,y2) = ((y1y2)1/21 (yz/yl)l/z) :

We have

_ Lt
—2y1

Y1 2
J(yl,yz):det< 2 —3/2 1/2 2—12 —1/2
Ly Py Ly Py

2 291

—1/2 1/2 1/2 —1/2
1 /y2/ lyl/y / ) 1
291

Thus
My (Wi,y2) =1/2y1 for 0 <yiyp <1, 0<ys <y -



3 (a) Let X denote the amount of time (in hours) until the miner reaches safety, and let Y’
denote the door he initially chooses. Now

E[X] = E[X|Y =1]P(Y = 1)+ E[X|Y = 2]P(Y = 2)
+E[X|Y = 3|P(Y = 3)

_ é(E[x\y = 1]+ E[X|Y = 2] + E[X|Y = 3])
However,
EX|Y =1 = 3
EX|Y =2] = 5+ B[X]
E[X|Y =3] = T+ E[X]

To understand why the above equations are correct, consider, for instance, E[X|Y = 2] and
reason as follows: If the miner chooses the second door, he spends 5 hours in the tunnel and
then returns back to the mine. But once he returns to the mine the problem is exactly as it
was before; thus his expected additional time until safety is just E[X]. Hence E[X|Y = 2] =
5 + E[X]. We thus have

BlX] = %(3 454 E[X] 47+ E[X]) = E[X] =15.

v 1
fr(y) = / 56_‘1/ dz =ye ¥, for y>0.
-y
fx(@Y =y) = (1/2)e¥/ye¥ =1/2y, for —y<z<y.

1
P(X <1y =3) = / 1/6 de = 2/3.



