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Abstract. Performance models exist that reliably describe
the execution time and efficiency of discrete-event simula-
tions executed in a synchronous iterative fashion. These
performance models incorporate the effects of processor
heterogeneity, other processor loads due to shared com-
putational resources and application workload imbalance.
We extend these models to include the effects of an opti-
mistic technique known as speculative computation. This
includes modeling the effects of predictive optimism, a tech-
nique for improving the accuracy of speculative assump-
tions.

1 Introduction
Speculative computation has received a great deal of

attention in the parallel computing community as a tech-
nique for balancing computational load and masking laten-
cies in interprocessor communications. In discrete-event
simulation, algorithms that perform computation in a spec-
ulative manner are generally referred to as optimistic algo-
rithms [1].

While both synchronous [2] and asynchronous [3] opti-
mistic algorithms exist, our interest is in synchronous al-
gorithms. This is due to a desire to avoid the inconsis-
tent (and sometimes inexplicable) performance associated
with many asynchronous protocols. Lin and Lazowska [4]
coined the term “S phenomenon” to describe the observa-
tion that speedup curves for an optimistic asynchronous al-
gorithm often have several local minima and maxima. This
observation was made over a large set of different simula-
tion applications [3, 5, 6, 7]. In addition, synchronous algo-
rithms have an inherent simplicity and ease of implementa-
tion that is not present in asynchronous techniques.

As with many other algorithms, there is a tradeoff be-
tween simplicity and performance; the simplicity of the
synchronous algorithm comes with a potential cost in per-
formance. If frequent synchronizations are required, the
algorithm becomes more fine grained. Since the critical
path lies with the slowest processor at each iteration, idle
time can accumulate at the other processors and the to-
tal execution time is lower bounded by the sum of the
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execution times of the slowest processor at each itera-
tion. In an attempt to alleviate these performance concerns
for synchronous discrete-event simulation, techniques used
in asynchronous simulation algorithms (e.g., speculative
computation) have been applied to the synchronous algo-
rithm, while retaining the iterative nature of the algorithm.

We have previously presented em-
pirical evidence that speculative computation reduces the
impact that shared computational resources have on simu-
lation performance [8, 9]. In this paper we will present and
validate a performance model for synchronous iterative al-
gorithms that includes the effects of speculative computa-
tion. Included in this model is the degree to which specu-
lative computations are correct (i.e., what is the impact of
predictive optimism).

2 Speculative Computation and Predictive
Optimism

The model developed here is not restricted to discrete-
event simulation applications, but can be applied to any
synchronous iterative algorithm. Figure 1 illustrates a typi-
cal set of iterations of a synchronous iterative algorithm ex-
ecuting on four processors (labeled 1 through 4). An itera-
tion can be seen as consisting of 3 phases:

1. Computation– performing the computational tasks as-
sociated with the application.

2. Idle – time between first and last processor to complete
work in an iteration.

3. Synchronization – time to complete the barrier syn-
chronization operation.

Computation starts on all processors immediately follow-
ing the barrier synchronization. During this phase, each
processor executes all tasks assigned to it that iteration.
For discrete-event simulation, this consists of processing
simulationevents. Interprocessor data communication may
be concurrent with computation. At the end of the com-
putation phase, each processor enters a barrier and waits
0.00 (c) 1999 IEEE 1



Proceedings of the 32nd Hawaii International Conference on System Sciences - 1999
Proceedings of the 32nd Hawaii International Conference on System Sciences - 1999
S
yn

ch
ro

ni
za

tio
n

1

2

3

4

S
yn

ch
ro

ni
za

tio
n

i1 i2 i3

Execution time

Figure 1: Synchronous iterative algorithm execution. The
horizontal bars represent computation during each itera-
tion.

i3

���
���
���
���

����
����
����
����

��
��
��

��
��
��

����
����
����
����

��
��
��
��

����
����
����
����

���
���
���

���
���
���

����
����
����
����

1

2

3

4

i1 i2

Execution time

Figure 2: Speculative computation execution time line.
The crosshatched areas represent speculative computing,
potentially decreasing the computation needed during the
following iteration.
for its completion. The idle phase is a result of varia-
tion in computation times between processors due to imbal-
ances in workload as the algorithm progresses, multitask-
ing other unrelated processes (background load), or proces-
sor heterogeneity. Synchronization time is determined by
the communication limitations of the parallel platform in
completing the barrier synchronization. After the barrier
synchronization completes, the processors proceed to the
next iteration, repeating the cycle until the algorithm com-
pletes.

Speculative computation utilizes the idle phase of the
above algorithm by allowing processing to proceed into fu-
ture iterations. While waiting for the barrier synchroniza-
tion to complete, computation progresses speculatively,
with the hope that a message arrival from a remote pro-
cessor does not subsequently invalidate the computation.
Once the barrier synchronization is complete, the specu-
lated computation is tested for correctness and either com-
mitted or discarded.

Mehl [10] proposed this technique in the context of a
conservative asynchronous algorithm, but did not report on
its performance. We previously reported a set of empirical
performance results in [8, 9]. Dickens et al. [11] present
a performance model for a similar algorithm that predicts
performance gains over a purely conservative synchronous
algorithm. Steinman’s Breathing Time Buckets [2], an-
other synchronous optimistic algorithm, has been imple-
mented in the SPEEDES environment and exhibits good
performance on a pair of simulation models (queueing net-
works and proximity detection).

To support processing during the execution of the bar-
rier synchronization, a fuzzy barrier implementation is
used [12]. Processors signal their willingness to complete
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the barrier and, rather than blocking, proceed to compute
speculatively. A “barrier complete” signal indicates the end
of the current iteration. The execution time line, illustrated
in Figure 2, shows the speculative computation occurring
during the idle times and while waiting for the barrier to
complete. Note that the time required to complete iteration
2 is less than in the previous figure, since some of the com-
putation has been completed during the otherwise idle time
of iteration 1. Quantifying this performance improvement
is the goal of the model presented in this paper.

Predictive optimism is a technique for improving the ac-
curacy of the guesses used to guide speculative computa-
tion. In traditional optimistic discrete-event simulation al-
gorithms, the standard optimistic assumption is that if a
message has not arrived on an input channel, none will ar-
rive, and processing can continue assuming the channel is
unchanged.

In predictive optimism, information theoretic tech-
niques are used to improve the accuracy of this assumption.
A predictor is placed an each input channel, and the pre-
dictor retains historical information about the messages on
the channel. If a message has not arrived on a channel, the
predictor can be interrogated to determine if (and when) a
message is likely to arrive. If the answer is no, process-
ing proceeds as before. If the answer is yes, speculative
computation is suspended, since the results are likely to be
discarded, and the bookkeeping overhead of managing the
speculation can be diminished.

We have previously investigated predictive optimism
in the context of VLSI systems simulation [13]. In that
study, the “no message arrival” assumption was compared
to a first order finite state predictor and an incremental
0.00 (c) 1999 IEEE 2
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parsing predictor based on Lempel-Ziv data compression
techniques [14]. Both predictors significantly decreased
(or eliminated) cases where the standard assumption per-
formed poorly (i.e., was wrong most of the time). The ana-
lytic model presented here includes mechanisms for evalu-
ating the performance implications of variations in predic-
tion accuracy, in order to investigate the usefulness of pre-
dictive optimism techniques.

3 Definition of Variables
The set of variables used in the performance model is

summarized in Table 1. A more complete definition of each
variable is given in the text near the first use of the variable.

Table 1: Parameters for performance model

Parameter Definition
RP application run time with P processors
P number of processors
I number of iterations
ts serial computation per iteration
tp parallel computation per iteration
tov parallelism overhead per iteration
wi;j time to complete parallel work during

iter. i on proc. j, no spec.
ŵj random variable representing work

on proc. j each iter., no spec.
vi;j time to complete parallel work

during iter. i on proc. j, with spec.
v̂j random variable representing work

on proc. j each iter., with spec.
si;j time available to speculate during

iter. i on proc. j
ŝj random variable representing available

spec. time on proc. j each iter.
r speculation success ratio: fraction

of spec. comp. that is correct

4 Model Development
The time required to complete an iteration in a syn-

chronous iterative algorithm is a function of three distinct
parts. Given any iteration i, a synchronous algorithm has
some serial work to be completed (i.e. work that cannot be
parallelized). We will denote the time required to complete
this work as ts;i. Given a set of P processors, each pro-
cessor will have some assigned workload to be performed
in parallel at each iteration. We will denote the time for
processor j to complete assigned parallel work at iteration
i as tp;i;j. The time required to complete the iteration is
equal to the time required for the last processor to complete
its assigned work during that iteration. This is given by
0-7695-0001-3/99 $1
max1�j�P (tp;i;j). The last part is the time required to im-
plement the overheads associated with a parallel algorithm.
This will be denoted by tov;i. Given I iterations to com-
plete, the run time is expressed by

RP =

IX
i=1

�
ts;i + max

1�j�P
tp;i;j + tov;i

�
(1)

In an effort to remove references to a specific iteration i,
a “typical” iteration can be characterized by treating each
term as a random variable and using the expected value.
The resulting run time is modeled by

RP =

IX
i=1

�
E [ts;i] +E

�
max
1�j�P

tp;i;j

�
+E [tov;i]

�

= I

�
ts +E

�
max
1�j�P

tp;j

�
+ tov

�
(2)

This model has been shown to be effective for estimating
run time for several different types of synchronous iterative
algorithms [15]. We extend this model to incorporate both
speculative computationand the impact that the speculation
success rate has on RP .
4.1 Workload Characterization

Our model development assumes and our empirical re-
sults are based on algorithms with relatively constant ts;i
and tov;i which do not vary significantlybetween iterations.
This is definitely true for the discrete-event simulation ap-
plications of interest here. We will focus on characteriz-
ing E [max1�j�P tp;i;j] for both the initial parallel work-
load without speculative computation and for the resulting
workload with speculative computation.

Let us define wi;j to be the time to complete work as-
signed to processor j during iteration i without specula-
tive computation. In this context, tp;i;j simply equals wi;j.
With speculative computation, we define vi;j to be the time
to complete work on processor j during iteration i. Now
tp;i;j is equal to vi;j.

The evolution from wi;j to vi;j can be seen by exam-
ining a specific iteration, i, of a synchronous algorithm
that incorporates speculative computation. As seen in Fig-
ure 2, the time to complete parallel work during iteration
i is max1�j�P vi;j. The time available to speculate on
processor j during iteration i is then defined by si;j =

max1�j�P (vi;j) � vi;j where initially, v0;j = w0;j. This
sets up a recursive formula that relates vi+1;j to vi;j.

si;j = max
1�j�P

(vi;j)� vi;j (3)

vi+1;j = wi;j � rsi;j (4)

Substituting (3) into (4) yields:

vi+1;j = wi;j � r

�
max
1�j�P

(vi;j)� vi;j

�
(5)
0.00 (c) 1999 IEEE 3
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The scalar r represents the speculation success rate, or what
fraction of time si;j was used for useful speculations. The
above expression accurately describes the case when spec-
ulation is limited to one iteration into the future. A similar
expression can be developed relating vi+2;j to vi+1;j and
vi;j for speculation two iterations ahead.

Although these expressions can be used to empirically
evaluate vi;j for a specific instance (e.g., when wi;j is
known), it does not provide insight into the usefulness of
speculation for arbitrary workload distributions.
4.2 Stochastic Workload Model

We modelwi;j with the random variable ŵj representing
the time required to complete work on processor j, inde-
pendent of iteration i. This means tp;j is equal to ŵj when
speculation is not present. Likewise, we model vi;j with the
random variable v̂j representing the time to complete work
on processor j with speculation. In this case, tp;j is equal
to v̂j . For the model, we are assuming that ŵj and v̂j are
i.i.d. In the next section, we discuss the implications when
this assumption does not hold.

If a stationary distribution exists for v̂j , Equation (5)
must also hold.

v̂j = ŵj � r

�
E

�
max
1�j�P

(v̂j)

�
� v̂j

�
(6)

We define the random variable ŝj as the amount of time
available on processor j for speculative computation each
iteration.

ŝj = E

�
max
1�j�P

(v̂j)

�
� v̂j (7)

While (6) gives conditions that v̂j must meet, it does not
directly support the calculation of its distribution. To de-
rive the distribution of v̂j , an iterative approach is used in
an attempt to solve for the fixed point of (6). Using k as
the iteration variable, the following expression defines an
iteration.

v̂k+1j = ŵj � r

�
E

�
max
1�j�P

(v̂kj )

�
� v̂kj

�
(8)

Initially, v̂0j = ŵj. Convergence is reached when the dis-

tributions of v̂k+1j and v̂kj are equal.
Clearly, there is no guarantee that the process described

above will converge to a stationary distribution for v̂j . In
fact, for some applications, the speculation process itself
might be highly unstable, even oscillatory. In the case that
it does converge, however, the solution is a viable steady
state condition for the parallel computation.

5 Model Validation
The high-level performance model (Equation (2)) has

been previously proposed and validated in [15]. Here, we
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are interested in verifying the correctness of the distribution
of the random variable v̂j and E[max1�j�P v̂j].

To perform the validation we will compare model re-
sults with empirical data from two discrete-event simula-
tion applications, one that closely matches the assumptions
made during the model development and one that includes
some deviation from those assumptions. In this way, we
can both validate the effectiveness of the model and check
its sensitivity to the modeling assumptions. All of the re-
sults presented here (both modeled and empirical) represent
four processor executions (P = 4).

The first application is a closed queueing network simu-
lation. The topology is a regular network of the style used
in [16] and [17] to investigate the performance of asyn-
chronous algorithms. The queueing discipline is FCFS,
the service requirements are exponentially distributed with
a specified minimum service time, and the routing proba-
bilities are uniformly distributed to each of the neighbor-
ing queueing stations. The second application is a VLSI
logic simulation. Here, a gate-level simulation of one of
the ISCAS-89 sequential benchmark circuits (s9234) [18]
is executed using a unit delay timing model driven with ran-
dom input vectors.

The validation methodology is as follows. We start with
a set of trace data that directly represents wi;j, 1 � i � I,
1 � j � P . For the queueing network simulation appli-
cation, this is synthetically generated to match the known
statistics from the application [19], and for the VLSI logic
simulation application, it is recorded from a parallel logic
simulation execution [20]. Example trace data for the two
applications is shown in Figures 3 and 4. The units of work
on these plots are simulation events. A normalized his-
togram of wi;j is presented in Figures 5 and 6. Note, in all
of the histogram plots and distributionplots below, the plot
is for j = 1. The data for the remaining processors is not
significantly different. Normalization fixes the sum to one.

To apply the model, we use the empirical histogram data
to represent the distribution of the random variable ŵj .
Equation (8) is then evaluated numerically (drawing sam-
ples from v̂kj to develop a histogram approximating the dis-
tribution of v̂k+1j ) repeatedly until convergence. The re-
sulting distributions, v̂j, are shown in Figures 7 to 10 for
two different values for the speculation success ratio, r. For
comparison purposes, the empirical data is evaluated using
Equation (5) to determine vi;j , 1 � i � I, 1 � j � P .
Histograms of the resulting workloads are presented in Fig-
ures 11 to 14 for two values of the success ratio, r.

Given the above methodology, we can now examine
both the effectiveness of the model and the conclusions that
can be drawn from the model. First, Figures 3 and 4 il-
lustrate an important distinction between the two applica-
tions. The analytic model assumes ŵj is i.i.d., and wi;j for
0.00 (c) 1999 IEEE 4
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Figure 3: Example trace data for queueing network
simulation application (QNS).
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Figure 4: Example trace data for VLSI logic simu-
lation application (VLS).

the logic simulation application is clearly highly correlated.
Iterations immediately following the clock signal have a
high level of simulation activity, while iterations later in the
clock period have a lower activity level. This will impact
how accurate the model can be for this application.

Second, comparing the initial workload data (Figures 5
and 6) with the model results (Figures 7 to 10) we can see
that, in every case, the distribution of the resulting work-
load moves to the left (representing less work to complete)
when speculation is present. The degree of movement can
be dramatically affected by the speculation success ratio, r,
indicating that techniques such as predictive optimism that
attempt to increase r can have a significant performance im-
pact.

Third, the model results match quite well with the em-
0-7695-0001-3/99 
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Figure 5: Normalized hist. of wi;j for QNS.
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Figure 6: Normalized hist. of wi;j for VLS.

pirical results for the queueing network simulation appli-
cation. (See Figures 7, 9, 11 and 13.) We see a dramatic
shift to the left in v̂j for r = 1:0 and a modest shift for
r = 0:5, with nearly identical results shown in the empiri-
cal data. This is our strongest evidence of the effectiveness
of the model.

Fourth, the model gives somewhat optimistic results for
the logic simulation application. The distribution of v̂j , for
both r = 1:0 (Figure 8) and r = 0:5 (Figure 10), is lower
than the empirical results (Figures 12 and 14). The model
overestimates the application performance in this case. The
cause for this is the fact that the model assumes that the dis-
tributions of ŵj and, therefore, v̂j are independent across
the processors. As can be seen in the trace data (Figure 4),
this is not the case for the logic simulation application.

Fifth, the modeled and empirical times to complete par-
$10.00 (c) 1999 IEEE 5
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Figure 7: Dist. of v̂j, r = 1:0, for QNS.
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Figure 8: Dist. of v̂j , r = 1:0, for VLS.

allel work during an iteration are compared in Table 2. This
corroborates the conclusions drawn earlier. The modeled
and empirical results match quite closely for the queueing
simulation applicationand the model overestimates the per-
formance for the logic simulation application. One point
to note, however, is that even though the model results are
consistently optimistic for the logic simulation case, the
percent improvement when speculation is present is simi-
lar for the model results (37% for r = 1:0, 22% for r =

0:5) and the empirical results (31% for r = 1:0, 17% for
r = 0:5).

6 Summary and Conclusions
This paper has presented a performance model for

synchronous iterative algorithms that includes speculative
computation. Discrete-event simulation has been modeled
0-7695-0001-3/99
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Figure 9: Dist. of v̂j, r = 0:5, for QNS.
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Figure 10: Dist. of v̂j , r = 0:5, for VLS.

in this fashion, and empirical data from two different simu-
lation applications are used to validate the effectiveness of
the model.

One conclusion that can be drawn from the model is the
fact that the application performance when using specula-
tive computation can depend heavily on the success rate of
the speculation. This lends weight to the need for improved
speculation functions, such as predictive optimism.

There are a number of improvements we would like to
make to this model. First, the scalar form of the specula-
tion success ratio is somewhat limiting. A random variable
model for r could more accurately reflect changes in the
distribution of the speculation success. Second, the i.i.d.
assumption on the random variables ŵj and v̂j is clearly not
true in some circumstances. We are currently working on a
revised model to predict ŝj in the case where ŵj is highly
 $10.00 (c) 1999 IEEE 6
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Application r E

�
max

1�j�P
ŵj

�
E

�
max

1�j�P
v̂j

�
mean of max

1�j�P
wi;j mean of max

1�j�P
vi;j

Queueing 1.0 90.28 81.10 90.25 81.09
simulation 0.5 90.30 85.95 90.25 85.94
Logic 1.0 6.86 5.01 4.67 3.57
simulation 0.5 6.85 5.63 4.67 3.99

Table 2: Time to complete parallel work
correlated. Finally, additional validation efforts are neces-
sary before the model can truly be counted on to reliably
predict performance in cases where empirical data is not
available for comparison purposes. We are currently pur-
suing each of the above items.
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