
Preserving QoS of E-commerce Sites Through Self-Tuning:
A Performance Model Approach

Daniel A. Menascé
E-Center for E-Business

Dept. of Computer Science
George Mason University
Fairfax, VA 22030, USA

menasce@cs.gmu.edu

Daniel Barbará
E-Center for E-Business
Dept. of Information and

Software Engineering
George Mason University
Fairfax, VA 22030, USA

dbarbara@ise.gmu.edu

Ronald Dodge
E-Center for E-Business

Dept. of Computer Science
George Mason University
Fairfax, VA 22030, USA

rdodge@gmu.edu

ABSTRACT
The Quality of Service (QoS) of e-commerce sites plays a
crucial role in attracting and retaining customers. The work-
load experienced by these sites tends to vary in a very dy-
namic way. The complexity of the sites combined with the
large short-terms variations of the workload calls for au-
tomated methods for site configuration. This paper de-
scribes a method for dynamically monitoring and tuning
e-commerce sites so that desired QoS levels are attained.
Our approach uses hill climbing techniques combined with
analytic queuing models to guide the search for the best
combination of configuration parameters. We validate our
approach in an experimental setting by comparing the QoS
levels of a TPC-W e-commerce site with and without con-
trol. We showed that under increasing loads, the controlled
system meets its QoS goals, while the uncontrolled site fails
to do so.

Categories and Subject Descriptors
H.4.m [Information Systems]: Miscellaneous; D.2 [Soft-
ware]: Software Engineering; D.2.8 [Software Engineer-
ing]: Metrics—complexity measures, performance measures

Keywords
E-Business, QoS, QoS control, queuing networks, TPC-W

1. INTRODUCTION
The Quality of Service (QoS) of e-commerce sites plays

a crucial role in attracting and retaining customers. Frus-
trated customers leave these sites and do not return, caus-
ing revenue to be lost. The performance of an e-commerce
site is a function of a large number of parameters such as
the number of threads at each level, the maximum number
of connections accepted, the maximum number of requests

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
EC’01, October 14-17, 2001, Tampa, Florida, USA.
Copyright 2001 ACM 1-58113-387-1/01/0010 ...$5.00.

served by each thread, cache sizes, cache replacement poli-
cies and parameters, as well as load balancing policies and
parameters.
The workload of information providing web sites has been

extensively studied [6, 17]. An analysis of the workload seen
by e-commerce sites is presented in [12, 15] and it was shown
that these workloads tend to vary very dynamically and ex-
hibit short-term fluctuations. The challenge for e-commerce
sites is how to best use their existing resources to cope with
short-term fluctuations in the workload in a manner that
the desired QoS levels are met.
This problem has been addressed in many different ways.

In [5], a session-admission control mechanism is proposed.
Requests may be classified into high, medium, or low prior-
ity based on the configured policy. Priority levels are used to
determine admission priority and performance-level. When
the site cannot provide the desired QoS, new sessions are
rejected so that the current ones can continue to experience
good performance. These techniques were later incorporated
in HP’s WebQoS product [7]. While this approach works
well for sessions in progress, it does not deal with an im-
portant QoS metric, namely the probability that a request
is rejected. Another approach to QoS control is the one
incorporated in Peakstone’s eAssurance, which uses statis-
tical models, including Bayesian and stochastic modeling to
model site behavior [16]. These statistical models are con-
stantly updated based on observations of changes in applica-
tions, infrastructure, or traffic. The models used by eAssur-
ance are different in nature from the ones we propose in our
work. Our models are based on predictive queuing models of
computer systems. Moreover, given that the methods used
by eAssurance are proprietary, it is difficult to make a more
thorough comparison. In [13], the authors propose a fam-
ily of resource management policies that dynamically assign
priorities to customers. This approach is aimed at using the
site’s existing resources to optimize business metrics such
as revenue throughput but does not provides guarantees in
terms of QoS.
This paper addresses a method by which e-commerce sites

can track their workload and the value of QoS metrics to dy-
namically determine how different configuration parameters
should be changed to meet QoS requirements. We consider
three basic QoS metrics, although others could easily be
incorporated into our framework: site response time, site
throughput, and probability that a request is rejected.

224

Our proposed approach is general enough and can be used
to dynamically change any parameters that can be changed
at run time, including request and or session priority, as in
WebQoS, any software reconfigurable parameters, or even
the number of CPUs. Some vendors already allow the num-
ber of CPUs to be dynamically repartitioned across domains.
An example of that is Sun’s Automatic Dynamic Reconfig-
uration (ADR), available in Enterprise 10000 servers [19].
We built a controller that monitors the site and uses a hill-

climbing technique guided by a queuing network model to
determine new values of various configuration parameters.
The configuration is then changed dynamically according to
the results of the search in order to ensure that the site
shows as little deviation as possible from the desired QoS
levels.
Our approach was validated experimentally by integrating

our controller into an e-commerce site we developed follow-
ing the TPC-W benchmark guidelines [20]. We also built
a parameterized TPC-W workload generator to drive the
site at various patterns of arrival rates. We showed that
as the arrival rate increases and reaches its peak value, the
QoS of the controlled system manages to remain positive,
thereby meeting the QoS requirements, while that of the
uncontrolled site goes deeply into negative territory.
The rest of the paper is organized as follows. Section 2

provides the background and basic concepts needed in the
following sections. Section 3 presents an overview of the ba-
sic approach used by the QoS controller. The next Section
describes the queuing network model used by the controller.
Section 5 presents the experimental testbed used to assess
the efficiency of the controller. Results of the experiments
are discussed in section 6 and Section 7 presents some con-
cluding remarks, and future work.

2. BACKGROUND
An e-commerce site is typically composed of multiple lay-

ers including web servers, application servers, and database
servers as illustrated in Fig. 1.

web servers application
servers

database
servers

Figure 1: An e-commerce site with a multi-layered
architecture.

A request to execute an e-business function is first handled
by one of the Web servers. In almost all cases, the HTML
page that is returned to the client is dynamically generated
by an application server that may need to access a database

server more than once during the execution of the applica-
tion to obtain data needed to build the page. If the request
is for an in-line image, it can be satisfied directly by a web
server.
Web servers, application servers, and database servers are

usually multi-threaded. So, an arriving request to any of
the servers needs to first queue for a thread. In many cases,
there is a limit on the maximum number of requests that
can be either waiting for a thread to become available or
being serviced by a thread. In these cases, when an arriving
requests find the queue at its maximum size, the request is
rejected.
We consider in this work three quality of service metrics:

• Server-side response time (R): time elapsed since a
request arrives the site until it is completely processed
and a reply is sent to the client. This time, for our
purposes, does not include any network time external
to the site.

• Probability of rejection (Prej): probability that an ar-
riving request will be rejected because any of the queues
is at its maximum capacity.

• Site throughput (X0): number of requests per second
that complete execution from the site.

Usually, managers of e-commerce sites specify bounds on
the values of the QoS levels and monitor the site to ensure
that these levels are being met. We define the following QoS
requirements:

• Maximum average server-side response time (Rmax):
maximum value for the average response time that one
is willing to tolerate.

• Maximum probability of rejection (Pmax
rej): maximum

acceptable value for the probability of rejection.

• Minimum site throughput (Xmin
0): acceptable lower

bound on the throughput.

We can now define QoS deviations for each of the QoS
metrics as below.

∆QoSR =
Rmax −R

Rmax
(1)

∆QoSX0 =
X0 −Xmin

0

Xmin
0

(2)

∆QoSPrej =
Pmax

rej − Prej

Pmax
rej

(3)

The definitions above have the following property for any
of the three QoS metrics: i) a QoS deviation has no dimen-
sions and represents the percent deviation from the required
QoS level, ii) the QoS deviation is non negative if the site
meets the QoS requirement for that metric and negative
otherwise.
While response time and probability of rejection are cus-

tomer-perceived QoS metrics, throughput is a site-wide met-
ric. Also, an increase in throughput may come at the ex-
pense of an undesirable increase in response time. Site man-
agers have to determine how they want to balance the QoS
requirements. For that purpose, we define a QoS function
that combines all three QoS metrics as

QoS = wR ×∆QoSR+ wX ×∆QoSX0 + wP ×∆QoSPrej,
(4)

225

where wR, wX , and wP are weights assigned by site man-
agement to each QoS deviation. These weights must sum
to one and reflect the importance given by management to
each QoS metric.

3. APPROACH
The approach we follow to control an e-commerce site is

based on searching the space of values of configurable pa-
rameters for a point where the aggregate metric QoS define
in Eq. (4) is maximized or close to being maximized.
Figure 2 shows the architecture of the QoS controller and

its relationship to the e-commerce site. The main modules of
the controller are the Workload Monitor, Performance Mon-
itor, Configuration Controller, Performance Model Solver,
and the QoS Monitor. Their main functions are described
in what follows using the numbers in parentheses in Fig. 2,
which refer to flow of information between the e-commerce
site and the controller (dashed lines) and flow of information
between modules of the controller (solid lines).

E-commerce Site
(web servers,

application servers, and
database servers)

Workload
Monitor

Performance
Monitor

Configuration
Controller

Performance
Model
Solver

QoS
Monitor

(1)

(3)

(5)

(4)

(6) (7)

(11)

(10)

(9)

(2)

(8)

Figure 2: Architecture of the QoS controller.

The QoS controller collects data during intervals of time
called controller intervals (CIs). At the end of each CI, the
QoS controller decides, according to one of the control poli-
cies described later in the section, if reconfiguration needs
to take place and how. The length of a CI may be variable
depending on the control policy in use by the controller. In
our experiments, the duration of a CI was 120 sec for the
fixed CI policies.
The Workload Monitor collects information about the ar-

rival process of requests (1) and computes the average arrival
rate of requests to the site during the CI. The Performance
Monitor measures device (e.g., CPU, disks) utilizations (3)
for all Web, application, and database server machines of the
e-commerce site. This information, along with the through-
put (2) is used by the Performance Monitor to compute the
service demands at each device during the CI. Service de-
mand is defined as the total service time per request at a
given device. This time does not include any queuing time at
the device [14]. For example, the service demandDWS

cpu at the

CPU of a web server is computed as UWS
cpu/X0, where UWS

cpu

is the observed CPU utilization of the Web server processes
during the CI and X0 the site throughput. So, the Perfor-

mance Monitor produces at the end of each CI, a service de-
mand vector �D = (�DWS, �DAS, �DDS) where �DWS, �DAS, and
�DDS are the vectors of service demands for all devices at
the web servers, application servers, and database servers,
respectively.
The QoS Monitor checks, at the end of each CI, if any of

the QoS metrics was violated by receiving information (9)
on completing requests from the e-commerce site. The QoS
monitor decides if there is a need to change the configura-
tion. In the affirmative case, it instructs (10) the Configu-
ration Controller to determine a new configuration for the
site.
We explain now how the Configuration Controller deter-

mines a new configuration. Let �C = (c1, c2, · · · , cP) be a
vector of P configuration parameters that can be dynam-
ically changed. Every parameter ci has a range given by
(cmin

i , cmax
i). In our implementation we used as configura-

tion parameters the number of threads at the web and ap-
plication servers and the maximum queue size of requests
at each of these servers. The Configuration Controller uses
a simple hill-climbing technique (a well known search tech-
nique widely used in optimization algorithms), to search the
space of configurations for one that improves the QoS value.
While hill-climbing does not guarantee optimality, it is a
simple heuristic that performs well in a variety of appli-
cations. Let QoS(�C) be the QoS value for configuration �C.
When the Configuration Controller is informed that it needs
to find a new configuration by the QoS Monitor, it also re-
ceived from it the QoS value for the current configuration
�C0.
The search for a new configuration is based on a hill-

climbing method. From the current configuration we ex-
amine all neighbor configurations. A neighbor configuration
is defined as one in which the value of one of the configura-
tion parameters is incremented by moving one step. If we
assume that the domain of each configuration parameter is
the set of integers in the range (cmin

i , cmax
i), this step is taken

by incrementing one of the parameters by plus or minus one.
Defining the vector �1i as a vector (0, 0, · · · , 1, · · · , 0) with a 1
in the i-th position and zero everywhere else, we can say that
�C − �1i is an example of a neighbor configuration of �C. For
every possible neighbor configuration, the algorithm uses a
predictive queuing network model of the site, as explained
in Section 4, to compute the QoS for the neighboring config-
uration. The Performance Model Solver computes the QoS
value for each configuration it receives (6) from the Config-
uration Controller, using service demands received from the
Performance Monitor (5) and the arrival rate received from
the Workload Monitor (4).
The neighboring configuration with the largest QoS is se-

lected as the next configuration to examine and the process
repeats itself from that configuration. The search continues
until either no improvement can be made or we reached a
limit on the maximum number of hops in the path to the
new configuration. This latter type of limitation may be
needed to avoid unstable behavior. A pictorial description
of the hill climbing process for the case of two parameters
c1 and c2 is given in Fig. 3. The numbers next to each
configuration are the QoS values for the configuration. The
configurations with a white interior are the abandoned ones.

A complete description of the algorithm is given in Fig. 4.
As can be seen in the algorithm, the complexity of the search

226

8

7

5

12

11

15

13 20

18

16

c1

c2

22

19

21

17

Co 10

Cnew

Figure 3: Example of the Hill Climbing Approach.

is proportional to NumHops× 2× P .

NumHops ← 1;
�Ccurr ← �C0;
�Cnew ← �C0;
Repeat
Improved ← False;
MaxQoS ← QoS(�Ccurr);
For i = 1 to P Do
Begin
If ci − 1 ≥ cmin

i

Then If QoS(�Ccurr −�1i) > MaxQoS
Then Begin

MaxQoS ← QoS(�Ccurr −�1i);
�Cnew ← �Ccurr −�1i;
Improved ← True
End;

If ci + 1 ≤ cmax
i

Then If QoS(�Cnew +�1i) > MaxQoS
Then Begin

MaxQoS ← QoS(�Ccurr +�1i);
�Cnew ← �Ccurr +�1i;
Improved ← True
End

End;
�Ccurr ← �Cnew;
NumHops ← NumHops + 1;

Until (¬ Improved | (Numhops = MaxHops))

Figure 4: New Configuration Search Algorithm

4. THE QUEUING NETWORK MODEL
The hill climbing procedure described in the previous sec-

tion requires the computation of the QoS value for a given
configuration. This is obtained through the use of a pre-
dictive queuing model discussed here. We start by first dis-
cussing a model for a single tier site and then extend it to
multiple tiers.

4.1 Single Tier Model
We describe now a model that can be used to represent

both contention for software resources (e.g., server threads)
as well as hardware resources (e.g., CPU and disks) on a sin-
gle tier (e.g., web server tier). Figure 5 depicts the combined
model. Requests arrive to be serviced by one of them server
threads. If the number of requests k waiting or being served
by a thread is equal to n, the arriving request is rejected.
Otherwise, it queues for a thread. Once a request is able to
obtain a thread, it starts to use the physical resources of the
tier. A thread at this tier may request service from a thread
from a lower level tier. For example, a web server tier may
need to request service from the application server. So, a
thread is busy while a request is either a) using a physical
resource, b) waiting for a physical resource, or c) waiting for
a response from a lower level tier.

k=n?

1

2

m

...

yes

no Xλ

k < n

arriving
requests

completed
requests

CPU

disk

Figure 5: A queuing model for a single tier server.

Let X(k), k = 1, · · · , n be the rate at which a thread com-
pletes execution. This rate depends on the number of con-
current threads in execution and on the response time of
the lower level tier, if any. If we know the values of X(k) we
can compute the probability Pk that k requests are in the
system. This can be done using a birth-death process [8]
with states 0, 1, · · · , n, arrival rate λ and departure rate
µk defined as µk = X(k) for k ≤ m and µk = X(m) for
k = m+ 1, · · · , n.
This type of system is solved in [11] and the solution is

Pk =

�
P0 λk/β(k) k = 1, · · · , m
P0 ρk X(m)m/β(m) k = m+ 1, · · · , n (5)

where β(k) = X(1)×X(2)× · · ·X(k), ρ = λ/X(m) and

P0 =

"
1 +

mX
k=1

λk/β(k) +
ρ λm (1− ρn−m

β(m)(1− ρ)

#−1

. (6)

Once the probabilities Pk are known one can easily obtain
three QoS metrics of interest: average throughput (X), av-
erage response time (R), and probability that a request is

227

rejected (Prej) as follows.

X =

mX
k=1

X(k) Pk +X(m)

nX
k=m+1

Pk (7)

R = (1/X)
nX

k=1

k Pk (8)

Prej = Pn (9)

Equation (8) follows directly from Little’s Law [8] since the
summation is the average number of requests in the system.
The question now is how to compute the values ofX(k), k =

1, · · · ,m needed to compute the probabilities Pk, k = 1, · · · , n.
These values can be computed by solving a closed queuing
network model (see [11, 14]) composed of all K physical re-
sources (e.g., CPU and disks) of the tier as well as a virtual
device that represents the time Dlower spent by a thread
waiting for service provided by the lower tier. This virtual
device is modeled in the queuing network as a delay device
with no queuing. One can then use Mean Value Analysis [18,
11, 14] to solve the closed queuing network and obtain the
throughput values X(k), using the following procedure

n̄i(0) = 0 for i = 1, · · · , K
For k = 1, · · · ,m do

R
′
i(k) = Di × [1 + n̄i(k − 1)] for i = 1, · · · ,K

X(k) =
k

Dlower +
PK

i=1 R
′
i(k)

n̄i(k) = X(k) ×R
′
i(k) for i = 1, · · · ,K

End For

where n̄i(k) is the average number of requests at physical

resource i when there are k busy threads and R
′
i(k) is the

average total time spent, queuing and receiving service, by a
request at physical resource i when there are k busy threads.
Let us now define functions that return the average response
time and probability of rejection of any given tier as a func-
tion of the following parameters:

• λ: average arrival rate of requests to the tier,

• �D: vector of service demands for the physical resources
of the tier,

• Dlower: total time spent by a thread waiting for service
from the lower tier,

• m: number of threads, and

• n: maximum number of requests.

So, using the model just discussed above one can obtain
the functions RT (λ, �D,Dlower,m, n) and PRej(λ, �D,Dlower,
m, n), for the average response time and probability of re-
jection, respectively. The effective arrival rate λeff at the
tier, i.e., the rate of requests not rejected, is then equal to
λ× (1− Prej).

4.2 Multiple Tier Model
We now consider a complete e-commerce site composed of

three tiers: web servers, applications servers, and database
servers. The queuing model for the entire site is built through

a composition of the the single-tier model described in the
previous subsection. The complete queuing model is shown
in Fig. 6.

web server
application

server
DB server

Prej(WS)

Disk

CPU CPU CPU

disk disk disk

Prej(AS) Prej(DS)

Figure 6: The queuing network model for the E-
commerce site.

Once we combine the three tiers, we introduce a depen-
dency between results obtained in each as illustrated in
Fig. 7, which shows how the different metrics in each layer
depend on one another. The arrows in the figure mean “de-
pends on.”
Due to the cyclic dependency that exists in Fig. 7, we need

to use an iterative approach to solve the model. Before we
present the algorithm, some definitions are in order:

• λWS: overall arrival rate of requests to the e-commerce
site,

• f : fraction of requests processed by the Web server
that require service from the application server, and

• Ndb: average number of DB calls per execution of an
application server thread.

The iterative algorithm to solve the model is given in Fig. 8.

4.3 Model Validation
The model presented in the previous subsections is an ap-

proximation and needs to be validated. We should empha-
size however, that the goal of the model is to compute the
QoS value for a given configuration with sufficient precision
to be useful by the controller. Thus, the model must be able
to track the trends in performance reasonably well to be use-
ful. To verify this, we compared performance predictions by
the model with measurements obtained in the experimental
setting described in Section 5. Figures 9 and 10 present a
comparison between measured and modeled response times
and probability of rejection, respectively. The response time
curves also show 95% confidence interval bars for each mea-
sured average response time value. The results obtained
with the analytic model are within the confidence intervals
for the measured values.
The pictures show that the model tracks reasonable well

the measurements for the purpose of being used by the con-
troller algorithm.

228

at the DB
Effective Arrival Rate

Effective Arrival Rate

Effective Arrival Rate

at the AS

Response Time

at the DB

Response Time

Response Time

at the AS

at the WS at the WS

Figure 7: Dependency Between the Models at the
Three Tiers

5. THE EXPERIMENTAL TESTBED
To assess the effectiveness of the QoS controller, we de-

signed and implemented a prototype of an e-commerce site
and a workload generator. The e-commerce site follows the
TPC-W benchmark specifications [20]. The workload gen-
erator generates customer sessions based on the Customer
Behavior Model Graph (CBMG) [12] specified in the TPC-
W benchmark. Figure 11 shows the architecture of the ex-
perimental testbed. All the machines are Intel-based PCs
running Windows 2000.
In the following sub-sections we discuss the implementa-

tion of each component of the prototype.

5.1 The Web Server
The Web server uses a modified version of the Open SA

Apache Web Server integrated with SSL support. The mod-
ifications to the web server include application server inte-
gration, a finite, modifiable client request queue and a con-
figuration management process. Figure 12 shows how re-
quests are processed by the Web server. A more detailed
description follows.
The application server coordination is implemented through

a handler module, integrated with the Apache API. The
module communicates with the application server and sends
the dynamically generated pages to the client. To implement
the connection management, a queue management process
is integrated into the Apache core module. Running as a
separate thread, the queue manager communicates with the
system controller module using Windows NT named pipes
to receive configuration change instructions. When a change
is received, the manager issues instructions for the required
configuration change. As required, the manager either cre-
ates more threads or issues a thread reduction command.
As threads complete servicing a request and return to the
request queue for a job, the new thread total is checked.
If the number of active threads is above the new maximum,
the thread exits. This implementation protects the integrity
of a client request and prevents configuration changes from
effecting a current request. Additionally, the manager may
increase or decrease the maximum number of connections

Initialize the probability of rejection to zero
PDB

rej ← 0; PAS
rej ← 0; PWS

rej ← 0; Rold ← 0;
Repeat
Compute arrival rate to DB server
λDB ← λWS × (1−PWS

rej)× f × (1−PAS
rej)×Ndb

Compute the DB response time
RDB ← RT (λDB, �DDB, 0, mDB, nDB)
Compute the DB rejection probability
PDB

rej ← PRej(λDB, �DDB, 0, mDB, nDB)
Compute the arrival rate to the AS server
λAS ← λWS × (1− PWS

rej)× f ;
Compute the AS response time
RAS ← RT (λAS, �DAS, Ndb ×RDB,mAS, nAS)
Compute the AS rejection probability
PAS

rej ← PRej(λAS, �DAS, Ndb ×RDB,mAS, nAS)
Compute the WS response time
RWS ← RT (λWS, �DWS, f ×RAS,mWS, nWS)
Compute the WS rejection probability
PWS

rej ← PRej(λWS, �DWS, f ×RAS, mWS, nWS)
Compute the error in this iteration
Error ←| RWS−Rold

RWS
|

Prepare for next iteration
Rold ← RWS

Until (Error < Tolerance)
Compute Final Metrics
R← RWS;
Prej ← PWS

rej + (1−PWS
rej)(P

AS
rej + (1−PAS

rej) P
DB
rej);

X0 ← λWS (1− Prej)

Figure 8: Performance Model for the E-commerce
Site

Response Time

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0 20 40 60 80

request arrival rate

S
ec

Measured Model

Figure 9: Measured and modeled response time.

229

Validation Prej

0

0.02

0.04

0.06

0.08

0.1

0.12

0 20 40 60 80

request arrival rate

p
ro

b
ab

ili
ty

o
f

re
je

ct
io

n

Measured Model

Figure 10: Measured and modeled probability of re-
jection.

Workstation

100 Mbps Hub

PIII 667
128 MB RAM

10 GB HDD

PIII 667
128 MB RAM
40 GB HDD

PIII 667
256 MB RAM
40 GB HDD

PIII 667
128 MB RAM
40 GB HDD

PIII 667
256 MB RAM
40 GB HDD

Web
Server

Application
Server

Database
Server

Controller

Workload
Generator

Figure 11: Experimental Testbed.

k < n?
Place Connection

in Queue

Worker Thread
Wait and Remove

Request

Page Type?
Return Object /
HTML to Client

inline object

Dynamic HTML

Send to
Application Server

Wait for Reply

Send Workload
Data to Controller

Pending Keep-
Alive Request?

Yes

No

Arriving Request

Yes

No

Close Connection

Listener Receive
Connection

Request

Figure 12: Web Server Request Processing.

allowed in the system. As the Apache listener process re-
ceives TCP connection requests from clients, it adds the
requests to a semaphore-based queue. The number of cur-
rent requests in the system is checked at each addition to
the requests queue. If the addition of the new request will
exceed the maximum system size the connection is rejected.
The web server also reports workload statistics to the QoS

controller module using named pipes. If the Listener process
rejects a request, a rejection message is sent to the controller.
Once a worker thread removes the request from the queue
it parses the request to determine its type. If the request
is for an in-line object (e.g., image) the thread retrieves the
object and sends it back to the client. If the request is
for an HTML page, the handler module for the application
server is called. The handler module uses the web server
worker threads process Identification number (PID) to cre-
ate a unique named pipe and sends the request and the pipe
name to the application server. The thread then sleeps on
the pipe, waiting to receive the HTML page. Upon receipt,
the page is sent to the client. The worker thread computes
the request response time, sends it to the controller, and
decreases the current queue size by one. In the case of a
pending keep-alive request, the worker thread increases the
current maximum queue size and processes the request. If
there is not a pending keep-alive request, the worker thread
returns to the job queue for another request. The worker
thread increases the queue size counter without regard to
the maximum queue size by design. This is intended to

230

preserve the integrity of a request. An alternate approach
would be to treat each request as a new arrival to the system
and subject it to rejection.

5.2 Application Server
The Application server is responsible for generating dy-

namic HTML web pages. The server is an original design
and uses multithreading to process simultaneous requests.
The server consists of three modules, a listener module, a
request handler module, and a controller module. Figure 13
shows how requests are processed by the application server.
A more detailed description follows.

k < n?
Place Request in

Queue

Worker Thread
Wait and Remove

Request

Return HTML to
Web Server

Outgoing Data

Send Workload
Data to

Controller Web
Server

Arriving Request

Yes

No

Refuse Request

Listener Receive
Connection

Request

Create HTML
Process and Wait

for Data

Parse Request

Figure 13: Application Server Request Processing.

The application server uses named pipes to receive re-
quests from the web server. Similarly to the web server,
when a request is received, the listener thread that received
the request attempts to place the request on the request
queue. This is implemented as a semaphore queue in a sim-
ilar manner as the web server’s connection queue. If the lis-
tener thread rejects the request, it sends a rejection notifica-
tion to the controller and to the web server. The web server
then closes the connection and the web server worker thread
returns to the job queue. After a request has been placed on
the request queue at the application server, a worker thread
from the request handler module removes the request. The
request handler worker thread parses the request to retrieve
the request body and to determine which web server thread
to send the HTML page back to. The worker thread then
creates a process to generate the dynamic HTML page. The
worker thread receives the HTML page from the process and

forwards it to the web server. As part of the HTML page re-
turned by the process, a counter of the number of database
transactions performed during generation of the HTML page
is also returned. This counter along with the response time
for the request is sent to the QoS controller. The worker
thread then returns to the request queue.

5.3 Database Server
The database server for our prototype uses Microsoft SQL

Server 2000 and is not included in our configuration param-
eters. The performance parameters (device service demands
and average response time per database request) however are
included in the QN model solver. The application server is
responsible for reporting to the QoS controller the number
of database calls NDB. This information is used to compute
the arrival rate to the database server which is used in the
solution of the performance model as discussed previously.

5.4 Workload Generator
The workload is generated from a multi-threaded Browser

Emulator application that we developed. This workload
generator runs on a dedicated machine connected to the e-
commerce site by a 100Mbps Ethernet LAN. The Browser
application uses multi-threading to emulate a group of client
browsers and consists of a controller process and a variable
number of browser threads. Each of the browser threads
presents a unique workload to the e-commerce site. The
navigation of a given thread through the e-commerce sys-
tem follows the TPC-W navigation probabilities.
To provide repeatable performance from the Browser ap-

plication, each thread seeds its random number generator
with the same number each time it is run. When addi-
tional threads are created to increase the number of active
sessions, they will continue the series and seed the random
number generator accordingly. While this provides a very
high degree of repeatability, the randomness with which the
e-commerce system will refuse connections when it becomes
heavily loaded will inject variability in the results. This how-
ever is unavoidable and would occur even if each browser
used a trace for its workload generation.
Each browser thread emulates an HTTP/1.1 compliant

browser. The browser thread first requests the HTML home
page for the e-commerce site (dynamically generated). After
receiving the response from the server, the browser parses
the page, extracting information such as in-line objects to
request (images), customer ID and session ID, and any items
that may be in the shopping cart. Once the page has been
parsed, the browser thread divides up the in-line requests
between a set of reader threads (three in our experiments)
that use a pipelined/keep-alive request framework to retrieve
the images. This technique, common in today’s browsers,
involves combining a series of requests in to a single request
message (pipelining) and then retrieving the response for
each segment of the message without opening a new TCP
connection to the server (keep-alive).
After the in-line images have been received, the browser

thread determines the composition of its next request through
a routing table based on a given client class. Each possible
request available to the browser has a set of tasks associated
with it according to the TPC-W specification. For exam-
ple, if the next state is the shopping cart page, the browser
thread determines if it has any item in its cart, and which
items to increase, decrease or remove from the cart.

231

The controller process in the workload generator varies
the workload presented to the e-commerce system by in-
creasing or decreasing the number of active sessions. When
the controller process needs to reduce the workload, it sig-
nals the browser threads that the number of active sessions
has been reduced. At the completion of each request, a
browser thread checks to see if the browser population has
been reduced to the new level. If not, it decrements the
population count by one and sets its own session stop flag
to true. The next time the browser thread completes a home
page request it will exit. This is done to retain the proba-
bility distribution in the CBMG. If additional browsers are
needed, the controller increments the population counter by
the additional browser count and spawns the required num-
ber of browsers.

6. EXPERIMENTAL RESULTS
To assess the efficiency of the QoS controller we ran sev-

eral experiments using the testbed described in the previous
section. Client threads at the TPC-W workload generator
start sessions that follow the navigational pattern of the
TPC-W benchmark. The number of concurrent sessions is
increased in steps of ten every five minutes from a starting
number of five until a maximum of 65 concurrent sessions.
Then, at every five minutes, the number of sessions is de-
creased to 35. This entire variation of the arrival rate lasts
for thirty controller intervals (CI), where each CI is fixed at
120 seconds. We made ten independent runs of each such
experiment using a different and independent seed for the
random number generators used by the TPC-W Workload
Generator. For each of the ten runs we repeated the se-
quence with the QoS controller enabled and disabled. This
gave us then a total of twenty runs. At the end of each
of the thirty CIs, we compute the QoS value as defined in
Eq. (4). An average of about 246,000 requests were submit-
ted in each of the twenty runs. The experiments reported
in this section assume the thresholds and weights for the re-
sponse time, throughput, and probability of rejection shown
in Table 1.

Response Time Throughput Probability
(msec) (req/sec) of Rejection

Max/Min 200 85 5%
Weight 0.5 0.2 0.3

Table 1: QoS Requirements and Weights for the Ex-
periments.

The four configuration parameters that could be changed
by the QoS controller were the maximum number of requests
waiting or being processed at the Web server, the number
of Web server threads, the maximum number of requests
waiting or being processed at the application server, and
the the number of application server threads.
Figure 14 illustrates the resulting variation of the arrival

rate during an experiment. So, the average arrival rate of re-
quests varies from about 14 requests/sec to 90 requests/sec.
It is important to emphasize that the theoretical maximum
throughput for this system computed as the inverse of the
maximum service demand [14] is 102 requests/sec. So the
system was driven to about 88% of its maximum possible
throughput during the experiment. The values depicted in

the graph represent the average values at each CI for all the
experiments. It should be pointed out that the coefficient
of variation (i.e., standard deviation over the mean) of the
value of the average arrival rate in each CI is rather small,
on the order of 0.1.

0

10

20

30

40

50

60

70

80

90

100

0 5 10 15 20 25 30

Time (Controller Intervals)
A

rr
iv

al
R

at
e

(r
eq

u
es

ts
/s

ec
)

Figure 14: Variation of the Arrival Rate During the
Experiments.

Figure 15 shows the variation of the average QoS value
over all experiments with the QoS controller enabled and
disabled as a function of time measured in CIs. There are
30 points in each curve corresponding to each of the 30 CIs.
The x-axis is labeled with the average value of the arrival
rate in each CI.
The following important observations can be made:

• During the first 11 CIs, the arrival rate is in its in-
creasing phase. There is virtually no difference in the
QoS levels between the controlled and uncontrolled
systems.

• As the arrival rate reaches its peak value, the QoS
value of the uncontrolled system starts to decrease an
enters negative territory, indicating violation of one or
more of the QoS levels. The QoS for the controlled
system manages to stay positive throughout the entire
experiment.

To establish if there is statistical difference between the
QoS values QoSc with the controller and the QoS value
QoSu without the controller, we computed a 95% confidence
interval for the mean of the differences QoSc−QoSu between
the QoS for the controlled and uncontrolled cases. This con-
fidence interval is shown in Table 2 for each of the 30 CIs.
The average value of the arrival rate is shown in column two
of the table, the average difference between the QoS values
in column three, and the 95% confidence interval in column
four. If the confidence interval includes zero, then we cannot
say that the two systems are different. This is indicated in
the last column of the table, which shows that after CI 12
the controlled system is better than the uncontrolled one at
a 95% confidence level.

232

-0.8

-0.6

-0.4

-0.2

0.0

0.2

0.4

0.6

0.8

14
.4

14
.4

38
.1

62
.2

63
.5

80
.4

83
.8

85
.9

88
.3

90
.0

89
.5

81
.4

79
.0

73
.5

64
.1

Arrival Rate (req/sec)

Q
o

S

Controlled QoS Uncontrolled QoS

Figure 15: QoS Values With and Without Control.

7. CONCLUSIONS AND FUTURE WORK
This paper presented a novel framework to control the

QoS of e-commerce sites. This approach can be applied
to dynamically change the values of any configuration pa-
rameters that can be changed at run time. Examples in-
clude maximum number of connections, number of threads,
cache sizes, load balancing policies and parameters. The
technique uses a combination of heuristic optimization tech-
niques guided by predictive queuing network models.
With the aid of a very detailed prototype of a three-tiered

e-commerce site that follows the TPC-W specification guide-
lines, we have been able to demonstrate the usefulness of the
approach. In particular, we showed that as the arrival rate
increases and reaches its peak value, the QoS of the con-
trolled system manages to remain positive, thereby meeting
the QoS requirements, while that of the uncontrolled site
goes deeply into negative territory.
We plan to continue our work in several important di-

rections. First, it is worth exploring the space of config-
uration parameters to discover other controllable features
that can impact QoS and therefore can be subject to tun-
ing. Secondly, our current implementation is reactive. That
is, the system looks at the current workload and configura-
tion parameters, decides if a new operational point needs to
be found, and in that case proceeds to greedily find a bet-
ter one through hill-climbing. We plan to apply forecasting
techniques [1] in an attempt to anticipate workload varia-
tions in the near future and let the system adjust to those
estimated variations before they occur. One idea is to use
workload data (as generated by the workload generator) to
define clusters of workload points and track their movement
(using techniques as the one described in [2]) to come up
with models of how the workload evolves in time. These
models can then be used to predict the type of workload
that will be received by the site in the near future.
Hill-climbing was used in these experiments due to the

speed at which the solutions can be found. However, it is
well-known that hill-climbing can get stuck in a local opti-
mal point, rendering a sub-optimal solution. In our case,
this characteristic would pose a problem if this sub-optimal
solution happens to violate the QoS parameters (which did

CI λ QoSc −QoSu 95% conf. zero in
(req/sec) interval interval

1 14.4 -0.0001 (-0.0171, 0.0168) Y
2 14.0 -0.0003 (-0.0133, 0.0128) Y
3 14.4 0.0000 (-0.0112, 0.0111) Y
4 41.3 -0.0073 (-0.0157, 0.0012) Y
5 38.1 -0.0070 (-0.0167, 0.0028) Y
6 36.6 -0.0018 (-0.0111, 0.0075) Y
7 62.2 -0.0013 (-0.0186, 0.0161) Y
8 61.5 0.0030 (-0.0169, 0.0229) Y
9 63.5 -0.0148 (-0.0342, 0.0046) Y
10 77.3 0.0487 (-0.0098, 0.1072) Y
11 80.4 0.0455 (-0.0086, 0.0996) Y
12 78.5 0.0847 (0.0044, 0.1650) N
13 83.8 0.1859 (0.1034, 0.2685) N
14 85.7 0.1841 (0.0702, 0.2980) N
15 85.9 0.2190 (0.0948, 0.3431) N
16 88.2 0.3714 (0.2273, 0.5156) N
17 88.3 0.4083 (0.2692, 0.5474) N
18 89.2 0.4046 (0.3261, 0.4832) N
19 90.0 0.6211 (0.4943, 0.7478) N
20 90.3 0.7667 (0.6106, 0.9228) N
21 89.5 0.6652 (0.5612, 0.7692) N
22 85.7 0.5984 (0.4401, 0.7567) N
23 81.4 0.6146 (0.3572, 0.8720) N
24 83.7 0.7561 (0.4674, 1.0447) N
25 79.0 0.8729 (0.5753, 1.1705) N
26 75.9 0.9116 (0.5992, 1.2241) N
27 73.5 0.8900 (0.5734, 1.2065) N
28 66.2 0.8582 (0.5413, 1.1751) N
29 64.1 0.7330 (0.3649, 1.1011) N
30 64.4 0.6406 (0.3288, 0.9524) N

Table 2: Difference Between QoS Values with and
Without the QoS Controller.

not occur in our experiments, but it is a distinct possibil-
ity). Alternative ways of searching for improved solutions
have to be tried and compared with hill-climbing. Among
them, we will try the classic depth first search, breadth first
search, and best first search techniques, which explore pos-
sible states using different traversal algorithms. For that,
the search state has to be organized like a graph, in which
nodes represent states (parameter vectors) and edges con-
nect nodes that represent adjacent parameter assignments
(e.g., moving one unit for one of the parameter values, such
as number of threads).

Acknowledgements
This research was partially funded by Virginia’s Center for
Innovative Technology (CIT) under award no. INF-00-022
and by the TRW Foundation.

8. REFERENCES
[1] B. Abraham, J. Leodolter, J. Ledolter. “Statistical
Methods for Forecasting,” John Wiley & Sons, 1983.

[2] D. Barbará and P. Chen, “Tracking Clusters in
Evolving Data Sets,” Proceedings of the 14th AAAI
International Flairs Conference, Key West, FL, 2001.

233

[3] V. Almeida, M. Crovella, A. Bestavros, and A.
Oliveira “Characterizing Reference Locality in the
WWW,” Proc. IEEE/ACM International Conference
on Parallel and Distributed System (PDIS), December
1996.

[4] M. Arlitt and C. Williamson, “Web Server Workload
Characterization,” Proc. 1996 SIGMETRICS
Conference on Measurement of Computer Systems,
ACM, May 1996.

[5] L. Cherkasova and P. Phaal, “Session Based
Admission Control: A Mechanism for Improving the
Performance of an Overloaded Web Server,”
HPL-98-119, HP Labs Technical Reports, 1998.

[6] M. Crovella and A. Bestavros, “Self-Similarity in
World Wide Web Traffic: Evidence and Possible
Causes,” IEEE/ACM Transactions on Networking,
5(6), pp. 835–846, December 1997.

[7] Hewlett Packard, WebQos,
www.hp.com/products1/webqos/products/

[8] L. Kleinrock, Queueing Systems, Vol. I, John Wiley,
NY, 1975.

[9] W. Leland, M. Taqqu, W. Willinger, and D. Wilson,
“On the self-similar nature of Ethernet traffic
(extended version),” IEEE/ACM Trans. Networking,
pp. 1–15, 1994.

[10] J. D. Little, “A proof of the queuing formula L =
λ W ,” Operations Research, Vol. 9, 1961, pp. 383-387.

[11] D. Menascé and V. Almeida, Capacity Planning for
Web Performance: metrics, models, and methods,
Prentice Hall, Upper Saddle River, NJ, 1998.

[12] D. A. Menascé, V. Almeida, R. Fonseca, and M.
Mendes, “A Methoodology for Workload
Characterization for E-Commerce Servers,” Proc.
1999 ACM Conference in Electronic Commerce,
Denver, CO, Nov. 3-5, pp 119-128.

[13] D. A. Menascé, V. A. F. Almeida, R. Fonseca, and M.
A. Mendes, “Business-oriented Resource Management
Policies for E-Commerce Servers,” Performance
Evaluation, September 2000.

[14] D. A. Menascé and V. Almeida, Scaling for
E-Business: technologies, models, performance and
capacity planning, Prentice Hall, Upper Saddle River,
NJ, 2000.

[15] D. A. Menascé, V. A. F. Almeida, R. Riedi, F.
Pelegrinelli, R. Fonseca, and W. Meira Jr., “In Search
of Invariants for E-Business Workloads,” Proc. Second
ACM Conference on Electronic Commerce,
Minneapolis, MN, October 17-20, 2000.

[16] Peakstone Corporation, www.peakstone.com.

[17] Pitkow, J., Summary of WWW characterizations,
World Wide Web, No. 2, 1999.

[18] M Reiser and S. Lavenberg, “Mean-Value Analysis of
Closed-Multi Chain Queueing Networks,” J. ACM,
vol. 27, no. 2, 1980.

[19] Sun Microsystems, High End Servers, Sun Enterprise
10000, www.sun.com/servers/highend/

[20] Transaction Processing Council, The TPC-W
Benchmark, www.tpc.org.

234

