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Abstract

Operatingsystemsmust be flexible in their support
for securitypolicies,providingsufficientmechanismsfor
supportingthe wide variety of real-world securitypoli-
cies. Suchflexibility requirescontrolling the propaga-
tion of accessrights,enforcingfine-grainedaccessrights
andsupportingthe revocationof previously grantedac-
cessrights. Previoussystemsarelacking in at leastone
of theseareas. In this paperwe presentan operating
systemsecurityarchitecturethat solvestheseproblems.
Control over propagationis provided by ensuringthat
the securitypolicy is consultedfor every securitydeci-
sion.Thiscontrolis achievedwithout significantperfor-
mancedegradationthroughtheuseof asecuritydecision
cachingmechanismthatensuresaconsistentview of pol-
icy decisions.Both fine-grainedaccessrightsandrevo-
cationsupportareprovidedby mechanismsthat aredi-
rectly integratedinto the service-providing components
of the system. The architectureis describedthrough
its prototypeimplementationin the Flaskmicrokernel-
basedoperatingsystem,andthepolicy flexibility of the
prototypeis evaluated.We presentinitial evidencethat
thearchitecture’s impacton bothperformanceandcode
complexity is modest.Moreover, our architectureis ap-
plicable to many other typesof operatingsystemsand
environments.

1 Intr oduction

A phenomenalgrowth in connectivity throughtheIn-
ternethasmadecomputersecurityaparamountconcern,
but no single definition of securitysuffices. Different
computingenvironments,and the applicationsthat run
in them,have differentsecurityrequirements.Because
any notionof securityis capturedin theexpressionof a
securitypolicy, thereis aneedfor many differentpolicies
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andevenmany typesof policies[1, 43, 48]. To begen-
erally acceptable,any computersecuritysolution must
beflexible enoughto supportthis wide rangeof security
policies. Evenin thedistributedenvironmentsof today,
this policy flexibility mustbe supportedby the security
mechanismsof theoperatingsystem[32].

Supportingpolicy flexibility in theoperatingsystemis
a hardproblemthat goesbeyond just supportingmulti-
ple policies. Thesystemmustbecapableof supporting
fine-grainedaccesscontrolson low-level objectsusedto
perform higher-level functionscontrolledby the secu-
rity policy. Additionally, the systemmust ensurethat
the propagationof accessrights is in accordancewith
the securitypolicy. Lastly, policiesarenot, in general,
static.To copewith policy changesor dynamicpolicies,
the systemmusthave a mechanismfor revoking previ-
ously grantedaccessrights. Earlier systemshave pro-
videdmechanismsthatallow severalsecuritypoliciesto
be supported,but they areinadequateto generallysup-
portpolicy flexibility becausethey fail to addressat least
oneof thesethreeareas.

This paperdescribesanoperatingsystemsecurityar-
chitecturethatdemonstratesthefeasibilityof policy flex-
ibility . This is doneby presentingits prototypeimple-
mentation,the Flask microkernel-basedoperatingsys-
tem,thatsuccessfullyovercomestheseobstaclesto pol-
icy flexibility . Thecleanerseparationof mechanismand
policy specifiedin the security architectureenablesa
richer setof securitypoliciesto be supportedwith less
policy-specificcustomizationthan haspreviously been
possible.Flaskincludesa securitypolicy server to make
accesscontrol decisionsanda framework in the micro-
kernel and other object managersin the systemto en-
force thoseaccesscontrol decisions.Although the pro-
totypesystemis microkernel-based,thesecuritymecha-
nismsdo not dependon a microkernelarchitectureand
will easilygeneralizebeyondit.

Theresultingsystemprovidespolicy flexibility . It sup-
ports a wide variety of policies. It controls the prop-
agationof accessrights by ensuringthat the security
policy is consultedfor every accessdecision. Enforce-
ment mechanisms,directly integratedinto the service-
providingcomponentsof thesystem,enablefine-grained



accesscontrolsanddynamicpolicy supportthat allows
therevocationof previouslygrantedaccessrights. Initial
performanceresults,aswell asstatisticson thescaleand
invasivenessof thecodechanges,indicatethattheimpact
of policy flexible securityon thesystemcanbekeptto a
minimum.

The remainderof the paperbeginsby elaboratingon
the meaningof policy flexibility . After a discussionof
why two popularmechanismsemployed in systemsto
provide securityare limiting to policy flexibility , some
relatedwork is described.TheFlaskarchitectureis then
presentedthrougha discussionof its prototypedesign
andimplementation.Thepaperconcludeswith aneval-
uationof the policy flexibility of the system,anassess-
mentof theperformanceimpact,anda discussionof the
scaleandinvasivenessof theFlaskchanges.

2 Policy Flexibility

Whenfirst attemptingto definesecuritypolicy flexi-
bility, it is temptingto generatea list of all known secu-
rity policiesanddefineflexibility throughthat list. This
ensuresthat thedefinitionwill reflecta real-world view
of the degreeof flexibility . Unfortunately, this simplis-
tic definition is unrealistic. Real-world securitypolices
in computersystemsarelimited by themechanismscur-
rentlyprovidedin suchsystems,andit is notalwaysclear
how securitypoliciesenforcedin the“pencil-and-paper”
world translateto computersystems,if at all [3, 48]. As
such,abetterdefinitionis needed.

It is moreusefulto definesecuritypolicy flexibility by
viewing a computersystemabstractlyasa statemachine
performingatomicoperationsto transitionfromonestate
to thenext. Within suchamodel,asystemcouldbecon-
sideredto provide total securitypolicy flexibility if the
securitypolicy can interposeatomicallyon any opera-
tion performedby thesystem,allowing theoperationto
proceed,denying theoperation,or eveninjectingopera-
tionsof its own. In suchasystem,thesecuritypolicy can
make its decisionsusingknowledgeof theentirecurrent
systemstate,wherethecurrentsystemstatecanbecon-
sideredto encompassthehistoryof thesystem.Because
it is possibleto interposeonall accessrequests,it is pos-
sibleto modify theexistingsecuritypolicy andto revoke
any previouslygrantedaccess.

This seconddefinition more correctly capturesthe
essenceof policy flexibility , but practicalconsiderations
forcea slightly morelimited pointof view. It is unlikely
that a real systemcould basesecuritypolicy decisions
for all possibleoperationson the entirecurrentsystem
state. Instead,a more realistic approachis to identify
that portion of the systemstatethat is potentiallysecu-
rity relevant andto control operationsthat affect or are
affectedby thatportionof thestate.Thedegreeof flex-

ibility in sucha systemwill naturallydependuponthe
completenessof boththesetof controlledoperationsand
theportionof thecurrentsystemstatethatis availableto
the securitypolicy. Furthermore,the granularityof the
controlledoperationsaffectsthedegreeof flexibility be-
causeit impactsthegranularityat which sharingcanbe
controlled.

Thisdescriptionof policy flexibility seemslimiting in
threeways.It allowssomeoperationsto proceedoutside
of the control of the securitypolicy, restrictsthe opera-
tionsthatmaybeinjectedby thesecuritypolicy, andper-
mits somesystemstateto exist beyondthescopeof the
securitypolicy. In actuality, eachof theseapparentlimi-
tationsis a desirablepropertysincemany of theinternal
operationsandstateof any systemareof noapparentuse
or concernto any securitypolicy. Section6.1 will dis-
cusshow theselimitationswereinterpretedfor theFlask
system.

A systemthat is policy flexible must be capableof
supportinga wide varietyof securitypolicies. Security
policiesmaybeclassifiedaccordingto certaincharacter-
istics, includingsuchthingsas: theneedto revoke pre-
viously grantedaccesses,the type of input requiredto
makeaccessdecisions,thesensitivity of policy decisions
to external factorslike history or environment,and the
transitivity of accessdecisions[43, Sec.6]. Theremain-
der of this sectionfocuseson revocation,which is the
mostdifficult of thesecharacteristicsto support.

Since even the simplest security policies undergo
change(e.g., as user authorizationschange),a policy
flexible systemmust be capableof supportingpolicy
changes.Sincepolicy changesmaybe interleavedwith
the executionof controlledoperations,thereis the risk
that the systemwill enforceaccessrights accordingto
an obsoletepolicy. Thus,theremustbeeffective atom-
icity in theinterleaving of policy changesandcontrolled
operations.

The fundamentaldifficulty in achieving this atomic-
ity is ensuringthat previously grantedpermissionscan
berevokedasrequiredby a policy change.Whena per-
missionis to be revoked, the systemmust ensurethat
any servicecontrolledby the permissionwill no longer
beprovidedunlessthepermissionis latergrantedagain.
Revocationcanbea verydifficult propertyto satisfybe-
causepermissions,oncegranted,have a tendency to mi-
gratethroughoutthesystem.Therevocationmechanism
mustguaranteethatall of thesemigratedpermissionsare
indeedrevoked.

A basicexampleof a migratedpermissionsurfacesin
Unix. The accessdecisionfor writing to a file is per-
formedwhenthatfile is opened,andthegrantedpermis-
sion is cachedin thefile descriptionfor efficient valida-
tion of write accessduring write operations.Revoking



write accessto thatfile in Unix only preventsfutureat-
temptstoopenthefile with write accessandhasnoeffect
on themigratedpermissionsin existingfile descriptions.
This revocationsupportmaybe insufficient to meetthe
needsof a securitypolicy. This type of situationis not
uncommon,and migratedpermissionscan be found in
otherplacesthroughoutasystemincluding:capabilities,
accessrights in pagetables,openIPC connections,and
operationscurrentlyin progress.More complicatedsys-
temsarelikely to yield moreplacesto whichpermissions
canmigrate.

In mostcases,revocationcanbeaccomplishedsimply
by alteringa datastructure. However, it is morecom-
plicatedto revoke a permissionwhenthereis anopera-
tion in progressthathascheckedthepermissionalready.
Therevocationmechanismmustbeableto identifyall in-
progressoperationsaffectedby suchrevocationrequests
anddealwith eachof themin oneof threepossibleways.
Thefirst is to abortthe in-progressoperation,returning
anerrorstatus.Alternately, it couldberestarted,allow-
ing anothercheckfor theretractedpermission.Thethird
optionis just to wait for theoperationto completeon its
own. In general,only thefirst two aresafe.Only when
thesystemcanguaranteethattheoperationcancomplete
without causingthe revocationrequestto block indefi-
nitely (e.g., if all appropriatedatastructureshavealready
beenlockedandtherearenoexternaldependencies)may
thethird optionbetaken. This is critical becauseblock-
ing the revocationeffectively deniesthe revocationre-
questandcausesa securityviolation.

3 Insufficiency of Popular Mechanisms

This sectiondiscussestwo popularmechanismsthat
are often employed to provide securityto systemsand
thereasonswhy botharelimiting to policy flexibility in
normalusage.However, eachhasbenefitsdespiteits lim-
itations,andbothcanbeusedwithin Flaskin restricted
waysthatallow someof their benefitswithout incurring
their limitations.

3.1 Capability-BasedSystems
Thegoalof a singleoperatingsystemmechanismca-

pable of supportinga wide rangeof security policies
is not a new goal. The Hydra operatingsystemdevel-
opedin the 1970’s separatedits accesscontrol mecha-
nismsfrom thedefinitionof its securitypolicy [29, 52].
Hydra wasa capability-basedsystem,althoughthe de-
velopersof the systemrecognizedthe limitations of a
simplecapabilitymodelandintroducedseveralenhance-
mentsto thebasiccapabilitymechanisms.TheHydraap-
proachwastakenevenfurtherby theKeyKOS[40] and
EROS [47] systems.Thoughpopular, capabilitymech-
anismsarepoorly suitedto providing policy flexibility ,

becausethey allow the holderof a capabilityto control
thedirectpropagationof thatcapability, whereasa crit-
ical requirementfor supportingsecuritypolicies is the
ability to control thepropagationof accessrights in ac-
cordancewith thepolicy. Theenhancementsintroduced
by HydraandKeyKOSareintendedto limit suchpropa-
gation,but theresultingsystemsstill generallyonly sup-
port the specificpolicies they weredesignedto satisfy,
at thecostof significantcomplexity thatdiminishesthe
attractionof thecapabilitymodelin thefirst place.

Primarily with an interest in solving the problem
of supporting a multilevel security policy within a
capability-basedsystem,a few capability-basedsystems
(e.g., SCAP[25], ICAP [18], TrustedMach [4]) intro-
ducedmechanismsthat validatedevery propagationor
use of a capability againstthe security policy. Kain
andLandwehr[23] developeda taxonomyto character-
ize suchsystems.In thesesystems,thesimplicity of the
capabilitymechanismis retained,but capabilitiesserve
only asa leastprivilegemechanismratherthana mech-
anismfor recordingandpropagatingthesecuritypolicy.
This is a potentiallyvaluableuseof capabilities.How-
ever, the designsfor thesesystemsdo not define the
mechanismsby which the securitypolicy is queriedto
validatecapabilities,andthosemechanismsareessential
to providing policy flexibility . TheFlaskarchitecturede-
scribedin this papercould be employed to provide the
securitydecisionsneededto validatethe capabilitiesin
thesesystems.In theFlaskprototype,thearchitectureis
usedin exactly thisway.

3.2 InterceptingRequests

A commonapproachusedto add security to a sys-
tem is to interceptservicerequestsor to otherwisein-
terposea layer of security code betweenall applica-
tions and the operatingsystem(e.g., Kernel Hypervi-
sors [37], SPIN [20]), or betweenparticular applica-
tionsor setsof applications(e.g., L3/L4 [30], Lava [22],
KeySAFE[28]). Thismaybedonein capabilitysystems
or non-capabilitysystems,andwhenappliedto anoper-
atingsystemthesecuritylayermay lie within theoper-
atingsystemitself (asin Spring[36]) or in a component
outsideof theoperatingsystemto which all requestsare
redirected(asin Janus[17]).

However, this approachhassomeseriouslimitations.
In orderto addsecurityby interceptingrequests,theex-
isting functional interfacemust exposeall abstractions
and information flows that the security policy wishes
to control. To avoid maintainingredundantstatein the
accesscontrol layer, the functional interfacemust en-
surethatall security-relevantattributesareeitherdirectly
availableasparametersor easilyderived from parame-
ters.A policy thatrequirestheuseof someinternalstate



of theobjectmanagerasaninput to thedecisioncannot
be implementedwithout eitherchangingthemanagerto
export thestateor, if possible,replicatingthestateman-
agementin the enforceritself. The level of abstraction
provided by the interfacemay be inappropriateor may
causedifficulties in guaranteeinguniquenessor atomic-
ity. For example,typicalname-basedcallssuffer from is-
suesof aliasing,multi-componentlookups,andpreserv-
ing the tranquility of the name-to-objectmappingfrom
the time-of-checkto the time-of-use. Finally, this ap-
proachis limited in that the securitylayer canonly af-
fect theoperationof thesystemasrequestspassthrough
it. Hence,it is oftenimpossiblefor thesystemto reflect
subsequentchangesto the securitypolicy, in particular,
therevocationof migratedpermissions.

As was the casewith capabilities,implementingac-
cesscontrol within a securitylayer is a goodapproach
whenthesedisadvantagescanbeavoidedthroughtheuse
of othermechanisms.However, it is importantto recog-
nize thatothermechanismsarenecessary, oftenmecha-
nismsthat aremoreinvasive thaninterceptingrequests,
in orderto provideany degreeof flexibility in supporting
securitypolicies.

4 RelatedWork
The previous sectiondescribedthe relationshipbe-

tween Flask and a variety of efforts that involved
capability-basedsystemsor theinterceptionof requests.
ThissectiondescribestherelationshipbetweenFlaskand
otherefforts not previouslymentioned.We focuson the
researchmostdirectlyrelatedto Flask,althoughthereare
many othereffortswith somerelationto ourwork.

The securityarchitectureof the Flask systemis de-
rived from the architectureof our previous prototype
systemDTOS [35], which hadsimilar goals. However,
while theDTOSsecuritymechanismswereindependent
of any particularsecuritypolicy, the mechanismswere
not sufficiently rich to supportsomepolicies[43], espe-
cially dynamicsecuritypolicies.

At the highestlevel of abstraction,the flexible secu-
rity model for Flask is consistentwith the Generalized
Framework for AccessControl (GFAC) [2]. However,
the GFAC modelassumesthat all controlledoperations
in thesystemareperformedin thesameatomicoperation
in whichthepolicy is consulted,whichis verydifficult to
achieve in a practicalsystemandis theprimaryobstacle
thattheFlasksystemhashadto overcome.

Thespecificissueof revocationis not a new issuein
operatingsystemdesign,althoughit hasreceivedsurpris-
ingly little recognition.Multics [39] effectivelyprovided
immediaterevocationof all memorypermissionsby in-
validatingsegmentdescriptors.RedellandFabry [42],
Karger [24] andGong[18] all describeapproachesfor

revoking previously grantedcapabilities,though none
were actually implemented. Spring [49] implemented
a capability revocationtechnique,thoughonly the ca-
pabilitieswererevoked,not migratedpermissions.Re-
vocationof memorypermissionsis naturally provided
by microkernel-basedsystemswith externalpagingsup-
port, suchas Mach [31], thoughrevocationis not ex-
tendedto otherpermissions.DTOS provided the secu-
rity server with theability to remove permissionsprevi-
ouslygrantedandstoredin themicrokernel’spermission
cache.However, exceptfor memorypermissionswhere
Mach’s mechanismscould be used,DTOS did not pro-
vide for revocationof migratedpermissions[38].

The Flask prototype is implemented within a
microkernel-basedoperating system with hardware-
enforcedaddressspaceseparationbetweenprocesses.
Severalrecentefforts (e.g., SPIN[5], VINO [46] andthe
Javaprotectionmodelsin [50]) havepresentedsoftware-
enforcedprocessseparation. The distinction is essen-
tially irrelevantfor theFlaskarchitecture.It is essential
thatsomeform of separationbetweenprocessesbepro-
vided,but theparticularmechanismis not mandatedby
the Flaskarchitecture.The generalapplicabilityof key
aspectsof the Flask architectureto other systemswas
concretelydemonstratedby the adoptionof the DTOS
architecturein thesecurityframework of SPIN[20]. In-
deed,we believe theabstractFlaskarchitecture,andthe
lessonsit teaches,canbeappliedto softwareotherthan
operatingsystems,such as middleware or distributed
systems,althoughof coursevulnerability to insecurities
in theunderlyingoperatingsystemswould remain.

5 Flask Designand Implementation

Thissectiondefinesthecomponentsof theFlasksecu-
rity architectureandidentifiestherequirementson each
componentnecessaryto meetthe goalsof the system.
The Flasksecurityarchitectureis describedherein the
context of its implementationwithin amicrokernel-based
multiserver operatingsystem.However, thesecurityar-
chitectureonly requiresthattheoperatingsysteminclude
a referencemonitor [16, Ch. 10]. In particular, the ar-
chitecturerequiresthecompletenessandisolationprop-
erties,althoughverifiability is alsoultimatelynecessary
for confidencein any implementationof thearchitecture.

The Flask prototype was derived from the Fluke
microkernel-basedoperatingsystem[14]. TheFlukemi-
crokernelis especiallywell-suitedfor implementingthe
Flaskarchitecturedueto its lackof globalresources[14]
andtheatomicpropertiesof its API [13]. However, the
original Fluke systemwascapability-basedandwasnot
in itself adequateto meetthe requirementsof the Flask
architecture.

The remainderof this sectionstartsby providing an
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Figure1: TheFlaskarchitecture.Componentswhich enforcesecu-
rity policy decisionsarereferredto asobjectmanagers. Components
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assecurityservers. Thedecisionmakingsubsystemmayincludeother
componentssuchasadministrative interfacesandpolicy databases,but
the interfacesamongthesecomponentsarepolicy-dependentandare
thereforenot addressedby thearchitecture.

overview of the Flask architecture. Then, it describes
generalsupportmechanismsrequiredfor thebasicFlask
architecture.It discussesthe specificchangesrequired
for the microkernel. It explainshow the complications
causedby theneedfor revocationwereovercome.This
sectionendsby describingtheprototypesecurityserver.

5.1 Ar chitecture Overview
TheFlasksecurityarchitecture[44], asshown in Fig-

ure1, describestheinteractionsbetweensubsystemsthat
enforcesecuritypolicy decisionsandasubsystemwhich
makesthosedecisions,andtherequirementsonthecom-
ponentswithin eachsubsystem.Theprimarygoalof the
architectureis to provide for flexibility in the security
policy by ensuringthat thesesubsystemsalways have
a consistentview of policy decisionsregardlessof how
thosedecisionsaremadeor how they maychangeover
time. Secondarygoalsfor thearchitectureincludeappli-
cationtransparency, defense-in-depth,easeof assurance,
andminimalperformanceimpact.

TheFlasksecurityarchitectureprovidesthreeprimary
elementsfor object managers. First, the architecture
provides interfacesfor retrieving access,labeling and
polyinstantiationdecisionsfrom a securityserver. Ac-
cessdecisionsspecifywhetheraparticularpermissionis
grantedbetweentwo entities,typically betweenasubject
andanobject.Labelingdecisionsspecifythesecurityat-
tributesto beassignedto anobject.Polyinstantiationde-
cisionsspecifywhich memberof a polyinstantiatedset
of resourcesshouldbeaccessedfor a particularrequest.
Second,thearchitectureprovidesanaccessvectorcache
(AVC) modulethat allows the objectmanagerto cache
accessdecisionsto minimizetheperformanceoverhead.
Third, thearchitectureprovidesobjectmanagerstheabil-
ity to register to receive notificationsof changesto the

securitypolicy.

Objectmanagersareresponsiblefor defininga mech-
anismfor assigninglabels to their objects. A control
policy, which specifieshow securitydecisionsareused
to control the servicesprovidedby the objectmanager,
mustbe definedandimplementedby eachobjectman-
ager. This control policy addressesthreatsin the most
generalfashionby providing the security policy with
controlover all servicesprovidedby theobjectmanager
andby permittingthesecontrolsto beconfigurablebased
on threat. Eachobject managermust definehandling
routineswhich arecalledin responseto policy changes.
For all usesof polyinstantiation,eachobject manager
mustdefinethemechanismby whichtheproperinstanti-
ationof a resourceis chosen.

5.2 GeneralSupport Mechanisms

This sectiondescribesgeneralsupportmechanisms
that were introducedfor all of the object managersin
orderto supportpolicy flexibility . Despitethe simplic-
ity of theFlaskarchitecture,somesubtletiesarisein the
implementation,aswill bediscussedbelow.

5.2.1 Object Labeling All objectsthatarecontrolled
by the securitypolicy are also labeledby the security
policy with a setof securityattributes,referredto asa
securitycontext. A fundamentalissuein the architec-
tureis how theassociationbetweenobjectsandsecurity
contexts is maintained.Thesimplestsolutionwould be
to definea singlepolicy-independentdatatypewhich is
partof thedataassociatedwith eachobject.However, no
singledatatypeis well-suitedto all of thedifferingways
in which labelsareusedin asystem.TheFlaskarchitec-
tureaddressestheseconflictingneedsby providing two
policy-independentdatatypesfor labeling.

A securitycontext, the first policy-independentdata
type,is a variable-lengthstringwhichcanbeinterpreted
by any applicationor userwith anunderstandingof the
securitypolicy. A securitycontext might consistof sev-
eral attributes, suchas a user identity, a classification
level, a role anda typeenforcement[6] domain,but this
dependson the particularsecuritypolicy. As long as
it is treatedasan opaquestring, a securitycontext can
behandledby anobjectmanagerwithoutcompromising
the policy flexibility of the object manager. However,
usingsecuritycontexts for labelingandpolicy decision
lookupswouldbeinefficientandwouldincreasethelike-
lihood of policy-specificlogic beingintroducedinto the
objectmanagers.

The secondpolicy-independentdata type, the secu-
rity identifier (SID), is definedby Flask to be a fixed-
sizevaluewhich canbe interpretedonly by thesecurity
server andis mappedby thesecurityserver to a particu-
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lar securitycontext. Possessionor knowledgeof a SID
for agivensecuritycontext doesnotgrantany authoriza-
tion for thatsecuritycontext. TheSID mappingcannot
beassumedto beconsistentacrossexecutions(reboots)
of thesecurityserver nor acrosssecurityserverson dif-
ferentnodes. Consequently, SIDs may be lightweight;
in the implementation,SIDs aresimply 32-bit integers.
Thereis no specifiedinternalstructureto a SID; any in-
ternalstructureis knownonly by thesecurityserver. The
SID allowsmostobjectmanagerinteractionsto beinde-
pendentof not just the contentbut even the formatof a
securitycontext, simplifying objectlabelingandthe in-
terfacesthat coordinatethe securitypolicy betweenthe
securityserver andobjectmanagers.However, in some
cases,suchaslabelingpersistentobjectsor labelingob-
jectswhichareexportedto othernodes,objectmanagers
musthandlesecuritycontexts. This is describedfurther
in thediscussionof thefile server andnetwork server in
SectionA.1 andSectionA.2.

Whenanobjectiscreated,it is assignedaSID thatrep-
resentsthesecuritycontext in whichtheobjectis created.
Thiscontext typically dependsupontheclientrequesting
theobjectcreationandupontheenvironmentin which it
is created.For example,thesecuritycontext of a newly
createdfile is dependentuponthesecuritycontext of the
directoryin whichit is createdandthesecuritycontext of
theclient thatrequestedits creation.Sincethecomputa-
tion of asecuritycontext for anew or transformedobject
mayinvolvepolicy-specificlogic, it cannotbeperformed
by theobjectmanageritself. Thelabelingof anew object
is depictedin Figure2. For somesecuritypolicies,such
asan ORCONpolicy [19, 34], the securitypolicy may

needto uniquelydistinguishsubjectsandobjectsof cer-
tain classesevenif they arecreatedin thesamesecurity
context. For suchpolicies, the SID mustbe computed
from thesecuritycontext anda uniqueidentifierchosen
by thesecurityserver.

5.2.2 Client and Server Identification Objectman-
agersmustbeableto identify theSID of aclientmaking
a requestwhenthis SID is partof a securitydecision.It
is alsousefulfor clientsto beableto identify theSID of
a server to ensurethata serviceis requestedfrom anap-
propriateserver. Hence,the Flaskarchitecturerequires
that the underlyingsystemprovide someform of client
and server identification for inter-processcommunica-
tion (IPC). However, this featureis not completewith-
outproviding theclientandserverameansof overriding
their identification.For instance,theneedof asubjectto
limit its privilegeswhenmakinga requeston behalfof
anothersubjectis one justification for capability-based
mechanisms[21]. In additionto limiting privileges,over-
riding the actual identificationcan be usedto provide
anonymity in communicationsor to allow for transparent
interposition,suchasthrougha network IPCservercon-
nectingtheclientandserver in adistributedsystem[11].

TheFlaskmicrokernelprovidesthisservicedirectlyas
partof IPC processing,ratherthanrelyinguponcompli-
catedand potentially expensive external authentication
protocolssuchasthosein SpringandtheHurd [7]. The
microkernelprovidestheSID of the client to theserver
alongwith theclient’srequest.Theclientcanidentify the
SID of theserverby makingakernelcall on thecapabil-
ity to beusedfor communication.WhenmakinganIPC
request,theclientcanspecifyadifferentSID asits effec-
tive SID to overrideits identificationto the server. The
server canalsospecifyaneffective SID whenpreparing
to receiverequests.In bothcases,permissionto specifya
particulareffectiveSID is decidedby thesecurityserver
and enforcedby the microkernel. Thus, the Flask mi-
crokernelsupportsthebasicaccesscontrolandlabeling
operationsrequiredfor the architectureand it provides
the flexibility neededfor leastprivilege, anonymity or
transparentinterposition.

5.2.3 Requesting and Caching Security Decisions
In thesimplestimplementation,theobjectmanagercan
make a requestto thesecurityserver every time a secu-
rity decisionis needed.However, to alleviatetheperfor-
manceimpactof communicatingwith thesecurityserver
for eachdecisionandof thecomputationof thedecision
within thesecurityserver, theFlaskarchitectureprovides
cachingof securitydecisionswithin theobjectmanager.

Thecachingmechanismsin Flaskprovidemuchmore
thansimply cachingindividual securitydecisions.The
accessvectorcache(AVC) module,which is a common
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library sharedby the objectmanagers,providesfor the
coordinationof the policy betweenthe objectmanager
andthesecurityserver. Thiscoordinationaddressesboth
requestsfrom the object managerfor policy decisions
andrequestsfrom thesecurityserver for policy changes.
The first of theseis discussedin this section,while the
secondis discussedin Section5.4.

For a typical controlledoperationin Flask,an object
managermustdeterminewhethera subjectis allowedto
accessa objectwith somepermissionor setof permis-
sions. Thesequenceof requestingandcachingsecurity
decisionsis depictedin Figure3. To minimizetheover-
headof securitycomputationsandrequests,thesecurity
server can provide more decisionsthan requested,and
theAVC modulewill storethesedecisionsfor futureuse.
Whena requestfor a securitydecisionis receivedby the
securityserver, it will returnthecurrentstateof thesecu-
rity policy for asetof permissionswith anaccessvector.
An accessvector is a collectionof relatedpermissions
for thepair of SIDsprovidedto thesecurityserver. For
instance,all file accesspermissionsaregroupedinto a
singleaccessvector.

5.2.4 Polyinstantiation Support A security policy
may need to restrict the sharing of a fixed resource
amongclientsby polyinstantiatingtheresourceandpar-
titioning the clients into setswhich cansharethe same
instantiationof the resource. For example,multi-level
secureUnix systemsfrequentlypartitionthe/tmp direc-
tory, maintainingseparatesubdirectoriesfor eachsecu-
rity level [51]; the correspondingsolution for Flask is
discussedin SectionA.1. A similar issueariseswith the
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Figure4: Polyinstantiationin Flask.A clientrequeststhecreationof
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TCP or UDP port spaces,asdiscussedin SectionA.2.
TheFlaskarchitecturesupportspolyinstantiationby pro-
viding an interface by which the security server may
identify which instantiationcanbeaccessedby a partic-
ularclient. Both theclientandtheinstanceareidentified
by SIDs. The instantiationsarereferredto asmembers.
Thegeneralsequenceof selectinga memberis depicted
in Figure4.

5.3 Micr okernel-specificFeatures

Theprevioussectionsdescribedthesecurityfunctions
thatarecommonto all of theFlaskobjectmanagers.In
this section,we discussthe specificfeaturesthat have
beenaddedto the microkernel. Supportfor revocation,
however, will bediscussedseparatelyin Section5.4.The
specificfeaturesthat were addedto someof the other
Flaskobjectmanagersaredescribedin AppendixA.

Dueto the requirementsof Fluke’s architecture,each
active kernelobject is associatedwith a small chunkof
physicalmemory [14]. Though “memory” is not it-
self an object within the microkernel, the microkernel
providesthe baseservicefor memorymanagementand
bindsa SID to eachmemorysegment.TheSID of each
kernelobjectis identicalto theSID of thememoryseg-
mentwith which it is associated.This relationshipbe-
tweenthelabelof memoryandthelabelof kernelobjects
associatedwith thatmemorypermitstheFlaskmicroker-
nel controlsto leveragetheexisting protectionmodelof
Fluke, ratherthanintroducingan orthogonalprotection



SOURCE TARGET PERMISSION
ClientSID Effective ClientSID SpecifyClient
Server SID Effective Server SID SpecifyServer
Effective ClientSID Effective Server SID Connect

Table1: Permissionrequirementsfor an IPC connectionto exist.
Thespecifypermissionsareonly requiredwhena subjectspecifiesan
effective SID. If a subjectdoesnot specifyan effective SID, thenits
effective SID is equalto its actualSID.

modelasin DTOS.However, it alsocreatesa potential
lossof labelingflexibility , sincethe memoryallocation
granularityis muchcoarserthantheallocationgranular-
ity for kernelobjects.

Flaskprovidesdirect securitypolicy control over the
propagationof memoryaccessmodesby associatinga
Flaskpermissionwith eachmode,basedon the SID of
the addressspaceandthe SID of the memorysegment.
Thesememoryaccessmodesalsoact ascapabilitiesto
kernelobjectsassociatedwith the memory. During the
initial attemptto accessmappedmemory, themicroker-
nel verifiesthat thesecuritypolicy explicitly grantsper-
missionfor eachrequestedaccessmode. Memory per-
missionscannotbecomputedatthelevel of any interface
in Fluke, andarecomputedinsteadduring pagefaults;
hence,thesecontrolsprovide anexamplewheremerely
interceptingrequestswould be insufficient. Since the
SID of a memorysegmentis not allowedto change,the
Flask permissionsneedonly be revalidatedif a policy
changeoccurs,asdiscussedin Section5.4.

In Fluke, a port referenceserves as a capability for
performinganIPC to a server threadwaiting on thecor-
respondingport set. Control over propagationin Fluke
may be performedthrough typical interposition tech-
niques. In contrast,Flask providesdirect control over
theuseof suchport referencesby only allowing an IPC
connectionbetweentwo subjectsif theappropriateper-
missionsshownin Table1 aresatisfied.Thesedirectcon-
trolspermitthepolicy to regulatetheuseof capabilities,
addressingtheconcernsof Section3.1.

An interestingaspectof the Flaskmicrokernelis the
controlsthat are imposedon relationshipsbetweenob-
jects. In Fluke, theserelationshipsaredefinedthrough
theuseof objectreferences(e.g. thestateof athreadcon-
tainsan addressspacereference).Unfortunately, these
referencesareusedin many differentways,in contrastto
theway in which readandwrite accessmodesareused
to control accessto kernelobjects. For example,a ref-
erenceto an addressspacemay be usedto mapmem-
ory into thespaceor to export memoryfrom the space.
Hence,Flaskintroducesseparatecontrolsover thesere-
lationshipsandprovidesfiner-grainedcontrolthanFluke.
Someof the controlssimply requirethe two objectsto

have equalSIDs, while othersinvolve explicit permis-
sions,asdescribedin detail in [44, Sec.3].

5.4 RevocationSupport Mechanisms

Themostdifficult complicationin theFlaskarchitec-
ture is that the objectmanagerseffectively keepa local
copy of certainsecuritydecisions,both explicitly in an
accessvector cacheand implicitly in the form of mi-
gratedpermissions.Thereforea changeto the security
policy requirescoordinationbetweenthesecurityserver
andtheobjectmanagersto ensurethat their representa-
tionsof thepolicy areconsistent.Thissectionis devoted
to a moredetaileddiscussionof therequirementson the
componentsof thearchitectureduringa changein secu-
rity policy.

Theneedfor effective atomicitystatedin Section2 is
achieved by imposingtwo requirementson the system.
Thefirst is thataftercompletionof a policy change,the
behavior of theobjectmanagermustreflectthatchange.
No furthercontrolledoperationsrequiringarevokedper-
missioncanbe performedwithout a subsequentpolicy
change.Thesecondrequirementis thatobjectmanagers
mustcompletepolicy changesin a timely manner.

This first requirementis only a requirementon the
objectmanagers,but it resultsin effective atomicity of
system-widepolicy when coupledwith a well-defined
protocolbetweenthesecurityserverandtheobjectman-
agers.This protocol involvesthreesteps.First, the se-
curity server notifiesall objectmanagersthat mayhave
beenpreviously providedany portion of the policy that
haschanged.Second,eachobjectmanagerupdatesits
internalstateto reflectthe change.Finally, eachobject
managernotifies the securityserver that the changeis
complete. Sequencenumbersare usedto addressthe
interleaving of messagesproviding policy decisionsto
theobjectmanagersandmessagesrequestingchangesto
thepolicy. Both thesynchronizationprotocol,whichhas
beenimplemented,andanalternativeapproachbasedon
theoriesof databaseconsistency are describedin [45,
Sec.6]. The latter solution was drawn from a model
of transactionalconsistency, but solutionsrelatedto dis-
tributed sharedmemoryconsistency may also serve as
usefulmodels.

The last stepof the protocol is essentialto support
policiesthat requirepolicy changesto occurin a partic-
ular order. For instance,a policy may requirethat cer-
tain permissionsbe revoked prior to grantingnew per-
missions. The securityserver cannotconsidera policy
changeto be completeduntil it is completedby all af-
fectedobjectmanagers.This allows effective atomicity
of system-widepolicy changessincethesecurityserver
candeterminewhenthepolicy changeis effective for all
relevantobjectmanagers.



Permissions

Complete

Revocation of
Security

Microkernel

Server

Seq #
Revocation Req

Revocation

AVC

Examine

State
Memory

Memory
State

Thread State
Examine

(stopped)

IPC
State

Migrated
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Thisprotocoldoesnotimposeanundueburdenin state
managementon the securityserver. Thenumberof ob-
jectmanagersin many systemsis relativelysmallandthe
only transactionswhichrequireadditionalstatearethose
whereanobjectmanagerinitially issuesanaccessquery
for a permissionthat is granted. Furthermore,the se-
curity server may track permissiongrantingsat various
granularitiesto reducethe amountof staterecordedby
thesecurityserver.

Theform of atomicityprovidedby theprotocolis rea-
sonablebecauseof the timelinessrequirementimposed
on the objectmanagers.It mustnot be possiblefor the
revocationrequestto bearbitrarilydelayedby actionsof
untrustedsoftware. Eachobjectmanagermustbecapa-
ble of updatingits own statewithout beingindefinitely
blockedby its clients.Whenthis timelinessrequirement
is generalizedfor system-widepolicy changes,it alsoin-
volvestwo otherelementsof the system:the microker-
nel,which mustprovide timely communicationbetween
thesecurityserver andobjectmanagers,andthesched-
uler, which mustprovide the objectmanagerwith CPU
resources.

ThegeneralAVC modulehandlesthe initial process-
ing of all policy changerequestsandupdatesthe cache
appropriately. Theonly otheroperationthatmustbeper-
formedis revocationof migratedpermissions.After up-
datingthecache,theAVC moduleinvokesany callbacks
whichhavebeenregisteredby theobjectmanagerfor re-
voking migratedpermissions.The file server supports
revocationof permissionswhich have migratedinto file
descriptionobjects,but currentlylackssupportfor inter-
rupting in-progressoperations.Completecallbacksfor
revoking migratedpermissionshave currentlybeenim-
plementedonly within theFlaskmicrokernel,asshown
in Figure5.

Two propertiesof the Fluke API simplify revocation
in themicrokernel: it providespromptandcompleteex-

portability of threadstateandguaranteesthat all kernel
operationsareeitheratomicor cleanlysubdivided into
user-visible atomicstages[13]. The first propertyper-
mits thekernelrevocationmechanismto assesstheker-
nel’s state, including operationscurrently in progress.
The revocationmechanismmay safely wait for opera-
tions currentlyin progressto completeor restartdueto
thepromptnessguarantee.Thesecondpropertypermits
Flaskpermissionchecksto beencapsulatedin thesame
atomicoperationastheservicethatthey control,thereby
avoidingany occurrencesof theserviceafterarevocation
requesthascompleted.

5.5 The Security Server

As statedearlier, thesecurityserver is requiredto pro-
vide securitypolicy decisions,to maintainthemapping
betweenSIDs and security contexts, to provide SIDs
for newly createdobjects,to provide SIDs of member
objects,and to manageobject manageraccessvector
caches. Additionally, most securitypolicy server im-
plementationswill provide functionalityfor loadingand
changingpolicies. A securityserver might also bene-
fit from providing its own cachingmechanism,in addi-
tion to thosecontainedin the objectmanagers,to hold
the resultsof accesscomputations.This mayprove ad-
vantageousbecausethe securityserver can improve its
responsetime by using cachedresultsfrom previous,
potentiallyexpensive,accesscomputationsrequestedby
any client.

Thesecurityserver alsois typically a policy enforcer
over its own services.First of all, if the securityserver
providesinterfacesfor changingthe policy, it musten-
force the policy over which subjectscanaccessthis in-
terface.Second,it maylimit thesubjectsthatcanrequest
policy information.This is especiallyimportantin apol-
icy wherepermissionrequestsalter thepolicy, suchasa
dynamicconflict of interestpolicy. If theconfidentiality
of thepolicy informationis important,thenobjectman-
agersthatcachepolicy informationmustalsoberespon-
siblefor its protection.

In adistributedor networkedenvironment,it is tempt-
ing to suggestthat the security server of each node
merely act as a local cacheof the environment’s pol-
icy. However, to supportheterogeneouspolicy environ-
ments,it is desirablefor eachnodeto have its own secu-
rity serverwith a locally definedpolicy component,with
somedegreeof coordinationat a higherlevel. Evenin a
homogeneouspolicy environment,a coreportionof the
securitypolicy mustbe locally definedfor the nodein
orderto securelybootstrapthesysteminto a statewhere
it may consultthe environment’s policy. The develop-
mentof a distributedsecurityserver for coordinatingthe
per-nodesecurityserverswithin anenvironmentremains



as future work. For many policies, the securityserver
shouldeasilybescalableandreplicable,sincemostpoli-
cieswill requirelittle interactionamongthe individual
nodes’securityservers. However, somesecuritypoli-
cies,suchashistory-basedpolicies,mayrequiregreater
coordinationamongthesecurityservers.

The securitypolicy encapsulatedby the Flask secu-
rity server is definedthrougha combinationof its code
anda policy database.Any securitypolicy that canbe
expressedthroughthe prototype’s policy databaselan-
guagemay be implementedsimply by alteringthe pol-
icy database.Supportingadditionalsecuritypoliciesre-
quires changesto the security server’s internal policy
framework throughcodechangesor by completelyre-
placing the securityserver. It is importantto note that
evensecuritypoliciesthatrequirealteringthecodeof the
securityserver do not requireany changesto theobject
managers.

The current Flask security server prototype imple-
mentsa security policy that is a combinationof four
subpolicies: multi-level security (MLS) [3], type en-
forcement[6], identity-basedaccesscontrolanddynamic
role-basedaccesscontrol (RBAC) [10]. The accessde-
cisionsprovidedby thesecurityservermustmeetthere-
quirementsof eachof thesefour subpolicies.Thepolicy
logic for themulti-level securitypolicy is largelydefined
throughthe securityserver code,asidefrom the labels
themselves.Thepolicy logic for theothersubpoliciesis
primarily definedthroughthepolicy databaselanguage.
Thesefour subpoliciesarenot all thepoliciessupported
by thearchitectureor its implementationin Flask. They
were chosenfor implementationin the securityserver
prototypein order to exercisethe major featuresof the
architecture.

Becausethe Flask effort has focusedon policy en-
forcementmechanismsand the coordinationbetween
thesemechanismsandthesecuritypolicy, thesetof ad-
ditional securitypoliciesthatcanbeimplementedsolely
throughchangesto this policy databaseis currentlylim-
ited. This is simply a shortcomingof thecurrentproto-
type ratherthana characteristicof thearchitecture.We
have yet to explore the developmentof a moreexpres-
sive policy specificationlanguageor policy configura-
tion tool for Flask. Sucha tool would facilitatethedef-
inition of new securitypoliciesin thecurrentprototype.
Therehave beenseveralrecentprojectsthatdo consider
flexible tools for configuringthe securitypolicies(e.g.,
Adage[53], ASP[8], DynamicDTE [15], ARBAC [41])
that nicely complementthe Flask effort by potentially
providing waysto managethemechanismsprovidedby
Flask.

6 Results

This sectiondescribestheresultsof theeffort in three
areas: policy flexibility , performanceimpact, and the
scaleandinvasivenessof thecodechanges.

6.1 Flexibility in the Flask Implementation
We evaluatethepolicy flexibility that thesystempro-

videsbaseduponthe descriptionof policy flexibility in
Section2. Themostimportantcriteriondiscussedin that
sectionwas“atomicity,” i.e., theability of thesystemto
ensurethat all operationsin the systemare controlled
with respectto the currentsecuritypolicy. Section5.4
describedhow the Flaskarchitectureprovidesan effec-
tive atomicityfor policy changesandhow themicroker-
nel in particularachieves atomicity for policy changes
relatingto its objects. Achieving this atomicity for the
otherobjectmanagersremainsto bedone.

Section2 also identifiesthreeother potentialweak-
nessesin policy flexibility . Thefirst is therangeof oper-
ationsthat thesystemcancontrol. As describedin Sec-
tion 5.3andAppendixA, eachFlaskobjectmanagerde-
finespermissionsfor all serviceswhichobserveor mod-
ify thestateof its objectsandprovidesfine-graineddis-
tinctionsamongits services.Theadvantagesof theFlask
controlsover merely interceptingrequestswereclearly
illustrated.

Thesecondpotentialsourceof inflexibility is thelimi-
tationontheoperationsthatmaybeinvokedby thesecu-
rity policy. In Flask,thesecurityserver mayuseany of
theinterfacesprovidedby theobjectmanagers.Further-
more,theFlaskarchitectureprovidesthesecurityserver
with theadditionalinterfacesprovidedby theAVC mod-
ule in eachobjectmanager. However, this is obviously
not thesameashaving accessto any arbitraryoperation.
For example,if the securitypolicy requiresthe ability
to invoke anoperationwhich is strictly internalto some
object manager, the object managerwould have to be
changedto supportthatpolicy.

Thethird potentialsourceof inflexibility is theamount
of stateinformationavailableto the securitypolicy for
making security decisions. Basedupon our previous
analysisof policiesfor DTOS,theprovisionof a pair of
SIDsis sufficient for mostpolicies[43, Sec.6.3]. How-
ever, the limitation to two SIDs is a potentialweakness
in thecurrentFlaskdesign.Thedescriptionof theFlask
file server in SectionA.1 identifiesonecasewhereaper-
missionultimately dependsupon threeSIDs and must
bereducedto acollectionof permissionsamongpairsof
SIDs. An evenworsesituationis if thesecuritydecision
shoulddependupona parameterto a requestthat is not
representedasa SID. Considera requestto changethe
schedulingpriority of a thread.Herethesecuritypolicy
mustcertainlybeableto makeadecisionbasedin parton



therequestedpriority. Thisparametercanbeconsidered
within the currentimplementationby definingseparate
permissionsfor someclassesof changes,for instance,
increasingthepriority canbeadifferentpermissionthan
decreasingthe priority. But it is not practicalto define
a separatepermissionfor every possiblechangeto the
priority.

This is not a weaknessin the architectureitself, and
the designcould easily be changedto allow for a se-
curity decisionto be representedasa function of arbi-
trary parameters.However, theperformanceof thesys-
tem would certainlybe impactedby sucha change,be-
causeanaccessvectorcachesupportingarbitraryparam-
eterswould bemuchmorecomplicatedthanthecurrent
cache.A bettersolutionmaybeto expandthe interface
only for thosespecificoperationsthat requiredecisions
basedupon more complex parameters,and to provide
separatecachingmechanismsfor thosedecisions. The
Flaskprototypeprovidesa researchplatformfor explor-
ing theneedfor aricherinterfaceto bettersupportpolicy
flexibility .

6.2 Performance
All measurementsin thissectionweretakenusingthe

time-stampcounterregisteron a 200MHz PentiumPro
processorwith a 256KB L2 cacheand64MB of RAM.
While a completeassessmentof performancerequires
analysisof all objectmanagers,we limit ourselvesto the
microkernel, and primarily to IPC sinceit is a critical
pathwhich mustbe factoredinto all higher level mea-
surements.

6.2.1 Object Labeling The segment SID for any
pieceof mappedphysicalmemoryis readily available,
sinceit is computedwhena virtual-to-physicaladdress
translationis createdandis storedalongwith thattrans-
lation. As the addresstranslationmust be obtainedat
objectcreationtimeanyway, theadditionalcostof label-
ing is minimal. Weverifiedthisby measuringthecostto
createthesimplestkernelobjectin bothFlukeandFlask,
showing theworstcaseoverhead.Flaskadded1%to the
operation(3.62versus3.66 � s).

6.2.2 IPC Operations This sectionpresentsperfor-
mancemeasurementsfor IPC operationsundervarious
messagesizesandalsomeasuresthe impactof caching
within themicrokernel.Table2 presentstimingsfor ava-
riety of client-server IPC microbenchmarksfor thebase
Fluke microkerneland underdifferentscenariosin the
Flasksystem.Thetestsmeasurecross-domaintransferof
varyingamountsof data,from client to server andback
again.

For all of thetestsperformedon Flaskin Table2, the
requiredpermissionsare available in the accessvector

Flask
Fluke naive client client

messagesize ( � s) identification impersonation
‘‘Null’’ 13.5 +2% +9% +6%
16-byte 15.0 +2% +4% +6%
128-byte 15.8 +1% +2% +5%
1k-byte 21.9 +2% +2% +4%
4k-byte 42.9 +1% +1% +2%
8k-byte 78.5 +1% +5% +1%
64k-byte 503 +0% +6% +0%

Table2: Performanceof IPCin Flaskrelative to thebaseFluke sys-
tem.A “Null” IPCactuallytransfersaminimalmessage,8 bytesin the
currentimplementation.In Fluke, thetestsusethestandardFluke IPC
interfacesin a systemconfiguredwith no Flaskenforcementmecha-
nisms. Absolutetimesareshown in this columnasa basisfor com-
parison.Naiverunsthesametestson theFlaskmicrokernel. In client
identification, the testshave beenmodified to usethe Flask-specific
server-sideIPC interfaceto obtaintheSID of theclient on every call.
Client impersonationusesthe client-sideIPC interfaceto specifyan
effective SID for every call.

cacheatthelocationidentifiedby a“hint” within theport
referencestructure. While we have provided the data
structuresto allow for fast queriesof previously com-
putedsecuritydecisions,we have not doneany specific
codeoptimizationto speedup theexecution. Therefore
it wasencouragingto find thattheadditionof thesedata
structuresaloneis sufficient to almostcompletelyelimi-
nateany measurableimpactof thepermissionchecks.

Themostinterestingcasein Table2 is thenaivecol-
umn,becauseit representsthemostcommonformof IPC
in theFlasksystem.Along this paththereis only a sin-
gleConnectpermissioncheck.Theresultsshow aworst-
case2%( � 50machinecycle)performancehit. Aswould
beexpected,therelativeeffectof thesingleaccesscheck
diminishesasthesizeof thedatatransferincreasesand
memorycopy costsbecomethedominatingfactor. The
client identificationcolumn hasa larger than expected
impactdueto thefactthat,in thecurrentimplementation,
theclientSID is passedacrosstheinterfaceto theserver
in a registernormallyusedfor datatransfer. This forces
anextra memorycopy (particularlyobvious in theNull
IPC test).Thesignificanteffecton largedatatransfersis
unexpectedandneedsto beinvestigated.Theclient im-
personationcolumnshows the impactof checkingboth
theConnectandSpecifyClientpermissions.

The effect of not finding the permissionthroughthe
hint is shown in Table3,whichpresentstherelativecosts
of retrieving asecuritydecisionfrom thecacheandfrom
thesecurityserver. Theoperationbeingperformedis the
mostsensitive of theIPCoperations,roundtrip of trans-
fer of a“null” messagebetweenaclientandaserverand
is consequentlyrepresentativeof theworstcase.

Thecachecolumnshowsthattheuseof thehint is sig-
nificant in that it reducesthe overheadfrom 7% to 2%.



Flask
using using calling calling

Fluke hint cache trivSS realSS
‘‘Null’’ 13.5 � s 13.8 � s 14.4 � s 43.4 � s 82.5 � s

+2% +7% +221% +511%

Table 3: Marginal cost of securitydecisionsin Flask. The first
two columnsrepeatdatafrom Table2, identifying therelative costof
Flaskwhentherequiredpermissionis foundin theaccessvectorcache
(AVC) usingthehint. Thethird columnis the time requiredwhenthe
hint wasincorrectbut thepermissionwasstill foundin theAVC. The
trivSScolumnis thetime requiredwhenthepermissionis not foundin
theAVC, anda “trivial” securityserver, which immediatelyreturnsan
accessruling with all permissionsgranted,is used.TherealSScolumn
is the time requiredwhenthepermissionis not foundin theAVC and
anaccessruling is computedby ourprototypesecurityserver.

ThetrivSScolumnshowsamorethantripling of thetime
requiredin thebaseFluke case.TheIPC interactionbe-
tweenthemicrokernelandsecurityserverrequirestrans-
fer of 20 bytesof datato thesecurityserver (alongwith
theclientSID) andreturnof 20bytes.Sincethepermis-
sion for this IPC interactionis foundusingthehint, we
seefrom Table2 thatoverhalf of theadditionaloverhead
is dueto the IPC. Theremainderof theoverheadis due
to theidentificationof therequestfor asecuritydecision,
constructionof thesecurityserver requestin thekernel,
and the unmarshalingand marshalingof parametersin
thesecurityserver itself. Theadditionaloverheadin the
realSScolumncomparedto thepreviouscaseis thetime
requiredto computeasecuritydecisionwithin ourproto-
typesecurityserver. Thoughno attempthasbeenmade
to optimizethesecurityserver computations,this result
pointsout thattheaccessvectorcachecanpotentiallybe
importantregardlessof whetherinteractionswith these-
curity server requireanIPC interaction.

6.2.3 Revocation Operations The possiblemicro-
kernelrevocationoperationsaredescribedin Section5.4.
For demonstrationpurposeswe choseto evaluatethe
mostexpensive of thoseoperations,IPC revocation.Ta-
ble 4 shows the resultswith varying numbersof active
connections.The large basecaseis dueto the needto
stop all threadsin the systemwhen an IPC revocation
is processed.The Fluke kernel providesa mechanism
to cancela threadandwait for it to entera stoppedstate
whenthekernelwishestoexamineormodify thethread’s
state.Thestopoperationcannotbeblockedindefinitely
by thethread’sactivitiesnorby theactivitiesof any other
thread.Sincea threadmustbestoppedprior to examina-
tion in orderto ensurethat it is in a well-definedstate,
the currentFlask implementationmuststop all threads
whenanIPC revocationis processed.Thus,thecurrent
implementationmeetsthe completenessand timeliness
requirementsof the architecturebut is quite costly. In
contrast,theactualcostto examineandupdatethestate

connections revocationtime
1 1.55ms
2 1.56ms
4 1.57ms
8 1.60ms
16 1.65ms

Table4: Measuredcostof revoking IPC connections.A connection
is establishedfrom aclientto aserverandthenis immediatelyrevoked.
Increasingnumbersof interposedthreadsareusedto increasethework
donefor eachrevocation.

of the affectedthreadsis small in relation, and as ex-
pectedscaleslinearly with the numberof connections.
ChangingtheFlukekernelto permitgreaterconcurrency
duringtheprocessingof a revocationrequestremainsas
futurework.

The frequency of policy changesis obviously policy
dependent,but theusualexamplesof policy changesare
externallydrivenandthereforewill beinfrequent.More-
over, aperformancelossin asystemwith frequentpolicy
changesshouldnot beunexpectedasit is fundamentally
a new featureprovidedby the system.Obviously, even
theseuncommonoperationsshouldbecompletedasfast
aspossible,but thathasnot beena major consideration
in thecurrentimplementation.

6.2.4 Macrobenchmark A macrobenchmarkevalu-
ationof theFlaskprototypeis difficult to perform.Since
Flaskis a researchprototype,it hasonly limited POSIX
supportandmany of the serversarenot robust or well
tuned.As a result,it is difficult to runnon-trivial bench-
mark applications. Nevertheless,we performeda sim-
ple comparison,runningmake to compileand link an
applicationconsistingof 20 .c and4 .h files for a to-
tal of 8060linesof code(includingcommentsandwhite
space),about190KBtotal.

The testenvironmentincludedthreeobjectmanagers
(the kernel,BSD filesystemserver andPOSIX process
manager)along with a shell and all the GNU utilities
necessaryto build theapplication(make,gcc,ld, etc.).
TheFlaskconfigurationof the testincludesthesecurity
server with the threeobjectmanagersconfiguredto in-
cludethe securityfeaturesdescribedin Section5.3 and
AppendixA. For eachconfiguration,we ranmake five
times,ignoredthefirst run,andaveragedthetime of the
final four runs(theinitial run primedthedataandmeta-
datacachesin the filesystem). To give a senseof the
absoluteperformanceof thebaseFluke system,we also
ran the testunderFreeBSD2.1.5on the samemachine
andfilesystem.Table5 summarizestheexperiment.

Theslowdown for Flaskover thebaseFlukesystemis
lessthan5%. By runningtheFlaskkernelwith unmodi-
fiedFlukeobjectmanagers(Flask-FFS-PM), weseethat



OSConfig Time(sec)

BSD 18.6
Fluke 39.9
Flask 41.7(4.5%)
Flask-FFS-PM 40.9(2.5%)
Fluke-memfs 24.7
Flask-memfs 27.4(11%)

Table 5: Resultsof running make to compile and link a sim-
ple applicationin variousOS configurations.BSD is FreeBSD2.1.5,
Flask-FFS-PMis the Flaskkernelwith the unmodifiedFluke filesys-
temserver andprocessmanager, andthememfsentriesusea memory-
basedfilesystemin placeof thedisk-basedfilesystem.Percentagesare
theslowdownsvs. theappropriatebaseFluke configurations.

the overheadis pretty evenly divided betweenthe ker-
nel andtheotherobjectmanagers(primarily thefilesys-
temserver). However, this modestslowdown is against
a Fluke systemwhich is over twice asslow on thesame
testasacompetitiveUnix system(BSD). Thebulk of this
slowdown is dueto theprototypefilesystemserverwhich
doesnotdoasynchronousor clusteredI/O operations.To
factorthis out, we reranthetestsusinga memory-based
filesystemwhich supportsthesameaccesschecksasthe
disk-basedfilesystem.Thelasttwo linesof Table5 show
the resultsof thesetests. Note that the Flaskoverhead
hasincreasedto 11%,aslessis maskedby thedisk I/O
latency.

Table6 reportsthe numberof securitydecisionsthat
wererequestedby eachobjectmanagerduringtestingof
theFlaskconfigurationandhow thosedecisionswerere-
solved. The numbersincludeall five runsof make as
well astheinterveningremoval of theobjectfiles. These
resultsreaffirm theeffectivenessof cachingsecurityde-
cisions,with well over99%of therequestsnever reach-
ing thesecurityserver.

6.2.5 PerformanceConclusions Initial microbench-
marknumberssuggestthattheoverheadof theFlaskmi-
crokernelmechanismscan be madenegligible through
the useof the accessvectorcacheandlocal hints when
appropriate. They also highlight the needfor an ac-
cessvectorcachesothatcommunicationswith thesecu-
rity serverandsecuritycomputationswithin thesecurity
serverareminimized.They alsopointtoseveralareasfor
potentialoptimization,suchastheAVC implementation,
thecommunicationsinfrastructureandtheprototypese-
curity server computations.A completeanalysisof the
effectivenessof theAVC remainsasfuturework. Issues
suchastheoptimalcachesizeandthesensitivity of the
AVC hit ratiosto policy changesremainto beexplored.

Resultsof thesimplemacrobenchmarktestareincon-
clusive. Although the performanceimpactnumbersare
encouraging(5–11%slowdown), the bad absoluteper-
formanceof the prototypesystemcannotbe ignored.

Resolution
Object Total using using calling
Manager queries hint cache SS
Kernel 603735 175585 428121 29
FFS 76708 N/A 76700 8
PM 892 N/A 890 2

Table6: Resolutionof requestedsecuritydecisionsduringthecom-
pilation benchmark.Numbersarefrom theFlaskconfigurationof Ta-
ble5 andincludesall five runsof make andmake clean.

Morecompletelyexploringtheperformanceoverheadof
the Flask securityarchitectureremainsas future work,
andwill likely bedonein thecontext of a Linux or OS-
Kit implementationof thearchitecture.This will permit
morerealisticworkloadsto bemeasured.

6.3 Scaleand Invasivenessof Flask Code

In Table7 wepresentdatathatgivearoughestimateof
thescaleandcomplexity of addingfine-grainedsecurity
enforcementto thebaseFluke components.Overall, the
Fluke componentsincreasedin size lessthan 8%. Al-
thoughthe kernel increasedthe mostat 19%, for large
objectmanagersthepercentageis reassuringlysmall(4–
6%). Of thesemodifications,we examinedthe magni-
tude of changesinvolved by classifyingeachchanged
location as “tri vial” changes(e.g., one-line changes,
#define changes,nameor parameterchanges,etc.)
or “non-trivial.” For the processmanager, 57% of the
changesfell into the trivial category. For the kernel,a
similar percentageof thechangesweretrivial, 61%,de-
spite the fact that the kernel is an order of magnitude
largerandmorecomplicatedthantheprocessmanager.

Thechangesrequiredto implementtheFlasksecurity
architecturedid not involve any modificationsto theex-
istingFlukeAPI. Extendedcallswereaddedto theexist-
ing API to permitsecurity-awareapplicationsto usethe
additionalsecurityfunctionality, suchas the client and
server identificationsupport. All applicationsthat run
on thebaseFluke systemcanbeexecutedunchangedon
Flask.

7 Summary

This paperdescribesanoperatingsystemsecurityar-
chitecturecapableof supportingawiderangeof security
policies,andthe implementationof this architectureas
partof theFlaskmicrokernel-basedoperatingsystem.It
providesa usabledefinition of policy flexibility , identi-
fies limitationsof this definitionandhighlightstheneed
for atomicity. It shows that capabilitysystemsand in-
terpositiontechniquesareinadequatefor achieving pol-
icy flexibility . It presentstheFlaskarchitectureandde-
scribeshow Flaskovercomestheobstaclesto achieving



Component Fluke LOC +Flask %Incr. #Locs. %Locs.
Kernel 9271 1795 19.3 258 2.4
FFS 21802 1342 6.2 14 .06
Proc.Mgr 925 196 21.2 85 9.2
NetServer 24549 1071 4.4 224 9.1
Total 58435 4575 7.8 647 1.1

Table7: “Filtered” sourcecodesizefor variousFlaskcomponents
andthenumberof discretelocationsin thebaseFluke codethatwere
modified. This countof sourcecodelinesfilters out comments,blank
lines,preprocessordirectives,andpunctuation-onlylines,andtypically
is ���	� to ����
 the sizeof unfilteredcode. The network server count
includestheISAKMP andIPSECdistributions,countingasmodifica-
tions all Flask-specificchangesto them and the baseFluke network
component.

policy flexibility , including the needfor atomicity. Al-
thoughtheperformanceevaluationof theFlaskprototype
is incomplete,this paperdemonstratesthat thearchitec-
tureis practicalto implementandflexible to use.More-
over, thearchitectureshouldbeapplicableto many other
operatingsystems.

Availability
TheFlasksoftwareanddocumentationareavailableat

<http://www.cs.utah.edu/flux/flask/>.

A Other Flask object managers

Thisappendixdescribesthespecificfeaturesthathave
beenaddedto someof theFlaskuser-spaceobjectman-
agers.Althoughthefollowing subsectionsarenotneces-
saryfor understandingthe Flaskarchitecture,they pro-
vide helpful insight into the detailsof providing policy
flexibility in acompletesystem.

A.1 File Server
TheFlaskfile serverprovidesfour typesof controlled

(labeled)objects:file systems,directories,files, andfile
descriptionobjects. Sincefile systems,directoriesand
files arepersistentobjects,their labelsmustalsobeper-
sistent.Thebindingof persistentlabelsto theseobjects
is shown in Figure 6. The file server supportspersis-
tentlabelswithoutsacrificingpolicy flexibility or perfor-
manceby treatingsecuritycontextsasopaquestringsand
by mappingtheselabelsto SIDsby a queryto thesecu-
rity server for internalusein thefile server. Controlover
file descriptionobjectsis separatedfrom controlover the
files themselvessothatpropagationof accessto file de-
scription objectsmay be controlledby the policy. As
notedin Section3.1, the ability to control the propaga-
tion of accessrightsis critical to policy flexibility .

In contrastto the Unix file accesscontrols,the Flask
file server definesa permissionfor eachservicethatob-
serves or modifiesthe stateof a file or directory. For
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Figure6: Labelingof persistentobjects.Thefile server maintainsa
tablewithin eachfile systemwhichidentifiesthesecuritycontext of the
file systemandevery directoryandfile within thefile system,thereby
ensuringthatthesecurityattributesof theseobjectsarepreservedeven
if thefile systemis movedto anothersystem.This tableis partitioned
into amappingbetweeneachsecuritycontext andanintegerpersistent
SID (PSID)anda mappingbetweeneachobjectandits persistentSID.
ThesepersistentSIDsarepurelyan internalabstractionwithin thefile
systemandhaveadistinctnamespacefor eachfile system.Hence,per-
sistentSIDs maybe lightweightandthe allocationof persistentSIDs
maybeoptimizedfor eachfile system.

example,whereasUnix permitsa processto invoke stat
or unlink on a file purely on the basisof the process’
accessto thefile’s parentdirectory, theFlaskfile server
checksGetattrandUnlink permissionsto controlaccess
to thefile itself in additionto thedirectory-basedpermis-
sions. Suchcontrolsarenecessaryto generallysupport
nondiscretionarysecuritypolicies. TheFlaskfile server
also supportsfine-graineddistinctionsamongservices,
suchasseparateWrite andAppendpermissionsfor files
andseparateAdd nameandRemove namepermissions
for directories,which is importantfor supportingpolicy
flexibility .

Thefile server providesoperationsto relabelfiles and
directories,sincethe relabeloperationhasthe potential
of beingmuchmoreefficient thanmerelycopying such
objectsinto new objectswith differentlabels.Thereare
a coupleof complicationsof relabeling.First, migrated
permissionspertainingto thefile mayneedtoberevoked.
For instance,changingthe SID of a file may affect the
permissionto write to a file that is storedin a file de-
scriptionobject.Hence,all suchpermissionsarerecom-
putedandrevokedif necessary. Second,a relabelingop-
erationcannotbe simply controlledthroughthe SID of
the client subjectandthe SID of the file, but mustalso
involve the newly requestedSID. This is addressedby
requiringthreepermissionsfor a relabelto complete,as
shown in Table8. Theprovisionof asinglerelabeloper-
ationis alsohelpful from apolicy flexibility perspective,
sincethepolicy logic canbedirectly expressedin terms
of any of thesethreepossibleSID pairs.In contrast,im-
plementingthesamepolicy logic in termsof thepermis-



SOURCE TARGET PERMISSION
SubjectSID File SID RelabelFrom
SubjectSID New SID RelabelTo
File SID New SID Transition

Table8: Permissionrequirementsfor relabelingafile. Additionally,
the subjectmustpossessSearch permissionto every directory in the
path.

sionscontrollingoperationsinvolved in copying an ob-
jectwouldbecomplicatedby themuchweakercoupling
amongtherelevantSIDs.

Thefile serverdesignproposestheuseof theFlaskar-
chitecture’s polyinstantiationsupportfor securityunion
directories(SUDs); however, the designfor SUDshas
not yet beenimplemented.SUDsarea generalizationof
the partitioneddirectoryapproachtaken by multi-level
secureUnix systemsfor dealingwith /tmp. The SUD
mechanismis designedto usethepolyinstantiationsup-
port to determinethe preferredmemberdirectory for
eachclienttoaccessbydefault.However, unlikethesim-
ple partitioneddirectoryapproach,theSUD mechanism
providesaunifiedview of all accessiblememberswithin
the polyinstantiateddirectory to clientsbaseduponac-
cessdecisionsbetweentheclient andthememberdirec-
tories.

As wasnotedin Section3.2,file serveroperationspro-
vide a simpleexampleof theproblemswith implement-
ing securitycontrolsat the server’s external interface.
The Flaskfile server draws its file systemimplementa-
tion from the OSKit [12] whoseexportedCOM inter-
facesaresimilar to the internalVFS interface[27] used
by many Unix file systems.It waspossibleto implement
the Flasksecuritycontrolsat that interfacewherethese
problemsdonotexist.

A.2 Network Server

Abstractly, the Flasknetwork server ensuresthat ev-
ery network IPC is authorizedby the security policy.
Of course,a network server cannotindependentlyen-
surethata network IPC is authorizedby thepolicy of its
node,sinceit doesnothaveend-to-endcontroloverdata
delivery to processeson peernodes.Instead,a network
server must extend somelevel of trust to its peernet-
work serversto enforceits own securitypolicy, in com-
binationwith their own securitypolicies,over the peer
processes.Thisrequiresareconciliationof securitypoli-
cies,which would be handledby a separatenegotiation
server. The currentnegotiationserver is limited to ne-
gotiatingnetwork securityprotocolsand cryptographic
mechanismsusingtheISAKMP [33] protocol.Thepre-
ciseform of trustandthepreciselevel of trustextended
topeernetworkserverscanvarywidelyandwouldbede-

SOURCE TARGET LAYER
ProcessSID Socket SID Socket
MessageSID Socket SID Transport
MessageSID NodeSID Network
NodeSID Net InterfaceSID

Table9: Layeredcontrolsin thenetwork protocolstack.Eachlayer
appliescontrolsbasedupon the SIDs of the abstractionsdirectly ac-
cessibleat that layer. NodeSIDs areprovided to the network server
by a separatenetwork securityserver, which may query distributed
databasesfor securityattributes,andnetwork interfaceSIDs may be
locally configured.

finedwithin thepolicy. Extendingtheconceptof policy
flexibility to a networkedenvironmentwill requiresuch
supportfor complex trustrelationships.

The principal controlledobject type for the network
server is thesocket. For socket typesthatmaintainmes-
sageboundaries(e.g., datagram),thenetwork serveralso
bindsaseparateSID to eachmessagesentor receivedon
asocket. For othersocket types,eachmessageis implic-
itly associatedwith theSID of its sendingsocket. Since
messagescrossthe boundaryof control of the network
server, and may even crossa policy domainboundary,
thenetwork servermayneedto applycryptographicpro-
tectionsto messagesin orderto preserve thesecurityre-
quirementsof the policy andmustbind the securityat-
tributesof the messageto the message.Our prototype
network server usesthe IPSEC[26] protocolsfor this
purpose,with securityassociationsestablishedby thene-
gotiation server. The negotiation server may not pass
SIDsacrossthenetwork, sincethey areonly local identi-
fiers; instead,thenegotiationservermustpasstheactual
securityattributesto its peer, which can thenestablish
its own SID for thecorrespondingsecuritycontext. Al-
thoughthenegotiationserver musthandlesecuritycon-
texts, it doesnot interpretthem,andthusremainspolicy-
flexible. Attributetranslationandinterpretationmustbe
performedby the correspondingsecurityservers in ac-
cordancewith thepolicy reconciliation.

Thenetwork server controlsarelayeredto matchthe
network protocol layeringarchitecture.Hence,the ab-
stractcontrol over the high-level network IPC services
consistsof a collectionof controlsover theabstractions
at eachlayer, asshown in Table9. Thelayeredcontrols
provide the policy with the ability to preciselyregulate
network operations,usingall theinformationrelevantto
securitydecisions,andthey allow thepolicy to take ad-
vantageof specificcharacteristicsof thedifferentproto-
cols(e.g., theclient/serverrelationshipin TCP).Thenet-
work server providesanotherexampleof the problems
with implementingsecuritycontrolsat theserver’sexter-
nal interface.This is dueto theneedto controlabstrac-
tionsandinterposeonoperationswhicharenotexported



by thenetwork server’sexternalinterface.

Since the TCP and UDP port spacesare fixed re-
sources,thenetwork server usestheFlaskarchitecture’s
polyinstantiationsupportfor securityunion port spaces
(SUPs). SUPsareanalogousto the SUDsdiscussedin
SectionA.1. The polyinstantiationsupportis usedto
determinethepreferredmemberport spacewhena port
numberis associatedwith a socket andwhenan incom-
ing packethasa destinationport numberwhichexistsin
multiplememberport spaces.TheSUPmechanismpro-
videsa unifiedview of all accessibleport spaceswithin
thepolyinstantiatedportspacebasedonaccessdecisions.

Many of the detailsof the Flasknetwork server and
otherserversthatsupportit arebeyondthescopeof this
paper. A muchmoredetaileddescriptionof an earlier
versionof theFlasknetwork servercanbefoundin [9].

A.3 ProcessManager
The Flask processmanagerimplementsthe POSIX

processabstraction,providingsupportfor functionssuch
as fork andexecve. Thesehigher-level processabstrac-
tions arelayeredon top of Flaskprocesses,which con-
sist of an addressspaceandits associatedthreads.The
processmanagerprovidesonecontrolledobjecttype,the
POSIXprocess,andbindsaSID to eachPOSIXprocess.
Unlike theSID of a Flaskprocess,theSID of a POSIX
processmaychangethroughanexecve. SuchSID transi-
tionsarecontrolledby theprocessTransitionpermission
betweentheold andnew SIDs. This controlpermitsthe
policy to regulateaprocess’ability to transitionto differ-
entsecuritydomains.Default transitionsmaybedefined
by thepolicy throughthedefault objectlabelingmecha-
nismdescribedin Section5.2.1.

In combinationwith the file server and the micro-
kernel, the processmanageris responsiblefor ensuring
thateachPOSIXprocessis securelyinitialized. Thefile
server ensuresthat thememoryfor theexecutableis la-
beledwith theSID of thefile. Themicrokernelensures
that the processmay only executememoryto which it
hasExecuteaccess.Theprocessmanagerinitializesthe
stateof transformedPOSIX processes,sanitizingtheir
environmentif thepolicy requiresit.
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