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ABSTRACT 

Building dependable distributed systems from commercial off-the-shelf components is of 
growing practical importance. For both cost and production reasons, there is interest in 
approaches and architectures that facilitate building such systems. The AQuA architecture is 
one such approach; its goal is to provide adaptive fault tolerance to CORBA applications by 
replicating objects. The AQuA architecture allows application programmers to request 
desired levels of dependability during applications' runtimes. It provides fault tolerance 
mechanisms to ensure that a CORBA client can always obtain reliable services, even if the 
CORBA server object that provides the desired services suffers from crash failures and value 
faults. AQuA includes a replicated dependability manager that provides dependability 
management by configuring the system in response to applications’ requests and changes in 
system resources due to faults. It uses Maestro/Ensemble to provide group communication 
services. It contains a gateway to intercept standard CORBA IIOP messages to allow any 
standard CORBA application to use AQuA. It provides different types of replication schemes 
to forward messages reliably to the remote replicated objects. All of the replication schemes 
ensure strong data consistency among replicas. This paper describes the AQuA architecture 
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and presents, in detail, the active replication pass-first scheme. In addition, the interface to 
the dependability manager and the design of the dependability manager replication are also 
described. Finally, we describe performance measurements that were conducted for the 
active replication pass-first scheme, and we present results from our study of fault detection, 
recovery, and blocking times. 

Keywords:  Dependable distributed systems, replication protocols, adaptive fault-tolerant systems, 
CORBA, group communication. 
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1. INTRODUCTION 

Providing fault tolerance to distributed applications is a challenging and important goal. In many 
applications, the cost of a custom hardware solution is prohibitive. Even if custom hardware is used, the 
flexibility that software can provide makes it a natural choice for implementing a significant portion of 
the fault tolerance of dependable distributed systems. Furthermore, when the dependability requirements 
change during the execution of an application, the fault tolerance approach must be adaptive in the sense 
that the mechanisms used to provide fault tolerance may change at runtime. Together, these requirements 
argue for a software solution that can reconfigure a system based both on the levels of dependability 
desired by a distributed system during its execution and on the faults that occur. 

The AQuA architecture provides a flexible approach for building dependable, distributed, object-
oriented systems that support adaptation due to both faults and changes in an application’s dependability 
requirements. Its goal is to provide a simple high-level way for applications to specify the level of 
dependability they desire and the type of faults that should be tolerated.  

Proteus provides fault tolerance in AQuA by dynamically managing replicated distributed objects to 
make them dependable. It does this by configuring the system in response to faults and changes in desired 
dependability levels. The choice of how to provide fault tolerance involves choosing the types of faults to 
tolerate, the styles of replication to use, the degrees of replication to use, and the location of the replicas, 
among other factors. The replication protocols in Proteus assume the existence of an underlying group 
communication system that provides reliable multicast, total ordering, and virtual synchrony [Bir96]. For 
our implementation, we have used the Maestro/Ensemble [Bir96, Hay98, Vay98] group communication 
system. Communication between all architecture components is done using gateways, which translate 
CORBA object invocations into messages that are transmitted via Ensemble, and contain mechanisms to 
implement a chosen fault tolerance scheme. 

The remainder of this paper is organized as follows. Section 2 reviews other approaches that provide 
fault tolerance for CORBA applications using group communication. Section 3 presents an overview of 
the AQuA architecture, reviewing the technologies it uses. Section 4 describes the two group types used 
in AQuA and the methods of reliable communication. Section 5 focuses on the gateway, a part of Proteus 
that is used to translate messages from the group communication level to the CORBA level and vice 
versa, and which contains several fault tolerance mechanisms. Section 6 details the implementation of the 
active replication pass-first scheme in the gateway. It includes the algorithms for the communication 
scheme, view changes, and fault occurrences. Section 7 focuses on the dependability manager and the 
object factory in the Proteus architecture. Section 8 presents the interface with the dependability manager 
that is used to manage the level of dependability requested, host information and decisions on which hosts 
to use, and detailed information from Proteus. Section 9 focuses on making the dependability manager 
dependable. Section 10 presents the performance measurement for the active replication pass-first 
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scheme, with fault detection, recovery, and replica blocking times. Finally, Section 11 concludes the 
paper. 

2. RELATED WORK 

There have been many attempts to build reliable distributed systems. One main thrust has been to 
provide fault tolerance at the process level through the use of the group communication paradigm. Work 
in this area includes ISIS [Bir94], Maestro/Ensemble, Totem [Mos95], ROMANCE [Rod93], Cactus 
[Bha97], SecureRing [Nar99a], and Rampart [Rei95]. In addition, there has been work with the explicit 
goal of building fault-tolerant systems. In particular, the Delta-4 project [Pow91] aimed to provide fault 
tolerance through the use of an atomic multicast protocol, and specialized hardware designed to ensure 
crash failure of processes. Also notable are Chameleon [Bag98], Aurora [AMW], DOORS [Moo99, 
Gok00], FRIENDS [Fab98], and MARS [Kop88]. All of these provide explicit support for building fault-
tolerant applications. 

We provide fault tolerance to distributed CORBA applications by using group communication. 
Several other projects have similar aims. These projects can be classified into three categories. The first 
approach is to create a fault-tolerant ORB. Both Electra [Maf95, Maf97, Lan97] and Maestro fall into this 
category. The second category involves providing fault tolerance through a CORBA service, above the 
CORBA Object Request Broker (ORB). The OpenDREAMS [Fel96] project and Arjuna [Lit98, Mor99] 
take this approach. A third method is to intercept messages from the ORB; this is the approach taken by 
Eternal [Mos98, Nar97, Nar99b, Nar00, Nar01]. 

More specifically, the first approach consists of building an ORB that has built-in fault tolerance 
capabilities. For example, Electra integrates adapter objects into the ORB. The adapter objects convert 
CORBA’s messages into the multicast messages in the group communication system, and make multiple 
replicas look like a single replica for use in active replication. Electra also enhances the Basic Object 
Adapter with the ability to create/remove replicas of a server object. Similarly, the Replicated Updates 
ORB is used in Maestro [Hay98]. It includes an IIOP Dispatcher and multiple request managers to 
actively replicate and manage applications across multiple hosts. The Replicated Updates ORB allows 
clients to access a pool of object references for server replicas. If one server replica fails, the client’s 
request is redirected to another server replica. Since both of the ORBs are integrated with fault tolerance 
mechanisms, these approaches can be made efficient. In addition, the details of fault tolerance 
mechanisms can be hidden inside the ORB. Therefore, they can provide fault tolerance transparently to 
the application’s programmers. However, because the ORB is modified, it is likely that these approaches 
provide fault tolerance at the cost of losing interoperability with standards-compliant CORBA ORBs.  

Systems that use the CORBA service approach implement the fault tolerance mechanisms as a 
Common Object Service on top of the ORB. This approach takes advantage of standards and applications 
already in place to provide fault tolerance. For example, both OpenDREAMS and Arjuna use existing 
CORBA messaging services. OpenDREAMS provides an Object Group Service (OGS) that includes 
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server objects implemented above commercial ORBs. The OGS provides group communication by using 
a CORBA messaging sub-service, and detects object crash by using the monitoring sub-service. Arjuna 
uses a combination of a CORBA transaction service and group communication to provide groups of 
passively replicated objects. Since fault tolerance is provided through a set of CORBA objects above the 
ORB, the ORB does not need to be modified; this approach is thus CORBA-compliant. However, there 
are a number of drawbacks to the services. Programmers need to know how to use the interface provided 
by the services. The existing CORBA application thus will need to be modified to take advantage of these 
systems. The performance of these systems is also an issue, as fault tolerance is implemented at a high 
level in the communication stack of the system. 

Interception is the approach taken by Eternal to capture specific system calls or library routines used 
by the application in order to enhance the application with fault tolerance. Eternal provides fault tolerance 
transparently both to the application and to the ORB. Thus, modification of the ORB and the application 
is not required. Eternal provides fault tolerance using techniques at both the ORB and group 
communication levels. With the Unix operating system, using either the /proc-based implementation or 
the library interpositioning implementation, it intercepts IIOP calls, and resends messages using the 
Totem [Mos95] group communication protocol. Intercepting calls at such a low level allows Eternal to 
provide fault tolerance with a low overhead.  In addition, Eternal supports both active and passive 
replication, and supports dynamic system configuration changes in response to changing application 
requirements.  

The Object Management Group (OMG), which designed CORBA, has also recently provided a Fault 
Tolerant CORBA standard [OMG99]. While it does not support all the functionality of the standard, the 
DOORS project [Gok00] implements many of its features. This standard provides fault tolerance to 
CORBA applications by the use of object replication, fault detection, and recovery. It allows flexibility in 
configuration management of the number of replicas, and of their assignment to different hosts. 
Replicated objects can invoke the methods of other replicated objects without regard to the physical 
location of those objects. The standard provides strong replica consistency among the replicated objects. 
It provides protection from crash failures in deterministic applications using either active or passive 
replication. This standard is an excellent step towards providing fault tolerance to CORBA applications. 
However, because current ORBs are not able to deal with ORB state properly when recovering an 
application object, all of the replicas of a replicated server must use ORBs from the same vendor. To 
guarantee strong replica consistency, application objects and ORBs are required to behave 
deterministically. If sources of non-determinism exist, they must be filtered out.  

3. AQUA OVERVIEW 

The AQuA architecture [Ren01a, Ren01b, Rub00] is a framework for building dependable, 
distributed, object-oriented systems that support adaptation to both faults and changes in an application's 
dependability requirements. It was developed concurrently with, but independently from, the CORBA 
fault tolerance standard. It provides the types of fault tolerance specified by the standard. Moreover, 
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AQuA currently is able to provide services that are not specified in the fault tolerance standard, such as 
support for any standard CORBA applications, without the limitation of requiring the replicated server 
objects to use the same ORB, and including support for protection against value faults in the body of the 
IIOP message.  

3.1. AQuA Architecture Overview 

Figure 1 shows the different components of the AQuA architecture in one particular configuration. 
These components can be assigned to hosts in many different ways, depending on an application’s desired 
level of dependability. 
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Figure 1: Overview of the AQuA Architecture 

In AQuA, fault tolerance is achieved through the replication of objects. All replicas of an object form 
a group. Messages communicated among different objects are sent through groups. To provide fault 
tolerance at the most basic level, the AQuA system uses the Ensemble group communication system to 
ensure reliable communication between groups of processes, to ensure that totally ordered messages are 
delivered to the members in a group, to maintain group membership based on the virtual synchrony 
model, and to detect and exclude from the group members that fail by crashing. Ensemble assumes that 
process failures are fail-silent (or crash failures), and detects process failures through the use of “I am 
alive” messages. The AQuA architecture uses this detection mechanism to detect crash failures, and 
provides input to Proteus to aid in recovery.  

In order to provide a way for an application to specify its dependability requirements, a Quality 
Object (QuO) [Loy98a, Loy98b, Zin97] can be used. It allows distributed applications to process and 
invoke dependability requests, and to receive information regarding the level of dependability that is 
being provided by the current system. QuO allows distributed object-oriented applications to specify 
dynamic QoS requirements. In the AQuA approach, QuO is used to transmit applications’ dependability 
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requirements to Proteus, which attempts to configure the system to achieve the desired level of 
dependability. QuO also provides an adaptation mechanism that is used when Proteus is unable to provide 
the specified level of dependability.  

In AQuA, Proteus provides adaptive fault tolerance. It consists of a replicated dependability 
manager, a set of object factories, and gateway handlers. The dependability manager determines a system 
configuration based on reports of faults and desires of application objects. An object factory that resides 
on each host is used to create and kill objects, as well as to provide load and other information about the 
host to the dependability manager. 

Communication between all architecture components (i.e., applications, the QuO runtime, object 
factories, and dependability managers) is done using gateways, which translate CORBA object 
invocations into messages that are transmitted via Maestro/Ensemble. Furthermore, the handlers in a 
gateway implement multiple replication schemes and communication mechanisms. The handlers are also 
used to detect application value faults, and to report value faults and group membership changes to the 
dependability managers. Before discussing the AQuA group structure and gateway architecture, we 
review Proteus. 

3.2. Proteus Overview 

Most group communication systems, including Ensemble, are based on the assumption that processes 
fail by crashing, but no mechanism is implemented to ensure that processes fail only by crashing. 
Furthermore, recovery by automatically starting new processes on the same or different hosts is not 
implemented in the protocol stack. Instead, it is left to the application. A fault tolerance framework is thus 
necessary to tolerate other fault types and provide recovery mechanisms that are more sophisticated than 
process exclusion. The framework could be implemented at the process level through an implementation 
of further fault tolerance in Ensemble. However, in order to be independent of any particular group 
communication system and to fully use the features offered by CORBA applications, we have provided 
additional fault tolerance above the group communication infrastructure. The framework we have 
developed is able to tolerate crash failures of processes and hosts, as well as value faults of CORBA 
objects. In addition to the fault tolerance mechanisms themselves, two types of replication can be used: 
active and passive. Active replication includes pass-first, leader-only, and majority voting schemes. In the 
pass-first scheme, each replica in the replication group executes each invocation independently and sends 
each request/reply to the leader of the group. The leader is responsible for forwarding the first received 
request/reply to the destination object group. In the leader-only scheme, the leader processes input 
messages and sends its output messages to the destination object group. The other replicas will process 
input messages and generate output messages that are suppressed. In the majority voting scheme, each 
replica in the replication group executes each invocation independently and multicasts its request/reply in 
the replication group. The leader is responsible for forwarding the voting results to the destination group. 
The first two schemes are able to tolerate crash failures, and the last scheme is able to tolerate value faults 
as well as process crash failures. Passive replication includes stable storage and state cast schemes. In the 
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stable storage scheme, the leader multicasts its state to the backup replicas. In the state cast scheme, the 
leader stores its state in stable storage. When the original leader fails, the new leader will take over from 
the original leader by getting the state from stable storage. Both of the passive replication schemes are 
able to tolerate process crash failures. Different replication schemes have different characteristics. The 
active replication schemes have less performance overhead and require applications to be deterministic. 
The passive replication schemes use less computation resources than the active replication schemes, and 
support both deterministic and non-deterministic applications. However, the passive replication schemes 
have more performance overhead than the active replication schemes. The multiple replication schemes 
supported by AQuA provide flexibility by giving applications several options to choose from in order to 
meet their desires.   

4. GROUPS IN THE AQUA ARCHITECTURE 

In AQuA, we use a general object model, rather than the more restrictive client/server model. The 
model of computation is thus based on interactions between objects that can be replicated. Objects can 
initiate requests (acting as clients) and respond to requests (acting as servers). In the AQuA architecture, 
the basic unit of replication is a two- or three-process pair, consisting of either an application and 
gateway, or application, gateway, and QuO runtime. A QuO runtime is included if an object contained in 
the application process makes a remote invocation of another object and wishes to specify a quality of 
service for that object. A basic replication unit may contain one or more distributed objects, but to 
simplify the following discussion, we refer to it as an AQuA object. Furthermore, when we say that an 
“object joins a group” we mean that the gateway process of the object joins the group. Mechanisms are 
provided to ensure that if one of the processes in the object crashes, the others are killed, thus allowing us 
to consider the object as a single entity that we want to make dependable. 

Using this terminology, we can now describe the group structure and mechanism used in the AQuA 
architecture, including replication groups and connection groups. By defining multiple replication and 
connection groups, we can avoid the communication overhead that would occur if a single large group 
were used. 

A replication group is composed of one or more replicas of an AQuA object. These objects may be 
transient or persistent members of the group. Persistent members join the group when they are created, 
and remain in the group. Transient members join a replication group only when they need to multicast a 
message to the replicas in the group. After sending a message, these objects leave the group. A replication 
group has one persistent object that is designated as its leader and may perform special functions. Each 
persistent object in the group has the capacity to become the object group leader, and a protocol is 
provided to ensure that a new leader is elected when the current leader fails.  

A connection group is a group consisting of the persistent members of two replication groups that 
wish to communicate. It provides reliable message communication from one CORBA object to another 
CORBA object.  
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Figure 2: Example Group Structure in AQuA  

As specified above, each replicated object is located inside a replication group. AQuA provides two 
methods of reliable communication between objects that are in two different replication groups. One way 
is to use a connection group, which is done if the sending object is a persistent member of its replication 
group, and hence is in a connection group shared by the destination replicated object. In that case, a 
replicated object that is inside a replication group multicasts messages within a connection group to 
forward them to the other replicated object. Using that approach, two different objects are able to 
communicate using both one-way and synchronous remote method invocations. This approach requires 
that there be a pre-established connection group before objects send messages to each other. 

In the second method of reliable communication, the sending object becomes a transient member of a 
replication group with which it wishes to communicate. The invocations made by transient members can 
only be one-way. In addition, only the leader of a sender replication group is allowed to become a 
transient member of another replication group, and the leader is responsible for making invocations on 
behalf of the sender replication group. The method is only suitable for situations in which duplicate 
messages are allowable (at-least-once semantics). Communication through a transient group member is 
useful in situations in which communication is fairly infrequent. In such cases, the overhead in joining 
and leaving a replication group is small relative to that of maintaining a connection group between two 
replication groups.  

For an illustration of the possible use of replication groups and connection groups, consider Figure 2. 
Solid lines define the replication and connection groups. The dashed oval represents the occurrence of a 
transient member joining a replication group. We see in Figure 2 that even though a connection group is 
composed of two replication groups, a member of a replication group can be included in several 
connection groups. For example, the replicas in replication group 3 communicate with the replicas in 
replication group 1 through connection group 1, and they communicate with the replicas in replication 
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group 2 through connection group 2. The leader of replication group 2 becomes a transient group member 
of replication group 1 in order to send messages to the replicas in replication group 2. 

5. AQUA GATEWAY 

The AQuA gateway is a process that is associated with each CORBA application. The AQuA 
gateway provides fault tolerance by implementing different communication schemes and replication 
protocols. These fault-tolerance mechanisms provide reliable remote method invocations, no matter when 
and where server object replicas fail before the client receives the replies. To achieve this dependability, 
each CORBA client's invocation is forwarded by its gateway to a set of replicated CORBA server objects, 
and only one copy of the reply message is allowed to return to the client object. The AQuA gateway is 
responsible for finding a set of replicated objects that can implement the request, passing them the 
parameters, invoking their methods, and returning the results. The client does not know where the server 
objects are located, or how many replicated server objects process the invocations.  
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Figure 3: AQuA Gateway 

Figure 3 shows the physical structure of a gateway. It contains a gateway ORB, a naming service, a 
handler factory, a set of handlers, and a DII processor. The gateway ORB is a standard ORB (the TAO 
ORB [TAO] is used in our implementation). It works as a normal ORB to communicate with standard 
CORBA applications using IIOP messages. In that way, the AQuA gateway is able to communicate with 
different commercial ORBs to provide ORB transparency.  
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The naming service maps object names to object references. It is a local naming service in a 
gateway, and provides a way for the CORBA application to communicate with the gateway handlers. In 
particular, in the client gateway, the naming service associates the remote server objects' names with the 
handlers’ object references to direct all of the client’s invocations to the gateway handlers instead of 
allowing them to go directly to remote server objects. In the server gateway, the naming server helps the 
gateway handlers to locate the server objects. 

The handler factory is responsible for creating handlers. It includes a handler repository that 
provides a set of different types of handlers. The handlers can be classified into two categories, static and 
dynamic. Static handlers have persistent group memberships, as described in Section 4. In this category, 
handlers will remain in the appropriate Ensemble process groups once they have been created and joined 
the groups. These handlers are used to implement replication schemes, and are therefore also called 
replication handlers. The replication handlers can be further classified into active and passive replication 
handlers. The active replication handlers are used to implement the active replication schemes. They 
include the pass-first handler, the leader-only handler, and the majority-voting handler. The passive 
replication handlers are used to implement the passive replication schemes. They include the state cast 
handler and the stable storage handler. Dynamic handlers, the second category of handlers, are transient 
replication group members. Transient replication group members are described in Section 4.  

Each handler is responsible for sending and receiving messages for a particular replicated object.  
When a gateway handler receives an invocation, it will first remove the IIOP header, and then construct a 
gateway message that will carry the CORBA invocation to the gateways of the remote replicated servers. 
Each gateway message includes two parts: a message header and a payload of a CORBA IIOP message. 
The message header contains information used by replication schemes to process and deliver messages 
correctly. Each header has several fields: sender, receiver, is_oneway, sequence number, ID, and opcode. 
Each field has a special purpose related to the communication scheme. The sender and receiver fields 
specify the source and destination of an invocation. The is_oneway field indicates whether the invocation 
is an asynchronous (one-way) or synchronous CORBA message. The sequence number is an integer that 
is assigned to each invocation and is uniquely associated with a sender and receiver pair. The ID indicates 
which replica generated the message. The opcode is used for implementing replication steps.  

After constructing a gateway message, the handler will encapsulate it into a Maestro/Ensemble group 
communication message so that it can be sent over the network to the replicated server gateways. If an 
invocation is a synchronous CORBA message, the handler is also responsible for receiving the reply from 
the group communication system. In the replicated server gateways, once a handler receives a group 
communication message, it will first unencapsulate the received Maestro message to get the gateway 
message. It will then remove the gateway header and get the name of the operation and the arguments for 
the original IIOP invocation from the gateway message payload. Next, it will construct a new dynamic 
invocation based on the information from the gateway message, and forward the invocation to the DII 
processor. 
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The DII processor is used to deliver invocations that are received from the handlers to the application 
object. In order to ensure strong data consistency among replicas, the DII processor contains a 
synchronous queue that ensures that the incoming invocations are delivered to the application in the order 
in which they were received from the group communication system. If the invocation is a synchronous 
CORBA message, the DII processor will wait for a reply, and then return the reply to the server gateway 
handler that is responsible for forwarding the reply to the client object. Since all of the replicated server 
objects generate their replies, the server gateway handlers will allow only one copy of the replies to be 
sent back to the handler servant in each client's gateway, to ensure that there are no duplicate replies. The 
algorithms that do this are explained in detail in the next section. 

6. ACTIVE REPLICATION SCHEME 

Multiple communication schemes have been developed using the defined group structure. The active 
replication pass-first, leader-only, and majority-voting schemes are detailed in [Ren01a, Ren01b], and the 
passive replication stable storage and state cast schemes are described in [Rub00]. All of the replication 
schemes provide the ability to 1) ensure reliable transmission of each CORBA message from one 
replicated object to another, so that messages will not be lost even if replicas crash, 2) guarantee strong 
data consistency among all object replicas, 3) guarantee that no duplicate messages are delivered to the 
replicated objects, and 4) correctly react when the number of replicas in a replication group changes. This 
section describes the active replication with pass-first scheme in detail. It first gives an overview of the 
communication steps of this scheme. Then, it explains the communication algorithms used to correctly 
communicate CORBA messages between replicated objects when the replication groups have stable 
group membership, and the view change algorithms used when the replication group membership 
changes. Finally, it explains how to tolerate process crash failures by using this scheme. 

6.1. Communication Scheme in Active Replication 

We first describe the steps involved in making a remote CORBA invocation. Let Oi,k be replica k of 
replication group i, and let object Oi,0 be the leader of the group. Suppose that replication group i is the 
sender group and group j the receiver group. One connection group is used to communicate between two 
replication groups, as described in Section 4. In order to describe the replication schemes clearly, we use 
two types of connection groups. A sender connection group is used to send out requests and to receive 
replies. A receiver connection group is used to receive requests and send out replies. 

To send a request to the object replicas Oj,k, as shown in Figure 4, all objects Oi,k first use reliable 
point-to-point communication to send the request to Oi,0. Object replicas Oi,k also keep a copy of the 
request in case it needs to be re-sent (step 1 in Figure 4). The leader then multicasts the request in the 
sender connection group. The objects Oi,k use the multicast to signal that they can delete their local copies 
of the request. The objects Oj,k store the multicast on a list of pending rebroadcasts (step 2). Since there 
can be multiple replication groups, in order to maintain total ordering of all messages within the receiver 
replication group j, Oj,0 multicasts the message again in the replication group j. The objects Oj,k use the 
multicast as a signal that they can deliver the message and delete the previously stored copy from the 
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connection group multicast (step 3). After processing the request, all objects Oj,k send the result through a 
point-to-point communication to Oj,0 (step 4). The same set of steps used to transmit the request is then 
used to communicate the reply from replication group j to group i. Steps 5 and 6, which are responsible 
for transmitting the reply, are similar to steps 2 and 3 respectively. 

 

sender connection group

(2)
(2)

(2)

Replication group i

(2)
(2)

(2)

(1)(1)
(1)
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Oj,2Oj,1Oj,0

 

Figure 4: Communication Scheme 

6.2. Active Replication Communication Algorithms 

The algorithms that run in the active replication pass first handler are described in this section. To 
illustrate their use, we will describe the algorithms in the order in which they would be executed (on 
various nodes) as a single request/reply is processed, using the “step” nomenclature introduced earlier in 
this section.  

Step 1: The first step of the communication scheme consists of sending a request to the replication 
group leader. This is done in two phases. First, each replica on the sender side receives a remote object 
request, via a CORBA IIOP message to the gateway. Note that these requests will not come at the same 
time, but they will come in the same order (since we assume application objects behave in a deterministic 
way and receive all external requests in the same order). After processing, the gateway calls SendRequest 
(Figure 5). Each message is then tagged with the opcode FORWARD_REQUEST, so that it is not 
misinterpreted as a reply to a previous message. The handler variable that keeps track of the last sent 
sequence number for the sender connection group is then set to the sequence number of the message. 
Next, the reply buffer associated with the sender connection group is checked to see if a reply has already 
been received for this message. RemoveReplyFromBuffer will return the reply if it is in the buffer and a 
NULL if the reply to this message is not found. The reply is stored in the buffer if another replica has 
previously forwarded its request to the leader (which is possible, since replicas behave asynchronously) 
and this replica has already received the reply. If the reply is present, it is delivered to the application 
(DeliverReplyToApp). If the reply is not present, the request is then sent to the leader using a Maestro 
point-to-point send (SendToLeader). Finally, the sequence number is checked to see if the request 
should be placed in the point-to-point buffer (so that it can be resent if a failure occurs). The request 
should be placed in the point-to-point buffer if a copy of it has not already been multicast in the 
connection group. (That would occur if another replica in the replication group has forwarded the request 
to the leader, which then multicasts it to the connection group.) 
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SendRequest( message request ) 

request.opcode := FORWARD_REQUEST 
SenderConnectionGroup.LastSent := request.SequenceNumber 
reply := SenderConnectionGroup.RemoveReplyFromReplyBuffer( request ) 
if ( reply ≠ NULL ) 

DeliverReplyToApp( reply ) 
else 

SendToLeader( request ) 
if ( SenderConnectionGroup.LastMulticast < request.SequenceNumber ) AddToPtPBuffer( request ) 

 
SendReply( message reply ) 

reply.opcode := FORWARD_REPLY 
ReceiverConnectionGroup.LastSent := reply.SequenceNumber 
SendToLeader( reply ) 
if ( ReceiverConnectionGroup.LastMulticast < request.SequenceNumber ) AddToPtPBuffer( reply ) 

Figure 5: SendRequest and SendReply Algorithms 

The second phase begins when the leader receives the request from Ensemble and calls 
ReceiveSendToLeader (Figure 6). As seen in Figure 4, the message sent to the leader can be either a 
request or a reply, as denoted by the opcode FORWARD_REQUEST or FORWARD_REPLY. At this 
step the message is a request. Non-leaders receiving this message do nothing. Since the message is a 
request, the opcode is changed from FORWARD_REQUEST to CONNECTION_GROUP_REQUEST. 
The PassFirstMessage returns the message passed to it (MessageToMulticast), unless it has already been 
multicast (which is determined by the sequence number of the message). The communication scheme then 
checks the message to see whether it should be multicast to the sender connection group; it does so by 
checking the content of MessageToMulticast and SenderConnectionGroup.LastMulticast. The 
LastMulticast variable is used to make the determination, and keeps the leader from multicasting 
duplicate requests that it may receive in the sender connection group. (A duplicate request may be 
received if a view change occurs and a replica’s point-to-point buffer is not empty.) If the request is not a 
duplicate, it is multicast in the connection group through the MulticastToConnectionGroup call, which 
uses the Maestro multicast facility. Finally, the handler’s last multicast request variable for the sender 
connection group is set to the message’s sequence number (since the Maestro multicast, as we have used 
it, does not send the message to the sender of the multicast). 

Step 2: The second step of the communication scheme begins with the MulticastToConnection-
Group call. When a multicast message is received by a connection group member, Ensemble calls 
ReceiveConnectionGroupMulticast (Figure 6). Since each member of the connection group receives the 
multicast, ReceiveConnectionGroupMulticast needs to determine whether the original request came 
from a replica in the replication group with the receiver, or a different replication group, and whether the 
received multicast is a request or reply message. 

To distinguish among these cases, the method first checks the opcode of the message to see if the 
receiver of the message is a member of the group specified by the sender field. The method then checks to 
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see whether it is a request or a reply. A message received in step 2 will have the opcode 
CONNECTION_GROUP_REQUEST, marking it as a request multicast by the group leader. If the 
receiver of the message is a member of the group specified by the sender field, then the last multicast 
request variable corresponding to the sender connection group is then set to the sequence number of this 
message, for future reference. The message may have been stored in the point-to-point buffer so that it 
could be resent in case of failure, but since the multicasts are reliable, all other recipients of the message 
have now also received it. The receiver can thus safely remove this message from the point-to-point 
buffer, if it is there. 

 
ReceiveSendToLeader( message m ) 

if ( Leader )  
if ( m.opcode = FORWARD_REQUEST ) 

m.opcode := CONNECTION_GROUP_REQUEST 
    message MessageToMulticast := PassFirstMessage( m ) 

if (( MessageToMulticast ≠ NULL ) and ( SenderConnectionGroup.LastMulticast < 
MessageToMulticast.SequenceNumber )) 
       MulticastToConnectionGroup( SenderConnectionGroup, MessageToMulticast ) 
       SenderConnectionGroup.LastMulticast := MessageToMulticast.SequenceNumber 

     if ( m.opcode = FORWARD_REPLY ) 
m.opcode := CONNECTION_GROUP_REPLY 

    message MessageToMulticast := PassFirstVotingProcess( m ) 
if (( MessageToMulticast ≠ NULL ) and  

( ReceiverConnectionGroup.LastMulticast < MessageToMulticast.SequenceNumber )) 
       MulticastToConnectionGroup( ReceiverConnectionGroup, MessageToMulticast ) 

   ReceiverConnectionGroup.LastMulticast := MessageToMulticast.SequenceNumber 
 
ReceiveConnectionGroupMulticast( message m )  

if ( m.Sender = myReplicationGroup ) 
if ( m.opcode = CONNECTION_GROUP_REQUEST ) 

SenderConnectionGroup.LastMulticast := m.SequenceNumber 
RemoveFromPtPBuffer( m )  

if ( m.opcode = CONNECTION_GROUP_REPLY ) 
m.opcode = REPLICATION_GROUP_REPLY 
if ( RemoveMulticastDelayBuffer( m ) = NULL ) AddToTotalOrderBuffer( m ) 
if ( Leader ) MulticastToReplicationGroup( m ) 

if ( m.Receiver = myReplicationGroup ) 
if ( m.opcode = CONNECTION_GROUP_REQUEST ) 

m.opcode := REPLICATION_GROUP_REQUEST 
if ( RemoveMulticastDelayBuffer ( m ) = NULL ) AddToTotalOrderBuffer( m ) 
if ( Leader ) MulticastToReplicationGroup( m ) 

if ( m.opcode = CONNECTION_GROUP_REPLY )  
ReceiverConnectionGroup.LastMulticast := m.SequenceNumber 
RemoveFromPtPBuffer( m ) 

 
ReceiveReplicationGroupMulticast( message m ) 
     if ( m.opcode = REPLICATION_GROUP_REQUEST )  

     if ( m.SequenceNumber > ReceiverConnectionGroup.LastDelivered ) 
DeliverRequest( m ) 

    ReceiverConnectionGroup.LastDelivered := m.SequenceNumber 
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    if ( RemoveFromTotalOrderBuffer( m ) = NULL ) AddToMulticastDelayBuffer ( m ) 
     if ( m.opcode = REPLICATION_GROUP_REPLY ) 

     if ( m.SequenceNumber > SenderConnectionGroup.LastDelivered ) 
SenderConnectionGroup.LastDelivered := m.SequenceNumber 
if ( SenderConnectionGroup.LastSent ≥ m.SequenceNumber )  

DeliverReplyToApp( m ) 
 else    
  AddToReplyBuffer( m ) 

     if ( RemoveFromTotalOrderBuffer( m ) = NULL ) AddToMulticastDelayBuffer ( m )  

Figure 6: ReceiveSendToLeader, ReceiveConnectionGroupMulticast, and  
ReceiveReplicationGroupMulticast Algorithms 

In the second part of the algorithm, the method checks whether the receiver field of the message is the 
message receiver’s replication group. If the opcode of the message is a request, the opcode 
(CONNECTION_GROUP_REQUEST) is changed to REPLICATION_GROUP_REQUEST (initiating 
step 3). A multicast delay buffer is then used to store a copy of the message sent to the leader if a 
multicast in the connection group happened before the replica sent its message to the leader. This avoids 
the need to store the message in the total order buffer. The method then checks if the multicast delay 
buffer contains the request. If it does, then the request is removed from the buffer. Otherwise, the request 
is added to the total order buffer. The message is saved in the total order buffer to permit recovery in case 
of a replica failure. Then, if this replica is the leader, it multicasts the message to the members of the 
replication group through the MulticastToReplicationGroup call, again using the Maestro multicast 
facility. 

Step 3: The third step of the communication scheme begins with the MulticastToReplication-
Group call. When a multicast message sent via this call is received by a replication group member, 
Ensemble calls ReceiveReplicationGroupMulticast (Figure 6). In this step, the opcode is 
REPLICATION_GROUP_REQUEST, so the first block of code in this method is executed. First, the 
sequence number of the received message is checked (against the last delivered request in the receiver 
connection group) to confirm that this message has not already been delivered in the receiver connection 
group. That could happen if a leader crashed after sending a multicast, but before the replication group 
members received it. If that happens, the message is ignored. Otherwise, using DeliverRequest, the 
request is delivered to the application after processing by the gateway. The handler’s last delivered 
request variable associated with the receiver connection group is set to the message’s sequence number. 
The method then checks if the total order buffer contains the request. If the request is in the total order 
buffer, it is removed from it, since the message has now been delivered to all replication group members. 
If the buffer does not contain the request, it is added to the multicast delay buffer. 

Steps 4-6 are similar to steps 1-3, but reliably communicate the reply back to the replicated object 
that issued the corresponding request. Through use of the above communication steps, requests and 
replies are reliably transmitted between replicated objects, thus ensuring that remote method invocations 
are reliable, in spite of process crash failures. 

16 



6.3. View Change Algorithms 

When the membership of a group changes, a view change occurs. Replication group view changes 
signal changes that must be accounted for to maintain the correct replication group state and structure. A 
replication group view change will occur if a new persistent/transient member joins the replication group, 
if a member crashes, if a member is killed, or if a transient member leaves the replication group. Since the 
persistent group members must maintain strong data consistency among themselves, a new persistent 
group member needs to get state from an existing group member when it joins the replication group. The 
transient group member doesn’t have state transfer. 

The state transfer is implemented with the help of Maestro state transfer calls. The state transfer 
occurs as part of Maestro view change processing, so it is atomic with respect to the processing of other 
messages in the group. When a new persistent member joins a group, Maestro initiates a state transfer by 
calling the GetState method of an existing group member. This method collects the state information 
needed by the new replica in a “transfer message.” The transfer message is passed to the new replica 
specified by a requestor. The transfer message consists of two parts: the gateway state and the application 
state. The gateway state includes the connection group state, the replication group state, and the DII 
processor’s synchronous queue state. The gateway state is added to the transfer message using the 
AddGatewayState method. The application object state is added to the transfer message using the 
AddApplicationState method. To get the state of the application, AddApplicationState executes a 
GetApplicationState method on the associated application object. This method, which must be 
implemented by the application object, packages up the needed state so that it can be placed in the 
transfer message and, ultimately, delivered to the new application object. 

Once the transfer message is received by Maestro in the new replica, the replica calls the new replica 
SetState method to set the state of the replica to that prescribed by the transfer message. The state of the 
new replica’s handler is set via the SetGatewayState call. The state of the new application object is set 
by invoking the SetApplicationState method on the new application object. This method, implemented 
by the application object, unpacks the message to obtain the state information needed to set the new 
application object state to that obtained from an existing replica. Once the new persistent member is 
integrated into the group, Maestro invokes each group member’s ViewChange method (Figure 7), to 
notify each replication group member that a view change has occurred. 
 

ViewChange( view newView ) 
          if ( persistent group membership changes ) 

 if ( NewLeader() ) 
   for each message m in PtPBuffer 

    SendToLeader( m ) 
   if ( Leader ) 

  for each message m in TotalOrderBuffer  
MulticastToReplicationGroup( m ) 

  if ( Leader ) SendToDependabilityManagerGroup( newView ) 

Figure 7: ViewChange Algorithm 
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Persistent group members first check if the view has changed because the (old) leader left the 
replication group. The existence of a new leader is determined via a call to method NewLeader. If the 
group has a new leader, all messages in each group member’s point-to-point buffer need to be sent to the 
(new) leader, since the buffer contains messages that were sent to the leader, but not yet multicast to the 
connection group. Likewise, the leader multicasts all messages in its total order buffer to its replication 
group, since they were received by the replication group from an associated connection group, but not yet 
successfully multicast by the leader to the group. Finally, the leader informs the dependability manager of 
the membership of the changed group, using the dynamic handler. 

6.4. Algorithm’s Response to Faults 

We now show how crash failures are tolerated using these algorithms. In particular, we consider all 
the points at which a crash failure can occur, for both the leader and non-leader replicas, in both the 
sender and receiver replication groups. Tolerating failures of non-leader replicas is simple using the 
AQuA group structure, since no message retransmission is necessary. In particular, a replica can crash 
before or after a multicast message is delivered. If a non-leader replica crashes after a multicast is 
delivered, there is no need to retransmit the message, because the message was delivered to all the correct 
replicas. If a non-leader replica crashes after the multicast is sent, but before it is delivered, there is no 
need to retransmit the message, because Maestro/Ensemble will deliver the multicast to all of the non-
failed replicas. The other cases in which a non-leader replica can crash (before and after sending a point-
to-point message) also require no action from other replicas. 

If the leader of the sender replication group crashes before ReceiveSendToLeader is complete, the 
message transmission process is restarted by ViewChange once the replication group has gone through a 
view change and elected a new leader. In that case, SendToLeader is performed again. Specifically, the 
replicas in the sender replication group, having kept a copy of the message in the point-to-point buffer, 
resend the message to the new leader of the sender replication group. The new leader then multicasts each 
message in the sender connection group via ReceiveSendToLeader, and the message transmission 
process is resumed. If the original leader crashes immediately after sending the multicast, a new leader 
may be elected before the multicast is delivered. This case uses the same sequence calls as above. The 
new leader will also multicast the message, and this second multicast will be ignored by the members of 
the connection group. If the leader crashes in other stages of the communication scheme, no message 
retransmission is necessary, since the sender replication group leader is not responsible for message 
transmission in those stages. 

If the leader of the receiver replication group crashes before ReceiveConnectionGroupMulticast is 
complete, the message transmission process is performed via ViewChange once the replication group has 
gone through a view change and elected a new leader. The new leader, having stored a copy of the 
message from the connection group multicast in the total order buffer, multicasts the message in the 
receiver replication group via MulticastToReplicationGroup. If the old leader crashes immediately after 
sending the multicast in the receiver replication group, a new leader may be elected before the multicast is 
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delivered. In that case, the same sequence calls are used. The new leader will multicast the message in the 
receiver replication group, and this second multicast of the message will be ignored by the members of 
the replication group. If the leader crashes in other stages of the communication scheme, no message 
retransmission is necessary, since the receiver replication group leader is not responsible for message 
transmission in those stages. 

7. PROTEUS ARCHITECTURE 

This section describes Proteus’s dependability manager and object factories. The functional interface 
between the dependability manager, the gateways, and the object factories will be described. 

7.1. Dependability Manager 

The dependability manager determines an appropriate system configuration based on requests 
transmitted through QuO requests and observations of the system, and carries out the decisions in a 
consistent way. The policy used by the dependability manager to make configuration decisions and the 
particular coordination algorithm used depend on the styles of replication used and the types of faults 
tolerated. However, the interface to other AQuA architecture components remains the same in all cases. 

Specifically, the dependability manager’s CORBA interface consists of several methods. The view 
change method is called by application gateways to report Maestro/Ensemble view changes. The value 
fault method is called by application gateways if a value fault is reported by a gateway. The register host 
method is called by an object factory to register itself. The start reply, kill reply, and host information 
reply methods are called by an object factory to report, respectively, the status of a request to start an 
application, the status of a request to kill an application, and information (e.g., the host load) concerning 
the host.  

A simple management policy was developed to support crash failures and value faults. In this policy, 
when the view change method (which is the result of a crash failure) is invoked, the dependability 
manager chooses to start a replica on the least-loaded host in the system that does not have a replica of the 
same application already running. When the value fault method is invoked, the dependability manager 
kills the faulty replica and creates a new replica to replace the failed one. 

7.2.  Object Factory 

One object factory runs on each host in a system. The functions of an object factory are to start 
processes, to kill processes, and to provide information about the host. The object factory is not 
replicated, but since it does not contain state that needs to be preserved between failures, it can be 
restarted after a host failure so that the host can again be used to support AQuA objects. 
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When a factory is started, it registers itself with the dependability manager by calling the register 
host method. The dependability manager then knows that the factory’s host is available to start replicas. 
After receiving a reply from the dependability manager, the factory is ready to start and kill processes. 

When the dependability manager sends a start replica request to the factory, the factory attempts to 
start the specified application. If an exception is generated while the application is starting, a start failure 
is reported. If no exception is generated, the factory adds the application to a list of running applications, 
and a successful start is reported to the advisor. A request from the dependability manager to kill an 
application (kill replica method) is handled in the same manner. If an exception is generated during an 
attempt to kill the application, a kill failure is reported. If no exception is generated, the factory removes 
the application from the list of running applications and a successful kill is reported. The dependability 
manager also notifies the factory, through the replica crashed method, if a replica on the factory’s host 
fails. This is done so that the factory has the correct state of its host. This method simply removes the 
crashed replica from the list of running remote objects. 

The factory is also responsible for providing information to the dependability manager about its host. 
In the current implementation of the factory, the factory periodically sends the load of its host to the 
dependability manager through the host information reply method. The dependability manager uses this 
information to decide how to assign replicas to hosts. The dependability manager can also request this 
information at other times by using the get host information method. 

8. PROGAMMER’S INTERFACE TO THE DEPENDABILITY MANAGER 

This section describes how an application or QuO programmer interacts with the Proteus 
dependability manager 1) to request a particular level of dependability, 2) to be notified when that level is 
no longer met, 3) to obtain information concerning hosts managed by Proteus and give advice about 
which hosts the dependability manager should place replicas on, and 4) to obtain detailed information 
regarding decisions that the dependability manager makes, and the faults that it detects. The interface to 
the dependability manager can be divided into two sets of methods: those used to communicate with the 
components in the AQuA system core (composed of the dependability manager, the gateway handlers, 
and the object factories) that were described in Section 7, and those used by one or more AQuA objects to 
request and observe QoS, to observe the state of the dependability manager, and to observe and control 
hosts.  

Proteus supports the development of three types of objects that can make QoS requests from the 
dependability manager and also observe its actions. One of these object types, called the QoS 
observer/requester, can be used to make QoS requests to the dependability managers and can receive 
callbacks regarding the ability of the dependability manager to satisfy the requester’s requests. (An 
example of an application that may contain a QoS observer/requester is QuO itself.) Furthermore, since 
the dependability manager supports a standard, well-defined interface, an application object can also 
make QoS requests directly to the dependability manager. The second type of object the dependability 
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manager supports is advisor observers. Advisor observers can “subscribe” to a variety of information 
used by the dependability manager to make decisions, including information about faults detected and 
fine-grained information regarding actions taken by the manager. Proteus also supports the development 
of a third type of objects, called host observer/controllers, that receive information regarding the status of 
hosts that may be used to execute object replicas, and that can be used to specify particular hosts for the 
execution of replicas. In particular, as will be seen in the following, host observers/controllers can be used 
by an application or QuO to specify hosts that should not be used to execute replicas, if the application or 
QuO has information that leads it to believe that the host should not be used.  

8.1. Interface with the QoS Observer/Requester 

QoS observer/requester objects specify the level of dependability desired of a remote object, and 
receive information regarding the ability of an AQuA-based system to meet that level of dependability. 
These objects can be implemented in a QuO system condition object or as part of an object that makes use 
of the remote object. Five methods are used in the interface between the dependability manager and the 
QoS observer/requester. Three of these methods are implemented in the dependability manager, and 
receive information regarding the desired dependability of AQuA-managed objects. The other two 
methods are implemented in the QoS observer/requester, and receive information about the dependability 
manager’s ability to meet a request.  

The three methods implemented in the dependability manager support the definition of, modification 
of, and removal of QoS requests. The first method, register QoS request, is called to register a new QoS 
request (one that does not replace or supercede any pre-existing request). The argument QoSRequest_info 
is passed with this call and contains the specifics of the QoS request. The update QoS request method 
substitutes a new QoS request for one that was previously registered. The parameters of that call are the 
QoSRequest ID (identifying the QoS that will be updated) and the QoSRequest_info (containing the new 
information concerning the QoS request). Finally, the remove QoS request method eliminates a 
previously registered QoS request without replacing it with a new request. When the dependability 
manager receives a remove QoS request, it adjusts the number of replicas of the referenced object to 
satisfy any other requests that have been made for this object, killing replicas if appropriate. 

The dependability manager calls two methods on QoS observers/requesters: one to indicate that a 
QoS request has become unsatisfied, and another to indicate that a QoS request that had become 
unsatisfied has once again become satisfied. Similarly, the QoS request satisfied method is called when a 
QoS request that previously could not be satisfied (indicated by the QoS request not satisfied call) can 
once again be satisfied. 

8.2. Interface with the Advisor Observer 

An advisor observer object can be used by QuO or an application object that wishes to receive more 
detailed information concerning fault notifications and decisions that the dependability manager advisor 
makes. An object may want this information, for example, to make higher-level decisions on how to adapt 
in a particular situation. To receive this information, each advisor observer implements several methods 
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that may be called by the dependability manager. The types of events and actions an advisor observer is 
notified of depends on the type of information the advisor observer requested when it registered with the 
dependability manager. 

The dependability manager supports multiple advisor observers, which can dynamically register and 
de-register with the dependability manager at runtime. The register Advisor Observer method, called on 
the manager by advisor observers, registers an advisor observer with the dependability manager. When it 
registers, an advisor observer passes a reference to the advisor specifying the methods that should be 
called when events concerning this advisor observer occur, and the types of notifications it desires from 
the dependability manager. Upon a successful return, the register call returns an observer identification ID 
that can be used to de-register the advisor observer, using the remove Advisor Observer method. The 
types of information for which an advisor observer can register are given in the next paragraph. 

Each advisor observer implements several methods, as shown in Table 1, to receive information from 
the dependability manager and to specify the action that is to be taken upon receiving that information. In 
particular, the fault occurred method is called on each advisor observer when the dependability manager 
detects a fault. This method provides, as arguments to the call, the type of fault detected, the host where 
the fault was detected, and the dependable object associated with the fault. All advisor observers receive 
this information, regardless of what other information they requested when they registered with the 
dependability manager. The seven other methods that must be implemented by an advisor observer are 
called on those advisor observers that have requested information related to a particular call. Specifically, 
the notify number of replicas method provides the name of the dependable object to which the call refers 
and the number of replicas of this object in the current system configuration. The remaining calls in Table 
1 provide all the same information as notify number of replicas, plus the name and status information 
(e.g., load) for the host to which the call refers. 

 
 

Method Function 
fault occurred Called when the dependability manager detects a crash failure or value fault. 
notify number of replicas Called when a new QoS request is registered and whenever the number of replicas in 

the replication group changes. 
replica start attempted Called when the dependability manager attempts to start a replica. 
replica kill attempted Called when the dependability manager attempts to kill a replica. 
replica start failed Called when a new replica either could not be started by the object factory or could 

be started but could not join the replication group. 
replica kill failed Called when the replica could not be killed by the object factory and the kill failure 

was reported to the dependability manager. 
replica start successful Called when a replica was started successfully by the object factory, joined the 

replication group, and was reported to the dependability manager. 
replica kill successful Called when a replica was killed successfully by the object factory and was removed 

from the replication group, and the kill was reported to the dependability manager. 

Table 1:  Advisor Observer Callbacks 
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8.3. Interface to the Host Observer/Controller 

The final type of interface that an application or QuO can have to the dependability manager is a host 
observer/controller. Host observer/controllers can receive status information concerning hosts that are 
being used to execute dependable objects, and give instructions regarding hosts that should or should not 
have replicas placed on them by the dependability manager. A host observer/controller gives these 
instructions by suggesting changes in the status of hosts. Depending on a host’s status, it is placed in a 
certain set by the dependability manager. 

The dependability manager has three sets of hosts: an active host set, an inactive host set, and a 
removed host set. When an object factory registers a host with the dependability manager, the host is 
placed into the active host set. When a host observer/controller requests that a host be deactivated, the 
host is placed into the inactive host set. When the dependability manager detects the failure of an object 
factory or a host, the host is placed into the removed host set. Replicas running on removed hosts are 
assumed to have failed. If a host in the inactive host set is reactivated by a host observer/controller, the 
host is moved back to the active host set. If a failed object factory or a failed host is restarted, the host is 
moved from the removed host set to the active host set. The newly started object factory communicates 
with the dependability manager to initiate its state. The dependability manager will not create replicas on 
a host that is in the inactive host set or in the removed host set. It will also migrate the replicas on a host 
in the inactive host set to hosts in the active host set. 

Host observer/controllers register with the dependability manager to obtain information and control 
the dependability manager’s operation. Like advisor observers, the dependability manager supports 
multiple host observer/controllers. Four methods are called by the host observer/controller on the 
dependability manager to register and remove host observer/controllers and to activate and deactivate 
hosts. The method register Observer/Controller registers a host observer/controller with the dependability 
manager. The method deactivate host is used to request that the dependability manager deactivate the host 
specified by the call. When this call is made, the dependability manager will move the host from the 
active host set to the inactive host set, and will also migrate the replicas from this inactive host to hosts in 
the active host set. The method activate host is used to request that the dependability manager move an 
inactive host from the inactive host set back to the active host set. 

Each host observer/controller must implement four methods to receive information from the 
dependability manager. Whether these methods are called depends on the information that the host 
observer/controller requested when it registered with the dependability manager. The method host 
activated may be called 1) when a host that is either in the removed host set or in no host set registers 
with the dependability manager, and 2) when a host that is in the inactive host set is reactivated. The 
method host removed may be called when a host failure or an object factory failure is detected by the 
dependability manager, and the host is moved from the inactive or the active host set to the removed host 
set. This method will be implemented in the future, when the dependability manager is able to detect host 
and object factory failures. The method host deactivated may be called when a host is deactivated by a 
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host/observer controller. The method host information is called by the dependability manager for all hosts 
in the active set if the host information method is enabled. 

9. REPLICATING THE DEPENDABILITY MANAGER 

The dependability manager is an important component in managing a system's dependability, and (if 
not made dependable) a potential single point of failure. In particular, if it crashes, AQuA will not be able 
to continue to provide fault-tolerance management. If that happens, applications' new QoS requests will 
not be handled, and their existing QoS requests will not be able to receive system condition callbacks. 
Also, if crash failures or value faults occur in any object replica, the level of dependability of the 
corresponding system configuration will be decreased, since the system will no longer be able to recover 
from these failures/faults. Therefore, preventing the dependability manager from becoming a single point 
of failure is an important issue in the design of the AQuA architecture.  

Replication 
Group 1

Replication 
Group 2

Object Factory

Advisor Observer

QoS Requester

Host 
Observer/Controller

Dependability Managers

Dashed ovals represent the occurrence of a transient member joining a replication group. 
Dark-colored dots represent the transient group members.

Replication 
Group 1

Replication 
Group 2

Object Factory

Advisor Observer

QoS Requester

Host 
Observer/Controller

Dependability Managers

Dashed ovals represent the occurrence of a transient member joining a replication group. 
Dark-colored dots represent the transient group members.

 

Figure 8: The Dependability Manager Group Structure  

The dependability manager is a non-deterministic application because it not only handles incoming 
requests/replies, but also monitors replicas' states using timers. In order to prevent replicated 
dependability managers from making inconsistent decisions, the passive replication with every-message 
state transfer is used to provide fault tolerance to the dependability manager. In the scheme, the leader of 
the dependability managers checkpoints its state whenever it sends out an output message. Using both 
checkpointing and the message logging in the gateway, the backup dependability manager is able to 
provide consistent decisions when it recovers from the leader failure.  
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The replicated dependability managers form a replication group, and communicate with the other 
application components through two types of approaches: through connection groups and through joining 
replication groups as transient members, as shown in Figure 8. Connection groups are used to 
communicate with the object factories, QoS requesters, advisor observers, and host observers/controllers.  

Sending messages to a replicated object by joining its replication group as a transient member is used 
in three cases: when the leader of a replication group reports persistent group membership changes to the 
dependability managers, when the leaders report value faults to the dependability managers, and when the 
leader of the dependability managers changes the other replicas’ gateway parameters. In all three cases, 
the sender uses a dynamic handler to become a member of the destination group, and then multicasts the 
appropriate messages to the destination group. After that, the sender will leave the group. Dynamic 
handlers require the dynamic joining and leaving of groups. Since the above cases do not happen often, 
frequent joining and leaving of groups should not occur. An alternative to communicating as a transient 
member is to communicate via connection groups. The advantage of communicating as a transient 
member is that it greatly reduces the number of connection groups kept by the dependability managers. 
As a consequence, we can avoid the scalability problem. 

 

10. PERFORMANCE MEASUREMENT 

To benchmark the performance of the active replication with pass-first scheme implemented in 
AQuA, and to test the system’s ability to recover from faults, we studied several test cases. The testbed 
machines used were standard Sparc 10 and Sparc 5 Sun workstations with processor speeds ranging from 
140 MHz to 360 MHz, connected by a 100-Mbps Ethernet link. Up to eleven machines were used in the 
tests. 

10.1.  Performance of Active Replication with Pass-First Scheme 

The performance of the active replication with pass-first scheme is measured using the “deet” 
application, which uses the Visibroker ORB for Java (4.1). The “deet” application [Rub00] is written in 
Java, and makes synchronous remote method invocations. The remote method receives a string as an 
argument and simply returns the string as a return code. The measurement includes the round-trip time 
recorded in the application, and the round-trip time spent on handlers in the client gateway, the server 
gateway, and the group communication subsystem. The application round-trip time is the time from when 
an application sends an invocation until it receives a reply, as shown in Figure 9. In order to measure the 
overhead caused by AQuA gateways, and particularly the replication schemes, the AQuA code was 
instrumented to record the round-trip times. The handler round-trip time is recorded from when TAO 
passes a request to the gateway handler until the handler receives the reply from the group communication 
subsystem and forwards it to TAO, minus the time needed by TAO in the server gateway and the server 
application to process the message. The time spent by TAO in the server gateway and the server 
application is measured from when the server gateway forwards the request to TAO until it receives the 
reply from TAO. In that way, we can determine the overhead in delay caused by the developed replication 
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scheme on both the client and server gateways, and by the group communication subsystem, independent 
of the processing time taken to execute the remote method itself and the time spent in the server 
application’s ORB. This measure can thus give us a good indication of the overall overhead added by 
making the application dependable, and the additional overhead added by the particular replication 
schemes. 

Group
communicationClient ORB ORB FT 

mechanism ServerORB ORBFT 
mechanism

Gateway Gateway

Handler Round-trip Time

Application Round-trip Time

IIOP IIOPGroup
communicationClient ORB ORB FT 

mechanism ServerORB ORBFT 
mechanism

Gateway Gateway

Handler Round-trip Time

Application Round-trip Time

IIOP IIOP

 

Figure 9: Application and Handler Round-trip Times 

In the test, a single (unreliable) client was used to make requests. The server, which implemented the 
remote method described above, was replicated, with each replica running on a different host. The 
performance for the active scheme in fault-free situations with different numbers of server replicas was 
studied. In the study, we ran the instrumented code fifty times to generate each data point. The client was 
placed on the host that was the leader of the replicated servers, so that we could collect the data in the 
client and the gateway of the leader of the replicated servers without requiring clock synchronization 
between the client and server machines. 

In the test, the message size was 100 bytes. The number of replicas, which reflects the level of 
dependability requirements, was increased from one to eleven. The average round-trip times and their 
95% confidence intervals over the fifty runs are listed in Table 2. In Table 2, the first two columns show 
the application and handler round-trip times, and the last column is the difference between the first two 
average values. The first row in the table shows the baseline case, in which the server is not replicated 
(but uses the AQuA infrastructure) and resides on the same host as the client. The remaining rows of the 
table present performance results as the number of faults to tolerate is increased.  

Note that in the three-replica case, the application round-trip time is about 29.11 ms on the average, 
and the handler round-trip time is about 3.88 ms on the average. The difference between the two average 
times is 25.23 ms. This difference includes the time it takes the server to process the request, the time 
spent on TAO ORBs in the gateways and VisiBroker ORBs in the client and the server application, and 
the time spent on communication between the TAO ORB and Visibroker ORB on both the client and the 
server side. The results show that the application round-trip time is in the range of 23.20 ms to 34.51 ms 
for one to eleven replicas, where the handler round-trip time is in the range of 3.01 ms to 5.48 ms. The 
handler round-trip time is thus about 10% to 16% of the total application round-trip time. Therefore, most 
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of the application round-trip time must be spent on the TAO ORB and the communication between the 
TAO and the VisiBroker ORBs. 

In order to show clearly the effect of varying the number of replicas, the application and handler 
round-trip times are plotted in Figure 10. From the figure, we can see that as the number of replicas 
increases, the handler round-trip time increases slightly. This performance increase is caused by the group 
communication system, since in order to ensure reliable and totally ordered message delivery, the cost of 
group communication grows with the size of the group. 

 

Application Round-trip Time 
(ms) 

Handler Round-trip Time 
(ms) 

Number 
of 

Replicas Mean Confidence    
Interval 

Mean Confidence  
Interval 

Time 
Difference 

(ms) 

1 23.20   (22.30, 24.09) 3.01 (2.82, 3.19) 20.19 

2 27.20 (26.35, 28.04) 3.13 (2.93, 3.33) 24.07 

3 29.11 (28.05, 30.16) 3.88 (3.74, 4.01) 25.23 

4 30.54 (29.61, 31.46) 4.13 (3.96, 4.29) 26.41 

5 31.46 (30.48, 32.43) 3.83 (3.67, 3.98) 27.63 

6 31.72 (30.17, 33.27) 3.77 (3.49, 4.04) 27.95 

7 32.99 (31.94, 34.03) 3.82 (4.54, 5.09) 28.17 

8 33.24 (31.96, 34.31) 5.45 (5.21, 5.68) 27.79 

9 33.70 (32.64, 34.75) 5.06 (4.75, 5.36) 28.64 

10 34.51 (33.31, 35.70) 4.96 (4.77, 5.14) 29.55 

11 34.17 (33.12, 35.21) 5.48 (5.21, 5.74) 28.69 
 

Table 2. Round-trip Times of Active Replication Pass-First Scheme with Different Numbers of Replicas      
(Message Length = 100 bytes, 95% Confidence Level) 
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Figure 10: Active Replication Pass-First Scheme with Different Numbers  
of Replicas (Message Length = 100 bytes) 

10.2.   Performance Results for Fault Detection and Fault Recovery 

In this section, we present the performance results for fault detection and recovery in AQuA. The 
Maestro/Ensemble group membership protocol is used to detect crash failures. Recall that in this protocol, 
each group member periodically multicasts “I am alive” messages. If an “I am alive” message is not 
received within a particular period of time, which is defined as the fault detection threshold, the group 
member is considered to be crashed. In the test, we used the “pinger” application, which is written in C++ 
and uses the TAO ORB to communicate with the gateway. In this application, the message invocation 
sent from the pinger client to the replicated servers is a string. The replicated pinger servers return the 
same string back to the client as a reply. We caused a crash failure in a replica by having a QoS requester 
decrease its requested level of dependability by 1; the time at which an object factory killed a replica was 
recorded as the time that the replica crashed. In the test, the dependability manager, the object factory that 
was used to kill the replica, and the leader of the replicated servers were located on the same host. 
Therefore, we could collect data on them without requiring clock synchronization between different 
machines. We ran this experiment ten times for each case we studied. In the following figures, we show 
the average time this took over the 10 runs. The fault detection threshold was set at 3 seconds for each 
run. In the test, there are two replicated dependability managers and three server replicas. We crashed one 
of the nonleader replicas.  

Figure 11 illustrates the fault detection times. In AQuA, the total crash failure fault detection time 
includes two parts. The first part is the time from when a replica crashes until the other replicas remove 
the crashed member from the group and receive a group view change, as shown in parts (1) to (2) of 
Figure 11. The second part is the time that it takes the leader of the replication group to report the new 
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persistent group membership to the dependability manager, as shown in parts (2) to (3) of Figure 11. 
From the figure, we can see that most of the fault detection time was taken by the gateway in detecting 
replica crash failures. In particular, the time used to report faults to the dependability manager was only 
about 0.09 s. However, it took the gateway 3 seconds to detect crash failures. That time is determined by 
Maestro/Ensemble's fault detection threshold.  

Figure 12 shows the time it took the dependability manager to return to the requested level of 
dependability. In AQuA, the time to recover to a requested level of dependability consists of three phases. 
The first phase lasts from when the dependability manager sends a StartReplica command to an object 
factory until the object factory successfully creates the replica process, as shown in parts (1) to (2) of 
Figure 12. The second phase lasts from when the new replica is created until it joins the replication group 
(parts (2) to (3) of the figure). The third phase is the time it takes the leader of the replication group to 
report the new persistent group membership to the dependability manager (from (3) to (1) in the figure). 
From the figure, we can see that the time involved in recovering to the requested level of dependability 
consists mostly of time taken by the new replica in beginning its execution and joining the appropriate 
replication group (about 5.16 s). We also measured the time for the “pinger” application to begin 
execution when AQuA was not being used (about 67 ms). We can thus see that most of the time is taken 
by the new replica in joining its replication group. The time spent sending commands from the 
dependability manager to the object factory and the time spent reporting the persistent group membership 
to the dependability manager are relatively small. It can also be observed from the table that it takes the 
dynamic handler slightly more time (about 0.05 s) to report the view change to the dependability manager 
than it takes the connection groups to communicate between the dependability managers and the object 
factories. The reason is that the dynamic handler needs to take extra time to join the replication group.  
 
 

(1) A replica crashed
(2) The crashed replica is removed from the group 

The leader reports the view change to the dependability managers
(3) The dependability managers receive the view change report

Replication Group i Replication Group i

Leader Leader
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Managers

view change

(1) (2) (3)

( 3.15 s ) ( 0.09 s )

(1) A replica crashed
(2) The crashed replica is removed from the group 

The leader reports the view change to the dependability managers
(3) The dependability managers receive the view change report
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Figure 11: Crash Failure Detection Time (Fault Detection Threshold = 3 seconds) 
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(1) The dependability manager sends a command to start a replica
(2) The object factory creates the replica 
(3) The leader reports the view change to the dependability managers
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(1) The dependability manager sends a command to start a replica
(2) The object factory creates the replica 
(3) The leader reports the view change to the dependability managers
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Figure 12: Time Spent Returning to the Requested Level of Dependability 
(Fault Detection Threshold = 3 seconds) 

10.3. Replica Blocking Time 

When a leader of a replication group dies, or when a new replica obtains the current state from an 
existing replica, the replicated server object is not available to provide services for a period of time, due to 
the changes in the AQuA configurations. We call this period of time the blocking time. Blocking time is 
important since it affects the availability of services. The blocking happens in two cases. The first case is 
the transfer of state to a new replica. During a state transfer, the replication group is blocked. The group 
communication system prevents the group members from receiving or sending out any messages other 
than the state transfer message. This blocking time lasts from when a new replica sends out a state request 
message to Maestro until it receives the state back from Maestro. To estimate this, we measured the 
blocking time with various application state sizes. The results are shown in Table 3. From the results, we 
can see that the blocking time increases with the size of the application state (the gateway state and the 
ORB state are fixed). When the state is larger, it takes more time for an existing replica to capture its state 
and for the group communication system to forward the state back to the new replica.   

The second case in which the blocking time occurs is the failure of a leader. For all of the replication 
schemes, the leader is responsible for forwarding a request/reply to the receiver replicated object. If a 
leader fails, the group communication system takes a period of time to detect the leader failure and to 
elect a new leader. During that period of time (the blocking time), the nonleader replicas are unable to 
forward messages to the receiver replicated object. The time it takes the gateway to detect crash failures 
(about 3.15 s) represents this part of the blocking time. In addition, for the pass-first replication scheme, 
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the blocking time also includes the time that it takes the group members to resend the messages stored in 
the point-to-point buffer to the new leader; this additional time depends on the number of messages in the 
buffer, and the size of the messages, which is application-specific.  
 

State Size 
(bytes) 

Blocking Time 
(s) 

State Size 
(bytes) 

Blocking Time 
(s) 

1000 0.23 6000 2.35 
2000 0.60 7000 3.07 

3000 0.82 8000 3.62 

4000 1.30 9000 4.86 
5000 1.84 10 000 5.32 

 
Table 3. Blocking Times with Various Application State Sizes: A New Replica Joins a Replication Group  

11. CONCLUSIONS 

This paper presented an overview of the AQuA architecture, which provides a flexible and extensible 
approach to building dependable, object-oriented distributed systems. Systems built using the AQuA 
architecture support adaptation to changes in system resources due to both faults in the environment and 
changes in an application’s dependability requirements.  

In AQuA, Proteus provides a flexible infrastructure for providing adaptive fault tolerance to CORBA 
applications. Our design permits an application to change the level of dependability that it requires, 
including the type of faults that should be tolerated dynamically during its execution. In order to make 
this possible, we have designed Proteus in a modular way, developing a scalable group structure and a set 
of communication algorithms that preserve needed communication properties during intergroup 
communication. Gateways were designed that make use of this group structure and support multiple 
replication and communication schemes through the use of different handlers. The implementation 
presented in this paper includes support for the active replication with pass-first scheme to tolerate crash 
failures, and a dependability manager policy that permits changing the degree of replication and 
placement of replicas during execution based on the dependability desires of an application. In addition, a 
graphical user interface for the dependability manager and object factories was developed to allow the 
functioning of Proteus to be monitored as it responds to dependability requests from applications and 
faults that occur. A user can monitor changes in membership that occur in replication and connection 
groups and in assignment of objects to hosts. Finally, performance measurements were taken for the 
active replication with pass-first scheme. The fault detection, recovery, and blocking times were also 
studied. The results show that AQuA has the ability to detect failures quickly, to recover from them, and 
to have short replica blocking times. 
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