Course Notes 1.2 Fall 01/02
94.201
Page 1 of 5

Notes on Indirect Addressing

Addressing modes provide power and flexibility in accessing memory operands. The direct mode is a static addressing mode that requires the address of the variable to be known at the time the program is assembled. The direct mode is simple to use, but it is not flexible enough to provide a general method for accessing composite structures (such as arrays and records), and cannot be used to address operands dynamically. Dynamic addressing allows an address to be determined at run-time rather than during assembly. For example, a loop that processes the elements of an array sequentially requires each iteration through the loop to access a different array element. If the loop used a MOV instruction to access the elements, then the direct mode could not be used since it would always access the same element (rather than sequential elements). What is needed is an addressing mode that allows each execution of the MOV instruction to access a different element – doing this requires some addressing information to be specified dynamically. As introduced previously (in Notes on the Processor), the indirect addressing modes allow memory operands to be addressed dynamically.

The register indirect mode for accessing memory variables was introduced previously. The mode allows one of the BX, BP, SI, or DI registers to be specified as the addressing register that contains the address of the variable of interest. The actual variable accessed by a register indirect operand depends on the value in the addressing register when the instruction is executed. For example,

MOV
[BX] , AL

will store the contents of AL in the memory locations addressed by the contents of BX. Suppose that the instruction was placed in a loop such that it is incremented just after execution:

Loop:

. . .

MOV
[BX] , AL

ADD
BX , 1

. . .

JMP
Loop

Each iteration through the loop would store the value in AL at a different address – the memory operand is specified dynamically as depending on the value in the BX register. The value in the BX register at the time the instruction is executed determines the memory location that is accessed.

The register indirect mode could be used to access composite structures (as suggested by the array-like example above), however, there are more powerful indirect modes that are designed for this purpose. An array is a composite structure consisting of a collection of elements, all of which are of the same type (e.g. bytes or words). A record (a struct in C++) is also a collection of elements, although the elements are not necessarily of the same type (i.e. the elements in a record may have different memory requirements). It is possible to have an array of records, or to have an array as an element in a record. In programs, the elements of a composite structure are stored in contiguous memory locations. Accessing a particular element of a structure often involves two pieces of information: the start address of the structure in memory, and the offset into the structure to reach the element. The register indirect addressing mode can accommodate only a single address (such as a structure’s start address), and is not flexible enough to deal with a second piece of addressing information (such as an offset into a structure). The indexed, based, and based-indexed addressing modes are more powerful than the register indirect addressing mode, and allow additional addressing information to be specified when accessing composite structures.

The (indirect) indexed addressing mode is similar to the register mode, except that an additional constant value is specified along with the addressing register. The processor adds the constant value together with the addressing register’s value to calculate the address of the memory operand to access. The calculation is performed in a temporary register, and the addressing register is not modified. For example, suppose that an array of 4 bytes has been declared:

X:
DB

DB

DB

DB

The array might be processed in a loop:

MOV
BX , 0

; BX = offset into array

Loop:

MOV
AL , [BX + X]

ADD
BX, 1

. . .

; process element in AL

CMP
BX, 4

JB
Loop

In the example, the dynamic access to array elements is achieved using the indexed operand:

[BX + X]

The label X denotes the start address of the array, which is a constant and known when the code is assembled. When the instruction is executed, the processor uses a temporary register to add the value in the BX register together with the (constant) value X to obtain the actual address of the byte to be accessed. By incrementing BX each time through the loop, the loop accesses the elements of X sequentially.

The indexed mode can also be used to access a field in a record (i.e. an element in a struct); however, the constant addressing information provided is typically the offset of the field of interest into the structure. Suppose the following record exists:

DateREC:
; a record that holds a date

Day:
DB

; day field: offset into record = 0

Month:
DB

; month field: offset into record = 1

Year:
DW

; year field: offset into record = 2

To access the fields of the record, the start address of the record can be placed in an indirect addressing register (one of BX, BP, SI or DI), and then using the indexed mode with the offset to the desired filed specified as a constant. For example:

MOV
SI, DateREC

MOV
AL , [SI + 0]

; get day

MOV
BL , [SI + 1]

; get month

MOV
CX , [SI + 2]
; get year

The (indirect) based addressing mode provides more power and flexibility than the indexed mode by allowing two addressing registers to be specified. At run-time, the values in the two registers are added together to arrive at the memory operand’s address. There are limitations as to which registers can be used:

· one of the registers must be either BX or BP
· if BX is used, then other register must be either SI or DI
· if BP is used, then other register must be either SI or DI
As a result, the following combinations are the only ones permitted in the based mode:

[BX + SI] , [BX + DI] ,

[BP + SI] , [BP + DI]

The (indirect) based-indexed addressing mode extends the based mode to allow a constant value to be specified in addition to the based addressing registers. At run-time, the values in the two addressing registers are added together with the constant value to arrive at the memory operand’s address. The resulting permitted forms are:

[BX + SI + constant] , [BX + DI + constant] ,

[BP + SI + constant] , [BP + DI + constant]

The based and based-indexed modes are often used to access composite structures that have dynamic start addresses, for example, from subroutines (functions) that are designed to operate on a structure that is passed as a parameter to the function. The modes will be discussed again when dealing with subroutines.

Notes on Stack

A stack is a mechanism that allows data to be stored temporarily in a convenient manner. The abstract intention of a stack is to allow data values to be piled up (stacked), much like sheets of paper can be piled up to form a stack of paper. When adding a value to the stack, it is placed on top of the other values in the stack. When removing a value from the stack, the value that is currently on the top of the stack is the value that gets removed.

A stack may be implemented using a contiguous block of memory and a “top-of-stack” pointer. The block of memory is used to hold the data values stored in the stack. A pointer is a variable. The value stored in a pointer is a memory address. The value of the top-of-stack pointer is the address in the block of memory where the value currently on the top of the stack is stored. For reasons that will be discussed later, stacks are often designed to grow “down” from higher to lower addresses in the block of memory. When a value is added to the stack, the top-of-stack pointer is first adjusted to point to a memory location just above the value that was previously on the top of the stack. The value being added to the stack is then copied into the memory location referenced by the top-of-stack pointer. The value has been added at a lower address than the value that was previously on the top of the stack, and therefore, the stack is seen as growing down in memory. When removing a value from the stack, the value is copied from the location referenced by the top-of-stack pointer, and then the top-of-stack pointer is adjusted to point to the value immediately below the copied value. The copied value has been effectively removed from the stack, and the value below it in the stack has become the value that is now on the top of the stack.

The contents of a stack consist of the data values that reside in memory between the address referenced by the top-of-stack variable and the last memory location in the block.

Stacks are widely used in programs, and processors typically include instructions that manipulate stacks. Most processors maintain a special stack called the run-time stack. The p86 supports a run-time stack that holds 16-bit values. The p86 processor register set includes the Stack Pointer (SP) register, and the instruction set includes the PUSH instruction (to add a value to the stack) and the POP instruction (to remove a value from the stack). To implement a run-time stack in a p86-based system, a block of memory must be allocated to store values, and the SP register must be initialized to point to the first byte of memory that follows the block (it might seem odd that SP is initialized to an address that is outside the block, but this condition only exists when the stack is empty – wait until the PUSH operation is discussed!).

The PUSH operation adds a 16-bit value to the top of stack. The general form of the instruction is:

PUSH
src

where src may be a 16-bit register, or a reference to a 16-bit word of memory

NOTE: immediate values cannot be pushed onto the stack

In the execution of the instruction, the SP register is first decreased by 2 (remember, 16-bit values require 2 bytes of memory), and then the value being pushed is copied into the memory referenced by SP. The effects of the execution can be summarized as:

SP := SP - 2

mem[SP] := src

Recall the suggestion that SP should be initialized to point to the memory location that immediately follows the block of memory reserved for the stack. The first PUSH instruction that is executed will cause SP to be decremented to point into the reserved block BEFORE the value being pushed is copied into the stack. Even though SP points outside the reserved block when the stack is empty, only the reserved block is used to store values.

The POP operation copies and removes the 16-bit value from to the top of the stack. The general form of the instruction is:

POP
dest

where dest may be a 16-bit register, or a reference to a 16-bit word of memory

In the execution of the instruction, the 16-bit value stored in the memory referenced by SP is copied to dest, and then the SP register is increased by 2. The effects of the execution can be summarized as:

dest := mem[SP]

SP := SP + 2

Values in the stack can be read, providing their offset from the top of the stack is known. When the offset is known, an indexed or based addressing mode can be used to select a particular element. Since the SP register points to the top of the stack, it might be tempting to hope that an addressing mode might permit SP to be used to access the values. Unfortunately, there is no addressing mode that allows SP to be used for this purpose. Therefore, one of the registers permitted for these modes (i.e. BX, BP, SI, or DI) must be used. For example, suppose it is desired to read the value of the 3rd element in the following stack:

The following code fragment might be used:

MOV
 BP, SP

; set up BP for stack access

MOV
 AX, [BP + 4]
; read 3rd element of stack

In general, the BP register is widely used as the addressing register to access the run-time stack (the reason for this will become more clear in 94.203!). Keep in mind that the run-time stack contains 16-bit values, and therefore, the offset between values is always 2 bytes.

uses indexed mode to access array elements

stack

1st element

SP

 + 2

2nd element

 + 4

3rd element

 + 6

4th element

Copyright (Trevor W. Pearce, October 10, 2000

For use in the 94.201 course only – not for distribution outside of the

Department of Systems and Computer Engineering, Carleton University, Ottawa, Canada

