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Abstract 

 

Dementia and Mild Cognitive Impairment (MCI) are significant health issues that 

are a rising cost to society. They are monitored with cognitive tests during clinical 

appointments that are limited by the healthcare system capacity and patient’s 

ability/willingness to attend. Current cognitive tests use behavioural measures and 

not direct measures of underlying cellular change.  This causes delay in 

identification through a patient’s ability to compensate (reminder notes) to mask 

symptoms. 

This work presents measurement methods for cognition between clinical 

appointments using an integrated approach for episodic cognition assessment. 

Methods assess the patient during Instrumental Activities of Daily Living (IADL) 

within an episodic measurement framework. 

Electroencephalogram (EEG) / Event Related Potential (ERP) methods are 

presented as an emerging alternative means to detect changes in the brain. Recent 

consumer EEG devices make at home use a future possibility. ERP features for 

healthy and MCI volunteers are defined, analyzed and machine learning identified 

two features to distinguish the two cases with 1 False Positive and 1 False Negative 

error in a group of 32 subjects. 

The measurement of two IADLs is presented: Computer game play and Driving. 

Two games were developed and piloted with MCI volunteers showing they could 

indicate cognitive change. The work presents game design needs including hint 

and measurement subsystems.  

Driving is a complex task that combines executive cognitive tasks (navigation) 

with over-learned cognitive tasks (turn signal use).  The work presents measures 

of driving behavior creating a driver unique signature. Machine learning techniques 

show that the features will allow two drivers of a shared vehicle to be distinguished 

from each other with an error rate as low as 1.5%.  Navigational performance 

measures are presented for driver trip planning to indicate executive function 
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showing a Google maps derived reference provides best performance. Turn signal 

use is an over learned action that is measured through detection of turn signal use 

from dashboard video along with GPS and map methods to determine when signals 

were required. 

The work presents big data analytics and methods to ensure the anonymity of 

volunteers is preserved through presentation of k-anonymity and differential privacy 

methods within the data sets.  

The measures are combined through the episodic measurement framework for 

a more holistic view of the patient. 
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Chapter 1:   Introduction 

  

1.1. Problem 

As people age, a small amount of cognitive change can be expected, related to 

brain aging.  In contrast, an increasing number of aging adults are developing 

functional impairments related to loss of cognition that are clinically described in the 

early stages of decline as Mild Cognitive Impairment (MCI). Early detection of MCI 

is essential as early treatment may delay transition to dementia. The measurement 

of cognition and change in cognition is currently limited to tests performed by 

clinicians during appointments, which occur infrequently because of their cost, time 

and inconvenience. 

1.2. Overview 

Dementia and age related cognitive decline is a significant health issue for 

individuals and their families and also a rising cost to the healthcare system and 

society to provide the care needed. More significant decline, described as MCI, may 

be an intermediate stage of cognition between normal healthy and dementia. A 

foundation for the diagnosis and treatment of cognitive decline is the ability to detect 

cognitive changes within patients that are beyond the normal effects of aging. It is 

most commonly identified through cognitive tests performed by clinicians during 

annual or biannual medical appointments.  
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These tests have a number of limitations: the capacity of the healthcare system 

and patient’s ability/willingness to see their doctor limits the frequency that they can 

occur. Current cognitive testing is limited to measurement of behavioural changes 

and not direct measures of biological change that is causing decline.  The ability of 

the brain and the patient to compensate (e.g. writing a reminder note) may mask 

the symptoms and delay identification of issues until long after they have started to 

occur.  This leads to the need for alternative measurement methods for cognition 

that can occur between clinical appointments and also provide measures prior to 

significant behavioural symptoms have been observed. 

This work presents an integrated approach for episodic cognition assessment 

for the ongoing measurement of cognition through the measurement of the patient 

as they go about their daily activities and routines.  This work focuses on methods 

for the ongoing measurement of cognition within an older population. An Episodic 

Measurement Framework that brings a diverse set of Instrumental Activities of Daily 

Living (IADL) into a single summary for a patient is presented and then specific 

measurement methods are presented for the ongoing measurement of cognitive 

ability. 

Electroencephalogram (EEG) / Event Related Potential (ERP) methods are 

presented as an emerging alternative means to detect cognitive change at the brain 

electrical activity level. The emergence of consumer EEG devices makes the use 

of EEG based testing at home a future possibility. The work defines and measures 

a set of features of the ERP and associated behavioural measure while healthy and 

MCI volunteers performed a 1-back test.  The features were analyzed to identify 

features both alone and in combination that allowed the correct classification of the 

participants.  A feature pair is identified that provides the best 2 feature performance 

(1 FP and 1 FN error in a 32 subject group) with a third feature providing additional 

improvement.   

The ongoing measurement of IADLs between clinical appointments is explored 

through two different activities.  Computer use and specifically game play is 

presented where two games were developed and piloted with a group of MCI 

volunteers.  The work shows the potential for game based measurement of ability 
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and presents a number of aspects relevant to the choice of games including 

ensuring games are appropriate and familiar for the older target users (word search 

and Sudoku), they support the needs of the target users (hint system) and that they 

include measurement subsystems to capture the details of the game play.  The 

games were pilot tested and the results suggest the games provide measures that 

could indicate cognitive change. 

Driving and the measurement of driving is also presented as this is a complex 

task that combines many executive cognitive tasks (where am I going and how do 

I get there) along with many over-learned cognitive tasks (signaling an upcoming 

turn).  The work specifically explores three main aspects of driving:  

Signature Analysis where the driving behaviours of drivers are explored to 

identify features that differentiate between drivers.  The work presents a method to 

measure many features of a driver’s behaviour and then uses these features along 

with machine learning to show that the features will allow two drivers of a shared 

vehicle to be distinguished from each other with an error rate as low as 1.5%.  

Behavioural measures have application in emerging self-driving vehicle where 

owners want their car to drive more like them. 

Navigational Analysis where the driver’s choice for destination order within a trip 

and navigational choices between destinations provide indications of executive 

cognitive function.  The work presents methods for the analysis of navigational 

performance for trips with comparisons against a posteriori generated reference 

measures for a trip.  The work shows that a Google maps derived reference 

provides best performance. 

Vehicle Operation, where a driver’s over learned actions can be measured and 

monitored, are explored through the measurement of turn signal use. The work 

presents methods for the detection of turn signal use from dashboard video along 

with methods to determine a posteriori that signals were required through analysis 

of trip GPS data and Google map supporting trip turn instructions.  The work shows 

that turn signal use can be measured. 
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All of the work depends on Big Data Analytics and methods that have been 

presented to process the vast amounts of information that are available from sensor 

systems such as the Candrive data set. This set includes 256 older drivers with on 

average over 18,000km/yr of detailed driving data being available for each 

participant.  The work presents methods required to ensure the anonymity of 

volunteers is preserved through presentation of a k-anonymity and differential 

privacy methods. 

1.3. Collaborators 

My thesis supervisors: Dr. Rafik Goubran through his expertise in data analytics 

and engineering and Dr. Frank Knoefel through his expertise as a researching 

medical doctor with a practice focused on dementia and MCI provided significant 

guidance, ideas and asked lots of tough questions to focus and move the research 

forward.  

Driving Study: Dr. Shawn Marshall through his role of principal investigator on 

the Candrive project and Dr. Michelle Porter who led the research design for the 

sensor system and methods for Candrive provided driving data, identified many 

challenges and provided many guiding insights into the Candrive data.  Andrew 

Smith analyzed the Candrive participant assessments to identify the triple stable 

drivers used for this study. Dr. Holly Tuokko and Dr Anita Myers as part of the 

Candrive team, created the driving comfort scale measures. Mike Rockwood's 

thesis work associated with acceleration measurement through smart phone based 

sensors enabled the analysis of the acceleration measurement methods for the 

Candrive data.  Akshay Puli, Phil Masson, Hannah Hladkowicz and Madeline 

Harlow as an undergraduate students and Akram Alahel as a graduate student 

provided their talents assist in the processing and analysis of the big data sets of 

Candrive data.  

EEG/ERP and Gaming Study: Dr. Vanesa Taler and Rocio Lopez-Zunini 

provided the leadership and expertise on EEG/ERP measurements and through 

Dr. Taler's lab enabled the actual measurements for the studies.  Dr. Michael Breau 

and Dr. Lisa Sweet provided their leadership to the MCI Games project as 
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practising clinicians including the assessment of patients as potential participants 

in the studies. Melissa Donskov, Courtney Lord, Aaron MacCosham, Cassandra 

Morrison, Briana Allard and Caroline Gaudet through their roles as research project 

managers and research assistants supported the MCI game study through 

recruitment, participant sessions and data analysis. Vilas Joshi and Anissa Shaddy 

analyzed the captured data and proposed features measured from the Carleton 

games, while Mihaela Petriu and Alex McAvoy created the Carleton games under 

my direction. Zhaofen Ren assisted in the processing of ERP data. 

1.4. Statement of Originality 

The contributions of this research are summarized below: 

1.4.1. Episodic measurement framework 

The ongoing measurement of cognition, through measurement of the 

performance of IADLs by the patient, creates the need for the fusion of these 

diverse sources of information into a single view of the patient as they will perform 

many different IADLs through-out their day and week.  This work presents the 

episodic framework as a model for the fusion of the measures (refereed 

conferences [1]). 

Major Contribution 1: Proposed an episodic measurement framework that 

allows ongoing measurement of cognition through periodic sensing, measurement 

and classification of IADLs. 

1.4.2. EEG/ERP cognition measurement 

The Electroencephalogram (EEG) used in conjunction with the Event Related 

Potential (ERP) technique is studied as it provides as one potential sensor and 

measurement method for the biological processes in the brain through 

measurement of the brain’s electrical activity.  The analysis and classification 

methods are presented for EEG/ERP measurements that distinguish healthy 

controls from patients with Mild Cognitive Impairment (MCI) (refereed conferences 

[2-7]). 
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Major Contribution 2: Identification of the best 2 features from a set of 314 

ERP derived and 4 behavioural measurements that allow HC to be distinguished 

from MCI subjects.  

Minor Contribution 3: Proposed signal processing techniques for noise 

filtering, outlier detection and removal, and spatial filtering of EEG to achieve ERP 

signals.  The method for outlier detection is a simple technique to remove ocular 

effects that is generally applicable to the capture of EEG traces. A short test interval 

and subject supervision ensure no poor sensor contact related affects. Should they 

occur, the test can be redone.  

Minor Contribution 4: Identification of the best 4 classification algorithms from 

a set of 23 that allow HC to be distinguished from MCI subjects with Fine KNN 

shown to provide the best performance. 

1.4.3. Computer Games cognition measurement 

The work presents two computer based games that were developed as a method 

to measure cognition. The games were specifically developed with the capabilities 

required for the measurement of cognition and the features to make the games 

accessible to an older user population. The games were chosen as they are 

appropriate for the target group of older users (refereed conferences [8, 9]). 

Major Contribution 5: Proposed potential performance measures within game 

performance and identified measures that were indicative of cognitive ability and 

change. 

Major Contribution 6: Proposed generalized feature requirements for the 

design of games for use within studies of MCI patients.  Requirements include the 

instrumentation of games to capture the necessary research data, a hint system to 

assist in play and a detailed results recorder for the capture of game performance. 

Minor Contribution 7: Proposed specific signal processing techniques for 

outlier removal, filtering and measurement of game performance. 

1.4.4. Driving cognition measurement 

Driving is a very complex cognitive task including executive function tasks such 

as trip and route planning through to highly trained and learned tasks such as turn 
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signal use.  The measurement of driving is presented in three sections with an initial 

focus of measurement of driving behaviours that are unique to the driver, the 

measurement of navigational performance as an indication of cognitive ability and 

the measurement of turn signal use as one measure of vehicle operation (refereed 

journals [10] and conferences [12-21]). 

Major Contribution 8: Proposed two-phase behaviour models for deceleration 

and acceleration that provide driver unique behavioural features.  These features 

were identified through analysis of large data sets of longitudinal acceleration 

records and provide a model that can be used for driver differentiation and for 

personalization of self-driving vehicles so that the drive reflects more the owner’s 

preferences. 

Major Contribution 9: Identified features from a set of 162 driving behaviour 

measurements that allowed each of 91 pairs of drivers to be differentiated from 

each other.  Identified features that provide no/limited value for any pair.  Showed 

that optimal features differ between driver pairs.  

Major Contribution 10: Identification of the best classification algorithms from a 

set of 23 to allow driver pairs to be differentiated.  Again showed that algorithm 

performance varied between driver pairs. 

Major Contribution 11: Proposed measurement models for navigational 

performance, including methods to generate comparative distance measures for 

trip, identification of optimal comparative driving paths, method to create a baseline 

reference and comparative method for trip to baseline along with scoring.  Identified 

a generalized method based on Google maps a posteriori reference data that 

provided the best performance that can be applied to road navigational research. 

Major Contribution 12: Proposed measurement models for turn signal use and 

performance, including algorithm and method to detect turn signal use from 

dashboard lamps, algorithm to detect turns from GPS data, algorithm to re-

reference GPS trace to turn-by-turn instructions and pull signal use and method to 

re-align temporal ordered list to route driven. 
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• Proposed generalized method for detection of image information captured 

by video from a display where camera orientation and position cannot 

ensure co-planarity, constant position or no vibration. 

• Proposed generalized method for the identification of longer-term events 

within a video stream where the long term event consists of a sequence of 

non-continuous shorter term events.  Applied to the specific case of a turn 

signal being indicated by ongoing lamp flashing on a dashboard. 

• Proposed generalized method using a posteriori Google maps reference 

data to find turn information for road navigational research. 

• Proposed method to fuse results from turn by turn analysis of GPS data with 

turn information from Google navigational references to provide a single turn 

signal reference. 

Minor Contribution 13: Identification and analysis techniques for large data 

sets of driving data for features that identify a driver through their behaviours, 

including acceleration and deceleration profile curves, velocity models, time of day, 

duration, distance and road choice. 

Minor Contribution 14: Proposed novel methods for the detailed analysis of the 

measurement of acceleration from GPS signals with the resulting categorization as 

acceleration and deceleration events.  Features of these events were measured 

allowing events to be contrasted on many different attributes leading to two-phase 

behaviour models for deceleration and acceleration that allow drivers to be 

distinguished. 

1.4.5. Big Data Analytics 

The study of the ongoing performance of IADLs through sensors leads to the 

capture of longitudinal data for the patient and these datasets can become quite 

large as they capture the evolution of the patient's ability over months and even 

years. The work presents contributions that address the needs for the preparation 

of the large datasets for analysis including quality assurance to ensure data 

integrity, anonymization techniques to ensure privacy and augmentation of 
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longitudinal sensor data post capture from reference data sources such as digital 

map data-bases (refereed conferences [11, 20] and journals [10]). 

Major Contribution 15: Proposed generalized method to ensure privacy and 

anonymity within longitudinal data sets of GPS, GIS and weather information and 

specifically presented its application within long-term driving data set. Proposed 

method ensures differential privacy and k-anonymity of the data sets. 

Minor Contribution 16: Proposed method for the analysis of long-term 

longitudinal driving data.  The methods include general techniques that can be 

applied to GPS data sets for outlier detection and removal and associated 

automated quality analysis of large datasets. 

Minor Contribution 17: Proposed implementation methods for the data fusion 

and augmentation with additional resources such as GIS mapping systems. 

1.5. Organization 

After providing an overview on cognition measurement methods within a clinical 

setting and reviewing the current literature associated with the monitoring and 

measurement of ADLs and IADLs, this thesis presents the work on cognition 

measurement through ongoing measurement of patient activities and behaviours. 

It starts by providing an overall framework for cognition measurement and then 

explores each of the specific measurement methods proposed, starting with 

EEG/ERP techniques and then computer game based techniques. Driving is 

presented through three distinct measurement models that include behaviours that 

allow drivers to be distinguished followed by measurement of driver navigation and 

vehicle operation. 
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Chapter 2:   Background Review 

 

2.1. MCI and Dementia - the Medical Challenge 

As people age, a small amount of cognitive change can be expected, related to 

brain aging.  In contrast, an increasing number of aging adults are developing 

excessive impairments related to loss of cognition that are clinically described in 

the early stages of decline as Mild Cognitive Impairment (MCI) which is an 

intermediate stage of cognition between normal healthy that may transition to 

dementia with its associated functional impairments [22]. Eventually, 10% of the 

patients identified with MCI transition to dementia annually. The most frequent 

cause for dementia is Alzheimer’s Disease. The World Health Organization 

estimates that worldwide, 47.5 million people are living with dementia and by 2030 

it is projected to be 75.6 million [23]. In Canada, the number of adults with dementia 

is expected to more than double from 250,000 (1994) to 592,000 (2021) [24]. 

Dementia though is a significant health risk for individuals as it affects all aspects 

of their quality of life, leads to costly burdens on the patient's family and/or 

healthcare system to provide care and supports that the patients require to live 

safely.  

It has been shown [25,26,27] that early intervention (e.g. increase cognitive 

activity through social interaction and activities) is important to achieve optimal 

outcome for dementia patients. This leads to the need to identify and intervene 

during the MCI phase but standards for diagnosis of MCI [25, 26] remain a 
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challenge. Most dementia clinics perform a base-line series of blood tests and brain 

scans, and repeat neuropsychological testing from 6 months to annually for persons 

with MCI to determine if there has been progression. 

2.2. Clinical Measurement of Cognition 

2.2.1. Neuropsychological Testing 

The measurement of cognitive ability within a clinical setting is typically done 

through the application of standardized clinical tests such as Mini-Mental State 

Examination [28], Repeatable Battery for the Assessment of Neuropsychological 

Status (RBANS) [29], Trail Making Test A & B [30], and Montreal Cognitive 

Assessment (MoCA) [31].  Each of these tests is performed by a trained practitioner 

and test the patient's memory, language and other cognitive functions helping lead 

to diagnosis.  

The tests have different but compatible diagnostic objectives. The MoCA test is 

a 10-minute test that can be used by primary care physicians to help detect MCI. It 

includes a number of simple subtests such as visuospatial (drawing an analog clock 

with a specific time), naming (animal identification), memory (word lists), attention 

(letter identification), language (creating a list of words), abstraction (word similarity) 

and orientation (date and location). The MMSE is a 5 to 10-minute test using a 

questionnaire that includes registration, calculation, attention, language, recall, 

ability to follow commands and orientation. The Trail Making Test A & B consists of 

two tests where the subject is asked to connect a set of labeled dots in numerical 

order (A test) and in a 1-A-2-B-3 etc. order (B test), This provides a measure of 

visual search speed, scanning, processing speed and set-shifting ability. The 

RBANS test is a more detailed test of cognition that takes approximately 30 minutes 

to complete.  The test provides an overall score for the subject that can be 

compared to published norms and in addition provides sub scores in five specific 

areas: Immediate Memory, Visuospatial, Language, Attention and Delayed 

Memory. Another key advantage of the design of RBANS test is that alternate 

versions allow for repetition of the test with minimum practice effect. Assuming that 

clinicians have finite amounts of time for work, the challenge is choosing between 
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a long and sensitive test performed frequently on a small number of patients vs. a 

short less sensitive test performed less frequently and treating a larger number of 

patients. 

MCI is a clinical diagnosis that benefits from formal cognitive testing using 

neuropsychological tests, however it is known that these results are impacted by 

language skills, education and stress [32]. The frequency of these tests is also 

limited by the ability for the patient to attend a clinical appointments and for the 

practitioner to be able to perform the test. In addition, specific clinical tests may not 

be great at predicting performance for complex real-life tasks [33] such as driving. 

There continues to be much debate in the literature about which cognitive tests are 

best at determining fitness to drive.  Hence, work continues on searching for 

alternative measurement methods. Ideally, the cognitive test would be low cost, 

repeatable and optionally performed outside of the clinic. 

2.2.2. Brain Bio-Markers 

As mentioned earlier, numerous tests are performed at Memory Clinics. These 

include relatively low cost and non-invasive blood tests, medium cost and more 

invasive lumbar spinal punctures, and very high cost brain scans (computed 

tomography (CT), magnetic resonance imaging (MRI) and single-photon emission 

computed tomography (SPECT). None of these tests by themselves or in 

combination are currently able to definitively diagnose MCI or dementia. Hence, 

there is interest in finding a relatively cheap test that can be repeated over time that 

could help. 

2.2.3. EEG and ERP 

The Electroencephalogram (EEG) provides a measure of brain electrical activity 

[34] through the application of a series of electrodes on the patient's head. This 

technique provides excellent temporal resolution, on the order of milliseconds. A 

key challenge with the measurement of the EEG is that each sensor provides a 

measure of the aggregate electrical activity of the brain, and given the large amount 

of brain activity, the identification of a specific response to a stimulus can be difficult 

to distinguish from the background brain activity. 
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The Event Related Potential (ERP) [34] technique has emerged as a method to 

measure cortical response to a stimulus through repeated stimulus presentation 

and subsequent averaging of the resulting responses for each electrode by time 

aligning the responses relative to the stimulus onset.  The averaging has the effect 

of removing noise and signals due to activity that is uncorrelated with the stimulus, 

allowing the activity that is correlated to the stimulus to be observed.  

  An example ERP response curve is shown in Figure 2-1 and it is typically 

analyzed [35] based on the location (latency) and amplitude of the peaks and 

valleys within the resulting waveform.  The naming convention for the peaks and 

valleys is N (negative peak) and P (positive peak) along with a number that is either 

100, 200, 300 etc. which typically occur at 100 msec, 200 msec etc. after the 

stimulus.  In this work, given that patients with MCI often have delayed latencies so 

that the P300 peak may actually appear 400 msec after the stimulus, the shortened 

form of P100 (P1), and N100 (N1) etc. will be used in this work.   

 

Figure 2-1: Example ERP trace showing the location of the relevant maxima and minima 
that occur post stimulus. 

The relationships between ERP measures and cognitive abilities such as 

Memory Encoding and Retrieval [36] and Attention [37] have been previously 

shown. The P300 signal is believed to be an indicator for fixation on a target and 

has been shown [43] to be sensitive to changes related to aging and cognitive 

change [44]. 

This work extends previous ERP studies through the application classification 

techniques and the 1-back test to identify ERP features that distinguish MCI 
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patients from healthy controls.  The 1-back test [38, 39] is an example of a test that 

can be used with the ERP technique where the subject is presented with a 

sequence of symbols and asked to press a button if the symbol presented is the 

same as the previous symbol and to do nothing if the symbol is different.  This 

provides two different measures of the brain response that can be captured through 

an ERP.  First, when the button should be pushed, the subject has had to make the 

decision to press the button and then signal their hand to do the physical act of 

pushing the button – hence two interconnected cognitive processes. On the other 

hand, when a button should not be pushed, the subject needs to make the decision 

to not press a button and therefore there is no message to the hand – hence 

different cognitive tasks. 

In the typical ERP response shown in Figure 2.1 for a subject that receives the 

stimulus event at time 0 with a series of subsequent maxima and minima. The data 

collected prior to the stimulus establishes a zero baseline while outlier removal 

(such as eye blinks) is required for individual traces. The calculation of an ERP [34, 

40] stimulus aligns repeated traces, removes outliers and the resulting EEG set are 

averaged reducing uncorrelated signal content with subsequent low-pass filtering 

for additional noise reduction [41 , 42].   

2.3. Activity of Daily Living Measures (ADL) 

2.3.1. Overview 

The differentiation of MCI and dementia depends on the intactness or 

impairedness of Instrumental Activities of Daily Living (IADL). Clinicians have to rely 

on self-reporting or family reporting on the patient's abilities regarding IADLs for 

diagnosis.  Basic ADLs (BADL) include basic hygiene activities (e.g. dressing, 

mobility, bathing, self-feeding etc) [45] while IADLs involve more complex tasks 

(e.g. food preparation, shopping, driving, social activities, using a computer) and 

these can provide a direct indication of an individual's cognitive abilities and also 

indicate changes if they are no longer or significantly less capable of performing 

tasks.  
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Patients that maintain a high level of social engagement and activities are shown 

[46] to have slower progression of cognitive decline and hence interventions that 

maintain (or increase) social activity are important. Loss of mobility such as ability 

to drive can have significant detrimental effects on long term prognosis and 

outcomes [47 , 48]. 

Solutions to measure a patient’s cognitive ability between appointments through 

sensor-based observation are an alternative to periodic clinical appointment 

cognition tests. Ongoing measurement of the performance of IADLs provides the 

opportunity for episodic data to monitor for changes and trends.   

2.3.2. Physical Monitoring 

The monitoring of physical well being has been explored extensively through the 

applications of various sensor solutions to monitor physical activity levels [49, 50 , 

51] including monitoring the physical well-being of subjects in their home and 

activity levels for activities such as getting out of bed. Kitchen use and sensor 

systems specifically focused on safety of the patient through the use of smart 

apartments [52].  Physical activity is important for a patient’s well-being but does 

not get into the quality of performance of the activities such as efficiency, speed, 

effectiveness and at best provides an indirect indication of cognitive ability.   

2.3.3. Computer Games 

Methods to measure cognitive performance at home have been proposed [53 , 

54 , 55] through instrumentation of computer interactions such as games or web 

usage. Researchers have developed models of brain plasticity that refers to the 

brain’s lifelong capacity for physical and functional change; it is this capacity that 

enables experience to induce learning throughout life [56 , 57]. Computer based 

gaming applications provide the potential to maintain or build cognitive ability and 

include a number of programs that allow the user to improve memory, speed of 

processing and reasoning. A number of large randomized control trials have shown 

that healthy older adults are able to improve their cognitive functioning using 

programs [57]. This thesis focuses on MCI patients as there have been very few 

studies on computer use for brain training in older adults with MCI. Studies have 
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primarily focused on healthy elderly adults tracking browser and internet use along 

with overall performance (time to complete) for a number of computer games 

including word jumbles and memory games [53 , 54 , 55].  

This thesis provides pilot study results for games such as Sudoku and word 

search as there have been no studies designed to show that they help brain 

performance even though they are very appropriate for the target population; in 

fact, these types of games are sometimes used in the control group. On the other 

hand [58], a recent Cochrane review found that in some trials, members of these 

control groups showed similar improvement to the treatment groups and results for 

older adults have shown some benefit in working memory [59] through computer 

based perceptual discrimination training through commercial internet cognition 

training game from Posit Science [60]. 

Computer activity monitoring [61] has been used to discover information about 

people with early dementia as computer based games require the user to apply 

many different aspects of brain function, such as learning the game, measuring of 

speed and accuracy, and finally motor skills to move the mouse around or for entry 

of information along with [53 , 54 , 55].  Games based on numerical or word based 

foundations use different brain regions along with areas for search or logical 

deduction. Macro performance (time to complete, success) for games provides an 

indication of the ability of the user, and measured trends provide an indication of 

changing cognitive ability.  This thesis extends these through the measurement of 

more detailed user interactions with a game including player speed, errors the user 

makes and associated correction or non-correction, need for hints to reach a 

solution, solution strategies used and mouse usage.  

A key challenge in the use of gaming for cognitive decline measurement or 

therapy is to design the game to measure/monitor the user capability.  One group 

proposed the use of EEG while playing Sudoku [52] to measure cognitive function. 

PC Keyboard [63] use has also been proposed, using the login process as a 

cognitive test and the actual measurement of typing as a motor skill test.  Both of 

these could be monitored over time. Analysis of mouse movement during web 

browsing [53] has also been presented. However, it has not been used to measure 
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game playing ability. Mouse use has also been combined with keyboard use during 

[64, 65, 66] Solitaire and word jumble games. 

2.3.4. Driving 

In addition to computer use and home based activities of daily living, automobile 

driving is an activity that requires high levels of cognitive function. Driving requires 

navigation, trip planning, and safe vehicle operation including signaling turns, 

checking blinds spots, observing other vehicles, obstacles, road signs, pedestrians 

etc. Driving as an everyday competence has been reported [81].   The ability to 

drive has also been reported as an enabler for social engagement and activities 

that have the effect of slowing cognitive decline [67 , 68]. In fact poorer health [69] 

has been shown for older adults that stop driving. Medical professionals face 

challenges currently, as many jurisdictions require that they determine driving risk. 

Current best practice for this assessment includes clinical and driving history, 

physical examination, and cognitive tests. While on-road driving tests are 

considered the gold standard for driving risk assessment, they are difficult to 

arrange and costly, and only truly reflect driving at that point in time under those 

conditions.  

2.3.5. Driving - Cognitive Adaption and Compensation 

Reviews of research on older drivers [70, 71] have highlighted a number of 

issues related to the variable effects of aging and age-related cognitive decline on 

driving ability.  Self-regulation and avoidance of driving after dark or driving on 

expressways [72 , 73] are reported as coping mechanisms for reduced ability or 

confidence but there are issues with driver compliance. Surveys of driving habits 

for subjects with cognitive decline [74 , 75] showed that drivers can reduce the 

variety of destinations they choose, reduce the driving distance by no longer going 

as far from home and using closer destinations or they reduce the complexity of 

trips by making fewer stops on a given trip. A tendency to choose familiar routes 

instead of perhaps a more optimal route was shown [76 , 77]. Compensation may 

include returning home [78] between destinations allowing navigation decisions to 
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always start from the home reference. Studies have also explored older drivers and 

their increased crash rate [79 , 80].   

Driving requires significant spatial orientation to perform and hence declines in 

cognitive function will affect the ability to perform the task of driving. This work 

explores the potential for the repetitive nature of trips (same grocery store, friends, 

social clubs or family) to lead trips being measured and compared over time to 

identify changes as an indication of cognitive change. Virtual reality mazes [82] 

have been used to measure spatial orientation as a measure for cognitive 

performance.  

2.3.6. Driving - Measurement 

The measurement of driving, allows real world data to be collected while drivers 

go about their daily activities. It has advantages over alternatives such as requiring 

the subject to drive a vehicle other than their own, or to operate a simulator. It allows 

the drivers to drive in familiar neighborhoods instead of simulated or scripted/closed 

driving courses that might prevent the testing from being an accurate representation 

of actual driving ability.  

The measurement of executive cognitive function for navigation [83, 84, 70, 71] 

has been presented for studies of older drivers where the vehicles have been out-

fitted with sensor technology providing insight into executive cognitive decisions 

such as trip frequency, duration, distance and time of day.  The work presents 

methods for the automation of driver identification within longitudinal driving studies 

as a new area of research that requires the application of measurement techniques 

to identify distinguishing features.  Previous driving studies [70] and the Strategic 

Highway Research Program 2 (SHRP2) [85, 86], all use in cabin video that includes 

the driver's face to allow manual driver identification.    

The Candrive study [83, 84] is a study of older drivers to create and evaluate the 

predictive validity of tools for assessing fitness to drive.  At entry into the study, 

drivers that indicated they shared their vehicle were identified and Radio Frequency 

Identification (RFID) key tags were provided for the drivers to carry on their key 

chains to identify the participant driver.  Drivers with infrequent alternate drivers 
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were not provided RFID tags and instead were asked to keep track in a log when 

the vehicle was driven by someone else.  The resulting collected data are then 

sorted based on the RFID tags or driver logs.  In both cases there is the potential 

for reporting error as a driver may have left the RFID tag at home or loaned their 

keys to another driver resulting in an RFID reporting error.  The manual logs can 

also contain inaccuracies as the driver could have forgotten to record an alternate 

driver. 

The long term and continuous measurement of sensor information using 

participant vehicles introduces design challenges for the sensor system. The GPS 

and OBDII sensors do not provide a direct measurement of acceleration, but the 

addition of an accelerometer would add deployment complexity and cost due to the 

additional sensor and increased storage requirements for the data generated. 

Additionally maintaining accelerometer orientation [90] will be difficult in long-term 

deployments as will issues of long-term drift and calibration [91]. The performance 

of GPS systems [92, 93] can be augmented through the use of additional sensors 

such as accelerometers. Some recent applications of GPS sensor information 

include the use of Kalman filtering of GPS information to predict the future position 

of a vehicle based on its position and velocity  [94] and to support GPS navigation 

with Inertial Measurement Unit (IMU) sensor information for ship navigation [95]. 

This work presents methods for the use of GPS data for acceleration measurement 

avoiding the need for this additional sensor. 

Turn signal use is one of many cognitive functions associated with driving as 

drivers perform (or skip) based on their automatic actions through training and 

experience. Eye focus areas, another automatic/trained action, can be analyzed to 

ensure the driver is focusing on the forward direction of travel, dashboard, mirrors 

and blind-spots for the appropriate amount of time and at the appropriate times.  

2.3.7.  Driving - Driver vs Vehicle Mesurement 

The study of older driver’s habits and ability is an emerging area of research as 

concerns related to the effects of normal aging on driving ability can become more 

significant if the driver has any cognitive or physical decline. Drivers have been 
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studied through simulator use [87] and using in-vehicle trained observers [88].  

These observation methods however influence actual driving habits, as they 

introduce aspects that are unfamiliar and/or different for the driver. 

There is the potential to also collect data from drivers other than the participant 

when collecting driving data through on-board vehicle sensor systems, as most 

personal vehicles are also driven by friends or family members.  Driver logs [83, 70, 

71], where the participant maintains a record of the drivers of the vehicle, have been 

used and the accuracy of the log is highly dependent on participants remembering 

and accurately maintaining them. The use of RFID tags has also been proposed as 

this allows for easy post sorting of the data, since the RFID information is captured 

with the data, but still has potential for errors due to lost or loaned keys.  

Facial recognition or other biometric information has also been proposed.  These 

are challenged by the need to include the biometric sensors such as a camera, the 

need for it to be placed safely within the vehicle, the accuracy of the automated 

processing of the result, and the ethics of filming drivers.   

2.3.8. Driving - Signature 

This work presents methods to differentiate drivers through a driving signature, 

which is a set of attributes that allows different drivers of a vehicle to be 

distinguished from each other as alternative to RFID tags which depend on drivers 

not sharing keys. Characteristic behaviours of drivers [96] were studied where 

vision tracking was used to measure driver intentionality for associated driving 

actions as a contribution towards Advanced Driving Assistance Systems (ADAS). 

Instrumentation, such as neuromuscular admittance, has been proposed to 

measure racecar driver actions as they relate to associated driving behaviour 

models [97, 98]. Driving event classification models [99, 100] and driver style 

classification [101] using inertial sensors has been presented.  Inertial sensors [102] 

has been proposed to identify and classify driving events and explored their 

application for driver identification. The need and potential have been presented for 

characteristic behaviours of individual drivers to be applied to automated driving 
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systems to make them more natural and personalized leading to drivers being more 

accepting of these systems [101, 103]. 

2.3.9. Driving - Sensors 

GPS technologies [104, 105, 106] have been presented as an effective sensor 

solution for location tracking within an urban environment demonstrating the 

effectiveness of these devices for the measurement of location while proposing 

solutions to common issues such as measurement errors and loss of GPS signal. 

The emergence of low cost and easy to deploy sensors and large data storage 

devices enables the study of participants over long periods. Some research has 

shown the applications of GPS and inertial measurement sensors [110, 111, 112] 

for the tracking of vehicle position with applications to fuel consumption 

measurement and insurance risk related driving behaviours.  These studies also 

explore the identification and classification of specific driving behaviours and the 

issues related to GPS outlier errors. 

2.4. Signal Processing Techniques 

The analysis of sensor data to measure cognitive ability requires many signal 

processing techniques for the various types of analysis that must be performed and 

also for the proper management of the data. 

2.4.1. Anonymity/Privacy 

This work presents solutions for the management of privacy of the participants 

within captured sensor data is a significant challenge and a priority as this is an 

absolute requirement for the data due to research ethics guidelines and privacy 

laws. In particular it is necessary for large databases to be potentially widely shared 

with researchers and the privacy considerations [113] required for the securing of 

large cloud storage.  

Privacy needs can range from personal use only applications such as a lifestyle 

tracking applications [114] through to aging in place studies [115], where sensor 

data has been centralized. In this case, k-anonymity  [116, 117] is required, such 

that participants cannot be identified through information from the combination of k 
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elements from the data stream. Differential privacy (DP) [118, 119] in the 

anonymization of data sets allows the trust level for a given user of the data to lead 

to different levels of precision and privacy within the data.   

This work presents specific solutions for the privacy of GPS related data from 

driving studies while a participant's name is easily removed from data, identifying 

details such as places of work or home can still be easily determined within the 

location data. 

2.4.2. Signal Integrity and Quality 

The long term and continuous measurement of sensor information using 

participant vehicles introduces design challenges for the sensor system. There are 

a number of challenges with the capture of large amounts of sensor data over long 

periods of time.  Issues of data validity [120] as the sensor log files may contain 

errors, such as incomplete sample records caused by random operational events.  

In addition, there may also be failure of sensor operation and resulting missing or 

imprecise data. 

The work presents a solution for the automated formatting and preprocessing of 

the raw sensor data, such that they are available in formats that are easily 

processed within chosen analytical tools and cloud computer architectures.  

2.4.3. Data Set Augmentation 

The use of data fusion techniques within a big data framework can also allow for 

the extension of the sensor data through augmentation of information from other 

sources and databases.  In the case of vehicle operation, other data information, 

such as Geographic Information System (GIS) information can be included. GIS 

can provide information such as speed limits, road hazards or school zones. 

Weather information from local weather reporting stations [121] can be added.  

Traffic conditions including congestion, construction and accidents can be added 

providing access to an appropriate source. Sunrise/sunset for night/day driving 

indication [72, 121] can also be added through use of the time of day and 

longitude/latitude of the vehicle.  This work presents methods for this augmentation 

while still considering the issues related to anonymity of the participant. 
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2.4.4. Feature Identification and Classification 

Linear Discriminant Analysis (LDA) is a generalization of the Fisher technique 

[122] for pattern recognition and machine learning.  Adaptive LDA training 

algorithms allow systems with large numbers of potential features to be analyzed 

and the training algorithms can search subsets of the feature space to identify the 

features that provide the best performance while excluding features that provide no 

or limited classification value.  The classifiers may use either linear or quadratic 

decision models.     

 This work applies LDA classification to EEG/ERP and driving data sets where 

numerous features are potentially measured and the LDA algorithm provides the 

mechanism to reduce the dimensionality by determining the subset of the features 

that enable classification while discounting others. In also compares the results for 

other machine learning techniques including Support Vector Machines (SVM) [123], 

k-Nearest Neighbour (KNN) [124] and Decision Tree methods [125]. 

Classifier tools have been applied to cognitive measurement and decision 

making [126] where driver cognition responses captured through EEG were 

classified, while [127] using classification of fMRI data for vowel clusters as an 

indication of mental state. The diagnostic utility of EEG biomarkers for Alzheimer's 

disease, including ERP measures [128], was explored and LDA classifiers applied 

to EEG data to distinguish emotional state [129]. LDA classification was studied for 

EEG measures of ability within a number of instrumental activities of daily living 

(IADL) tasks, such as telephone use and basic handling of finances, [130] and 

applied to the classification of mental states from EEG signals [131]. 

Comparisons of the performance of different classifiers have been reported for 

the detection of epilepsy within EEG with over 97% accuracy [143], for the study of 

ERPs associated with facial vs non-facial image recognition with at 74.4% accuracy 

[144] and detection of a driver's cognitive state such as sleepiness within EEG 

measurements with 80% accuracy [145].  The relative performance of the various 

classifiers reported was varied between the papers showing that the classifier 

needs to be identified for each specific machine learning problem. 
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Chapter 3:   Experimental Set-up 

 

Objective: The research presented in this thesis uses multiple experimental and 

data collection methodologies because of the differing cognitive measurement 

techniques being studied and associated participant tasks being performed. This 

chapter presents the experimental set-up for each including research ethics 

clearance, data collection protocols, sensor systems and computational 

environment.  

3.1. Gaming and EEG/ERP Study 

The study of computer-based games and EEG/ERP for cognition measurement 

presented in Chapters 6 and 7 used two studies with volunteers using two computer 

games (Word Search and Sudoku). 

Initially student volunteers used the games in a pilot trial to validate the operation 

of the games and capture data for algorithm development.  A second study used 

the games with MCI volunteers from the Bruyère Memory Program at the Elisabeth 

Bruyère Hospital.    

The MCI pilot project was designed to see if older adults with MCI would be able 

to play computer games three times a week for 9 weeks, it measured the 

participant's cognition at study start and end using standard clinical cognitive 

assessments and EEG/ERP tests to baseline their ability and to measure any 

change that occurred during the study. 
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3.1.1. Student Volunteer Game Pilot 

Ethics Approvals 

Research Ethics Board Protocol Number Initial approval date 

Carleton # 13684 August 28, 2013 

Bruyère Continuing Care  # M16-13-045 September 24, 2013 

 

Data Collection and Recruiting Protocol 

Participants for the student pilot trial were recruited through in-class 

announcements, Emails to students and postings on campus bulletin boards. A 

total of 17 participants were recruited including 6 females and 11 males, with a 

mean age of 24.7 years and a standard deviation of 9.9 years. 

 Subjects participating in the study played the two games: 

1) Carleton Sudoku Game (CSG) – A variation of the highly popular newspaper 

game that requires the participant to complete missing numbers in a 9 x 9 matrix.   

2) Carleton Word Search Game (CWG) - A variation of the highly popular 

newspaper game that requires the participant to find words in a large matrix of 

random letters.   

Procedures 

Research set-up 

1) Subjects were asked to read and sign the consent form. 

2) Rules and use of each of the games explained. 

3) Overall plan for the data collection phase was explained. 

Data collection 

1) Subjects were provided a quiet and comfortable (desk / chair) 

environment in which to play the games.  

2) Round 1: Learning phase: Subjects played each game for 15 minutes 

followed by a 15-minute break. 

3) Round 2: Optimal performance: Subjects played each game for 15 

minutes followed by a 15-minute break. 
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4) Round 3: Distraction 1: Subjects played each game for 15 minutes while 

experiencing cognitive distraction simulating decreased concentration. 

The room contained highly variable noise to distract the participants. 

5) Subjects were given a 30-minute break. 

6) Round 4: Distraction 2: Repeat round 3. 

7) Round 5: Return to optimal: Repeat round 2. 

8) Subjects were thanked for their help in the study.  

3.1.2. BRI MCI Game and EEG/ERP Study 

Ethics Approvals 

Research Ethics Board Protocol Number Initial approval date 

Carleton # 100794 November 22, 2013 

Bruyère Continuing Care  # M16-13-043 November 19, 2013 

 

Participant Recruitment 

Participants for the MCI pilot were identified from patients of the Bruyère Memory 

Program (BMP) that have a diagnosis of MCI and have indicated they were willing 

to being contacted for research. If they consented to participate, they received 

cognitive testing and a baseline EEG. The neuropsychological tests selected for 

baseline testing were: RBANS, Trail Making Test A & B, and the MoCA. 

Three research team members, one physician and two neuropsychologists, 

reviewed all cases to ensure participants had a diagnosis of amnestic MCI.  

Study Groups 

This pilot had a two-arm intervention trial, where participants were randomly 

assigned to the 1) BrainHQ and 2) Carleton Games. The groups were balanced for 

age, sex and education. 

1) BrainHQ 

Posit Science Corporation is a company based in San Francisco, CA 

founded by Neuro-scientists from the University of California, San Francisco 

and research partners from across the USA. Their product, BrainHQ, has 

modules they have shown to improve memory, attention and brain processing 
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speeds in healthy adults, as well as modules on navigation, intelligence and 

people skills. The modules have increasing difficulty and improving results are 

tracked on a scorecard. The first group of participants received 9 weeks of 

supervised BrainHQ training three times per week for 60 minutes. BrainHQ 

was chosen specifically because this particular program helps to achieve the 

project objectives to engage individuals with MCI in computer-based games 

that are programmed to 1) allow off-line monitoring of improvement or decline 

and 2) strengthen cognitive function through improvement in game 

performance. The program provides a scorecard that tracks an individual’s 

scores and overall progress or difficulty with the various game tasks and so 

allows for the off-line monitoring of improvement or decline that this project 

needs.   

2) Carleton Word and Number Games 

CSG and CWG were used by this group and the participants received 9 

weeks of supervised and monitored Carleton Games training three times per 

week for 60 minutes.  

Participants were also asked to optionally complete a preliminary pilot study 

examining EEG/ERP. 

No more than four participants at a time met, three times a week for 60 minutes. 

Each session was divided into 25 minutes of computer activity, followed by 5 

minutes of break and discussion about the experience, followed by another 25 

minutes of computer activity. 

At the end of the 9-week period, cognitive testing and EEG testing was repeated. 

Control Group for EEG Comparison 

The participants recruited for the healthy control (HC) group were not patients 

from the Bruyère Memory Program, but instead were healthy adults over the age 

of 65. This healthy baseline group was recruited on a volunteer basis. Interested 

participants provided a health history after giving their verbal consent.  These 

participants completed the same set of cognitive and EEG tests as the MCI group.   
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After cognitive testing, all classifications of MCI and HC were confirmed by a 

clinical committee. MCI participants consisted of seven males and eight females. 

They had a mean age of 75.7 years old and a mean education of 14.7 years.  There 

were six male and eleven female HC participants.  They had a mean age of 72.4 

years old and a mean education of 15.6 years. The two groups did not differ 

significantly in age or education. 

EEG Testing  

The EEG was recorded using a 32 tin electrode nylon cap (Electro-Cap 

International Inc., Eaton, OH, USA) with the addition of four electrodes to measure 

eye movements. The EEG was amplified with NeuroScan NuAmps (NeuroScan, El 

Paso, TX, USA) at a sampling rate of 500 Hz in a DC to 100 Hz bandwidth. The 1-

back task was presented to the participant using the E-Prime application 

(Psychology Software Tools, Sharpsburg, PA, USA) that was interconnected with 

the EEG recording so that stimulus events were automatically included in the EEG 

files as time markers for post processing. 

3.2. Driving Study  

The study of driving as a source of sensor information that could be used for 

cognitive measurement was completed through two separate data collection 

processes.  One involved only members of the research group while the second 

was through collaboration with the CanDrive research project. 

3.2.1. Research Team Drivers 

The results for the data collected using research team drivers is presented in 

Chapters 9 and 10. 

Data collection Protocol 

GPS location technology was used to locate the subject’s vehicle using an 

iPhone 4GS as the GPS location device.  The iPhone ran a GPS tracking 

application [134] that logs the real-time GPS information to a network server (time, 

latitude, longitude, velocity, bearing, altitude) with a sampling rate of 0.2Hz when 

vehicle velocity is greater than 20km/hr, 1/30 Hz if velocity less than 20km/hr and 
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every 1/60 Hz if vehicle is stopped. The slower sampling reduces wireless data 

network utilization at low speeds.   

The vehicles used were personal small to mid-sized 4 door vehicles that were 

outfitted with a camera capturing the dashboard so that turn signal use could be 

studied as shown in Figure 3-1. Dashboard was recorded with 480x720, 30fps 

video using one or two cameras depending on the dashboard layout and turn signal 

lamp placement. Drivers drove a pre-determined course. 

The use of the iPhone application allows GPS data to be collected without the 

driver interacting with the device or reporting locations through other methods.   

 

Figure 3-1: Example image of camera placement to capture dashboard video from turn 
signals (two camera configuration).    

3.2.2. Candrive Data Set 

The results for the Candrive dataset analysis is presented in Chapter 8. 

Ethics 

Research Ethics Board Protocol Number Initial approval date 

Ottawa Health Sciences 
Network 

# 2008610-01H November 26, 2013 
date Carleton University 
activity added 

Carleton # 100680 November 4, 2013 

Bruyère Continuing Care  # M16-13-062 January 14, 2014 

 

Data Collection Protocol 

The data collection methodology and protocol [83 , 84] recruited volunteer 

drivers aged 70 and higher at entry to the project and had their vehicles outfitted 

with a Persentech OttoView-CD data recording device shown in Figure 3-2. The 
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block diagram shows how the device interfaced to the engine through the On Board 

Diagnostics II (OBDII) interface that has been standard on North American vehicles 

since 1996 and provides access to parameters captured by the engine control 

computer in addition to providing power for the data recorder. The recorder also 

has a GPS antennae providing GPS location information for the vehicle.  The 

recorder has an optional RFID reader that can sense the proximity of an RFID tag 

on the driver’s key chain to identify the driver.   

 

Figure 3-2: Block diagram of the data collection architecture and image of the Persentech 
OttoView-CD data collection device, [83 , 84].    

Table 3-1: Information captured by Candrive sensor system.  All data captured at a 1Hz 
sampling rate.  

Parameter Measure Value Sensor 

Time Date/time (second) GPS 

Location Latitude/Longitude, Fix accuracy GPS 

Velocity km/hr GPS 

Speed Limit km/hr GPS/GIS mapping 

Alerts text (e.g., school zone) GPS 

Trip Data Trip data, RFID tag # OBDII recorder 

Engine data Engine RPM, Coolant and Intake air 
temperature, Absolute throttle position 

OBDII recorder 

Speed Vehicle speed sensor (dashboard) OBDII recorder 

 

The parameters tracked and recorded are shown in Table 3-1 and these are 

stored locally on a memory card at a 1Hz sampling rate for all trips taken by the 

vehicle over the study period.  Participants meet with the study team every four 

months and at that time, the memory card is swapped for a blank one allowing the 

data to be retrieved. 
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Table 3-2: Ottawa Candrive participant demographic information at project entry. 

Number of participants 256 

Participant age at entry 
     Mean 
     Std Deviation 
     Range 

     70-74 
     75-79 
     80-84 
     85-89 
     90+ 

 
  76.3 
    4.5 

  70 - 92 

106 
  90 
  47 
  12 
    1 

Gender         F /  M 36% /  64% 
 

In this work, the data for the Ottawa based participants in the Candrive study 

were used and the attributes of the user group is summarized in Table 3-2.   

3.3. Platforms and Tools 

Table 3-3: Summary of computing platforms used for the analysis 

Analysis use CPU OS Applications 

Candrive 
anonymization 

Intel i7-4500U 
@1.80Ghz, 8GB RAM 

Windows 8 - 64bit Dev C++ v5.7.1 

Candrive analysis, 
ERP and games 

Matlab 2014b 
and 2016a Intel i7-4770 @3.4Ghz, 

16GB RAM 

Navigation and 
Signal use 

Intel Q9400 @2.66Ghz, 
4GB RAM 

Windows 7 - 64bit Matlab 2013a 



Chapter 4: Episodic Measurement Framework    

PhD Thesis - Bruce Wallace  33 

Chapter 4:   Episodic Measurement Framework 

 
Objective: This chapter identifies challenges with the current clinical appointment 

based assessment process that achieves only annual or biannual assessments of 

patients.  The chapter proposes a model for between appointment assessments 

that can utilize the cognition measurement methods presented in subsequent 

chapters.  Topics covered include: 

• Current clinical assessment process. 

• Episodic Framework for sensor fusion from diverse sensor based 

measurement methods. 

• Models for the inclusion of measurements from ERP, gaming and driving 

as examples of cognition measurement.   

4.1. Clinical Assessment 

 

Figure 4-1: Flow chart of current cognitive assessment process.   

 

Referral

Diagnosis

History Blood WorkImagingClinical Assessment

Lab TestsHuman Factors

Neurological Exam



Chapter 4: Episodic Measurement Framework    

PhD Thesis - Bruce Wallace  34 

An example diagnostic flow for a patient presenting at a memory clinic is shown 

in Figure 4-1 [132] where the patient has been referred to the memory specialist 

typically because someone has noted some form of memory issue and has raised 

the concern with the family physician. This is likely long after the cognitive decline 

has started as the brain is able to adapt and a person can modify behaviour (writing 

reminder notes) to mask early symptoms. The physician uses a combination of 

assessments to lead to a diagnosis. Fundamental to this process is that the 

impairments have led to tasks no longer being performed as well as previously.    

The physician's assessment is limited to discrete measurements that they are 

able to perform in their clinic, request from labs or discrete reporting that occurs 

during the visit. As part of the process, the physician must also ensure that they 

identify and either diagnose or rule out other medical issues that include cognition 

impacting symptoms.  The range of assessments used to diagnose MCI/dementia 

and distinguish from other causes that include cognitive symptoms include a range 

of human factors and lab tests [132]: 

• History: The specialist will gather as good a history as they can through 

conversation with the patient and available family members or care givers to 

identify changes that are beyond normal aging. This assessment will include 

both questions about specific areas of the cognition, such as memory 

(remembering details of conversations), orientation to time (knowing the 

current date and upcoming events), executive functioning (ability to organize 

an event), and functional ability (balancing a cheque book, making a meal) 

with a focus on identification of abilities they can no longer perform but 

previously could.   

• Clinical Assessment: The measurement of cognitive ability within a clinical 

setting can be performed through testing of specific cognitive areas, such as 

remembering lists of words for memory or copying a design for visuo-spatial 

construction. Usually these are measured as part of a formal test, such as 

MMSE [28], RBANS [29] and the MoCA [31].  These standardized tests allow 

the comparison of the subject to societal norms. Cognition can be tested 

indirectly using a functional test such as creating change for a purchase.   
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• Neurological & Physical Exam: There are no neurological or physical exam 

components that can be used to diagnose MCI/dementia. Rather, the 

physical examination of patients is used to identify conditions that could 

provide identifying contributing factors to the differential diagnosis, such as 

vascular disease or Parkinson’s disease.  

• Blood Work: There is currently no blood test to diagnose MCI/dementia, but 

again blood tests should be performed to rule out health conditions that could 

mimic dementia, such as hypothyroidism or a severe B12 deficiency.  

• Medical Imaging: Computed Tomography (CT) or Magnetic Resonance 

Imaging (MRI) is again used to rule out other potential causes of cognitive 

decline, such as brain tumors, normal pressure hydrocephalus or strokes.   

The physician uses the combination of these assessments of history, biological 

factors and objective measures to lead to a diagnosis of healthy aging, subjective 

cognitive decline, MCI, dementia, or perhaps another cause that has presented with 

cognition related symptoms. Current research is exploring the possibility that 

waiting for dementia to be present is too late to begin treatment, so some studies 

are treating MCI [25, 27].   

The measurement of cognitive ability within a clinical setting is typically done 

through the application of standardized clinical tests with these tests performed by 

a trained practitioner and include testing of memory, language and executive 

functioning helping lead to diagnosis.  

Cognitive testing is heavily influenced by life experience and education as a 

patient’s results are compared against societal norms, performance measures 

derived from a composite of a large population sample.  Exceptions that cause a 

given subject to differ from the norm sample set such as heritage, immigrant and 

non-English speaker, very high or low levels of education or ability can cause the 

norms to not apply.  In addition [32] challenges such as patient tiredness, focus or 

time of day that affect clinical measurement of cognition and cognitive decline in 

early stage dementia introduce variability in the results of discrete clinical memory 

tests. In addition, the amount of testing is limited by the clinician’s schedule – for 

every additional test the next patient in the waiting room will be delayed further.   
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4.2. Episodic Framework 

 

Figure 4-2: Episodic cognitive assessment framework showing various sensor sub-
systems with the fusion framework and data analytics system. 

The emergence of new sensors, signal processing, and big data analytic 

techniques lead to improved measurements and knowledge about the patient.  

These new assessment strategies can provide the physician with additional insight 

through assessment between clinical appointments leading to a better diagnosis, 

including more insight into the changes and issues that the specific patient is 

experiencing in their day-to-day life. Consumer EEG sensors are even becoming 

available such as the Epoc+ (Emotiv Inc, San Francisco, U.S.A.) and Muse (Muse 

Inc, Toronto, Canada) leading to the potential for EEG based measures to be 

completed outside the clinical setting. Improved information about a patient’s well-

being and cognitive ability can be acquired through the inclusion of more frequent 

episodic assessments outside of their clinic appointments.  This thesis proposes an 

episodic framework for cognitive assessment and identifies the elements required 

for its successful deployment. The episodic cognition assessment framework is 

shown in Figure 4-2 and consists of three major blocks of capability.   

• Sensor sub-systems:  For each of the sources of cognition assessment, a 

specific set of sensors is required with the signal processing and feature 

extraction algorithms.  

• Fusion and Data Analytics: This is key to bringing the results of the diverse 

set of sensor sub-systems together to create a holistic view of the patient.  A 

key feature of this layer is the management of the episodic nature of the 
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individual sensor sub-systems as neither driving nor computer game play 

are likely to occur every day. Trends of various activities would be required 

to identify change over time.   

• Reporting and Alerts:  A key benefit of the episodic assessment of cognitive 

ability is providing better information to the physician.  The reporting function 

will generate this summary information, providing the physician with a much 

more detailed, complete and accurate patient history.  In addition, the system 

would also generate alerts to the patient as reminders or a patient's 

family/caregivers should significant changes or issues be identified. 

4.2.1. Activities of Daily Living - (ADL) 

The challenges with the accurate reporting of changes in a patient’s functional 

abilities within the history could be addressed through the episodic measurement 

of cognition. Changes within Basic Activities of Daily Living - (BADL) that include 

basic hygiene activities (dressing, mobility, bathing, self-feeding, etc) and 

Instrumental Activities of Daily Living (IADL) that involve more complex tasks (food 

preparation, shopping, driving, social activities, using a computer) could be 

measured. Clinicians gather insight into the intactness of a patient's ability to 

perform BADLs and IADLs as part of the patient history. Changes in a patient’s 

ability to perform a task are usually an indication of cognitive change, assuming the 

clinician has ruled out physical changes as a cause. The direct and ongoing 

measurement of these activities [140, 141] through the application of sensor 

systems and associated signal processing and data analytics can overcome 

limitations on the frequency of clinical cognitive testing through observation of their 

ongoing capability.   

The deployment of sensor solutions within smart apartments has been presented 

[50, 51, 141] where a patient's ongoing BADLs and IADLs are monitored by 

detecting specific activities such as appliance usage, washroom use and kitchen 

use. Sensor based reminder systems have been applied to hand washing [142]. As 

cognitive impairment advances, first IADLs are affected and ultimately BADLs are 

affected. Thus monitoring of IADLs will provide earlier symptoms for diagnosis of 

cognitive decline.   
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4.2.2. Instrumental Activities of Daily Living - Games 

Computer use is an example IADL and measurement of mouse movements, 

game play and web browsing has been presented [53, 55]. Specifically, [53] mouse 

movement was measured during web browsing, but has not been used as a 

measure of ability within game play. The assessment framework details for games 

are shown in Figure 4-3 and can be applied to various games. Two such games 

are based on numerical or word based foundations are presented in Chapter 7, 

allowing the different regions of the brain to be used, along with the need for brain 

functions for search or logical deduction. Macro performance (time to complete, 

successful completion) for games provides an indication of the ability of the user 

where changes over time can provide an indication of changing cognitive ability. 

This is only a portion of the information that can be measured.   

 

Figure 4-3: Episodic cognitive assessments sensor sub-system details for driving and 
computer games as examples of two IADL. 

Games can be an indirect way to measure a patient’s cognitive well-being, 

providing they are easy to learn, play and age appropriate for older patients.  

Changes in game play ability, such as smooth and effective motion of the mouse 

becoming more random and inefficient, can be an indication of cognitive change 

which may be a proxy for changes in ability in the kitchen [57]. The measurement 

of a user’s interaction with a game includes many other aspects, such as rate that 

individual steps are performed, errors the user makes and associated correction or 
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non-correction, need for hints to reach a solution, solution strategies used and 

mouse usage as indication of focus area within a game.   

4.2.3. Instrumental Activities of Daily Living - Driving 

In addition to computer use and home based activities of daily living, automobile 

driving is an activity that requires high levels of cognitive function, including 

executive function for navigation and trip planning tasks and self-monitoring for 

over-learned tasks like blind spot checks, mirror use and vehicle operation (signal 

use, velocity, braking, acceleration). All drivers must perform these activities on 

most trips and hence these skills can be measured. The framework can indicate 

changes in ability as summarized in Figure 4-3.   

The deployment of sensors within personal vehicles allows direct measurement 

while a driver goes about their daily activities. This is an advantage over other 

methods of driving testing as the driver has the comfort of driving their own vehicle 

on the roads that they normally choose while going to their regular destinations 

demonstrating their normal behaviour and activity level.  This allows focus on 

measures related to vehicle operation, high level navigation performance through 

to day to day levels of activity.   

Trip level decision making can be a measure of executive cognitive function for 

older drivers using vehicles with installed sensor technology [83, 84, 70] by 

providing insight into driver decision regarding trips including frequency, duration, 

distance and time of day.  Measurement methods are presented for driver 

behaviours, including identification of unique driver behaviours in Chapters 8, 9 and 

10.   

4.3. Episodic Cognition Assessment Fusion 

The details of the cognition assessment data analytics and fusion block for just 

driving information is shown in Figure 4-4.  The primary input to this block is the 

features generated by the IADL driving sensor system that will produce a data 

structure of features for each trip.  This block is responsible for tracking the ongoing 

ability and performance of the patient within a given task and the identification of 

significant trends such as deteriorating ability or even the cessation of an activity.   
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The block will use filtering, classification and data fusion techniques to bring 

together the results into a single view.  Filtering techniques such as Kalman filters 

can be applied to the data to identify and remove outlier trips from the analysis as 

simple trips like moving a car in a driveway should be discarded while one off outlier 

events, like a late night trip to pick someone up from an airport, would not represent 

a behaviour change. Statistical analysis and classification techniques such as linear 

discriminant analysis and adaptive neural networks along with sensor fusion will 

allow for the generation of 4 key measures of the driver.   

Table 4-1: Clinical and Episodic cognition measurement techniques. 

Method When is 
the test 
performed 

Where is 
the test 
performed 

How is 
cognition 
measured 

Who 
performs 
assessment 

What is 
patient 
doing 

Status of 
the 
method 

Clinical Assessments 

History Discrete 
measures 
of ongoing 
behaviour 

Interview of 
subject or 
care giver 

Behavioural 
based 
indications  

Clinician BADL 
& IADL 

In use 

Cognitive 
Assessment 

Discrete 
test 
protocol 

In clinic Discrete 
cognitive 
areas  

Specific 
tasks 

Neurological 
Exam 

Rule out 
other illness 

Rule out 
diagnosis 

Blood Test  

Imaging  Specialist 

Episodic Measurements 

BADL Kitchen 

Ongoing 
day to day 

In home 

Behavioural 
based 
indications 

Unattended 

BADL 
& IADL 

Transition 
BADL Hygiene 

IADL Games 

IADL 

Research 

IADL Driving In vehicle Emerging 

IADL Banking 
In 
home/store 

Concept 
EEG/ERP with 
NBT 

In home 

Direct 
biomarker 
and 
behavioural 
based 
indications 

Specific 
Test 

 

Quantitative Statistics: Foundational statistical measures for how much the 

person drives, how often they drive and how many different places they go on their 

trips.   
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• Risk Measure: A specific measure to look at trends in the driver’s choices 

that would indicate increases or decreases in exposure to risk.  Drivers 

may choose to compensate for decline by reducing higher risk driving, 

such as at night.   

• Complexity Measure: This provides a measure of the driver’s choices 

around the complexity of their driving, such as multi-stop combination 

errands becoming multiple single stop trips.   

• Behaviour Measure: This measure focuses specifically on how they 

operate the vehicle and can be an indication of insight into one’s abilities. 

For instance, using the flasher to indicate lane change is an over-learned 

activity. If a driver forgets to use the flasher, this may cause the driver 

behind to honk in annoyance. It requires self-monitoring to make the 

connection between the forgotten flasher and the honking.   

 

 

Figure 4-4: Episodic cognitive assessments framework details for assessment of driving 
behaviour as one example IADL. 

In the last stage, additional information is brought into the classification stage, 

such as driving cessation. This behavioural issue reflects judgment, for instance a 
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major snow storm should affect the driving routine. Access to the information from 

the other sensor systems at this stage can also allow reduced driving to be 

correlated with increased computer use for a patient that is ill and choosing to stay 

at home to recover or to identify a common decline trend across sensors. The 

Episodic Cognition Framework could take the results and combine them to provide 

a better indication of changes such as poorer performance measures associated 

with game play and a reduction in trip complexity and/or navigational performance 

could be combined to provide an indication of a significant change.   

4.4. Discussion 

The episodic cognition assessment framework has the potential to provide 

physicians with significantly better information on which to assess the well-being of 

patients. The framework applies emerging sensor technologies, signal processing 

and data analytics techniques to measure performance of IADLs as indicators of 

cognition. The ongoing nature of these measures between appointments while the 

patient goes about their normal daily routine could help to objectively show the 

evolution of cognition decline.  As an example, gaming based measurements, with 

irregular or regular play and associated measurements of progression of skill, can 

show a lot as they provide a consistent measure against the person as their own 

norm.  The result is objective measurements that can support subjective reporting 

by the subject such as "I used to be able to do this and now I can't".   
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Chapter 5:   Data Preparation and Signal Processing 

Methods 

 

Objective: The collection of data from sensor systems from volunteer study 

participants introduces many challenges for the data capture, collection and 

subsequent processing.  This includes issues related to noise, outliers, data size, 

privacy and anonymity.  This section will identify each of the issues with the 

collected data, explore potential solutions. Topics covered include: 

• EEG/ERP 

o ERP measurement and foundation signal processing techniques.  

o Outlier detection 

o Noise filtering.  

• Computer Games 

o Data preparation techniques to deal with variation and unexpected 

user use models. 

• Driving 

o Sensors for driving measurement and available signals. 

o Data integrity processing required for long term longitudinal 

studies. 

o Augmentation of measured data from secondary sources such as 

GIS and weather data. 
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o Outlier filtering of measured GPS data. 

o Trip exclusion filtering for non-meaningful trips. 

o Privacy and anonymity solutions. 

o Computation scalability for large data set analysis. 

5.1. EEG/ERP 

This section presents the preparation of the raw EEG/ERP sensor data for use 

in research, where the continuous EEG files were initially segmented into 1100 

msec epochs for each stimulus event, including 1000 msec post-stimulus and 100 

msec pre-stimulus. The pre-stimulus period provides a reference to establish a zero 

baseline for each of the trials. 

Individual EEG epochs contain significant information related to uncorrelated 

and/or unrelated activities by the participant during the test, such as ocular activity 

as simple as an eye blink.  These signals represent outlier EEG traces and need to 

be removed before the ERP signals are calculated and can be identified by 

significantly larger signal ranges [34] than other trials for the participant. In this work, 

the individual EEG traces for a participant were analyzed to measure the signal 

range for each EEG trace leading to a mean and standard deviation for the range 

for the participant.  An exclusion threshold of three standard deviations from the 

mean range for the participant was applied to the individual signals.  This method 

proved to be a robust outlier removal method for the EEG traces being analyzed 

and is generally applicable where EEG measurements do not suffer from 

intermittent or poor sensor contacts such as those completed in a controlled and 

supervised environment and also over short periods. 

The remaining EEG traces for the participant were then filtered to reduce the 

signals that are uncorrelated with the stimulus event by time-aligning the traces, 

using the stimulus event for alignment and averaging the EEG traces for the 

participant across the trials.  This resulted in an ERP response for the participant 

that was then low-pass filtered to remove additional high frequency noise using a 

Blackman window low pass linear phase Finite Impulse Response (FIR) linear 
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phase filter with a pass band corner frequency of 12.5Hz and a stop band frequency 

of 25Hz. 

Table 5-1 summarizes the number of trials that were available for the 32 

participants.  For the response required trials, each participant performed 60 trials, 

while for the no response required trials, each participant performed 120 trials. 

Table II shows statistics for task accuracy by trial type for each participant, as well 

as number of outliers identified. 

Table 5-1: Task accuracy and number of outliers by participants and response type. 

  Number of correct EEGs Outliers 

Signal Case Mean (st dev) Min / Max Mean (st dev) Min / Max 

CPz & Pz 

Response 
required 

57.3 (3.2)  44 / 60 0.75 (0.57) 0 / 2 

No response 
required 

119.2 (1.3) 114 / 120 1.44 (1.11) 0 / 5 

5.2. Carleton Games  

The user activity log files captured within the Carleton Sudoku Game (CSG) and 

Word Search Game (CWG) required minimal processing to prepare them for 

analysis within Matlab.  The only issue within the files that was identified that 

prevented the direct loading of the files was within the pencil mark feature of the 

games. When a user made use of the pencil mark capability, all of the actual text 

they placed in the field was included in the log for future analysis.  It was incorrectly 

assumed in the design specifications that users would only place the numbers 1-9 

but in actual play it was found that some users entered commas between the 

numbers and in one case the "\" appeared regularly.  Both of these prevented the 

log file from being loaded directly as Comma Separated Value (CSV) table of 

numbers.  A pre-parser C++ application was created that removed all non-numeric 

characters from the pencil mark field and any log entry that was modified had a flag 

set to indicate the modification for future reference if required. 
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5.3. Driving Studies Candrive Data Set 

This section presents the preparation of the raw Candrive in-vehicle sensor data 

for use in research and a theoretical open access model that achieves the 

necessary participant anonymity. 

5.3.1. Sensors and Data Collection 

The Candrive project [83] Research Assistants installed an OttoView-CD data 

recording device (Persentech, Winnipeg, MB, Canada) into participant vehicles. 

The recorder captured 1Hz sampled data from a GPS location antenna and the 

OBDII data from the engine computer. On subsequent meetings with the 

participant, they verified the installation while changing the SD card to collect the 

data.  The recorder included an RFID reader that could detect an RFID key tag as 

a mechanism to distinguish between multiple drivers for a shared vehicle.  The 

sensor has an OBDII interface based on the SAEJ1979 technical standard that 

powers the device in addition to the engine computer parameters. The GPS 

receiver and antennae is a 20-channel, 1575 MHz SiRF Star II e/LP with 10m 

position and 1.0km/hr velocity accuracy.  The RFID reader uses passive tags at 

125 KHz.  The recorder supports 2 GB SD memory.   

The captured GPS and engine parameters are summarized in Table 5-2. The 

OBDII port does not provide access to turn signal, braking or anti-lock brake system 

information as these are controlled outside the engine computer and are not easily 

accessible on a standardized interface. The OBDII port was designed with a 

primary purpose of engine diagnosis and maintenance, but to minimize memory 

use many other engine specific parameters are not recorded. 

For the Candrive study, data are locally stored on a SD card to avoid need for 

wireless network connection. Participants met with the study team approximately 3 

times per year and the data on the memory card was retrieved.   
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Table 5-2: Sensor data captured by Persentech OttoView-CD sensor system.   

Source Sensor Measured Value Units / format 

Persentech device Sensor Serial Number Integer 

Persentech device Trip number Integer - increments for every 
vehicle start 

GPS Date & Time  Date string  
e.g. "18 January 2013 
10:05:10" 

GPS Longitude 
Latitude 

Degrees  

GPS GPS Fix Status Text string  
e.g. "3D Fix" 

GPS GPS Degrees of Precision Floating Point 

GPS Velocity km/hr 

GIS Posted Limit km/hr 

GIS Alerts Text String - see table xxx 

RFID RFID tag number Hexadecimal serial number 

OBDII Engine Coolant 
Temperature 

Degrees C 

OBDII Engine RPM Integer 

OBDII Velocity (vehicle speed 
sensor) 

km/hr 

OBDII Air Intake Temperature Degrees C 

OBDII Ambient Air Temperature Degrees C 

OBDII Absolute Throttle Position Floating point 

OBDII Relative Throttle Position Percentage 

5.3.2. GIS Data Augmentation 

The data from the SD card was initially processed by software tools provided by 

the sensor manufacturer that converted the data from a proprietary storage format 

to Comma Separated Value (CSV) format.   

Table 5-3: Example road hazard and road condition information included through the gis 
augmentation.  These messages can occur individually or in combination.  

Crosswalk 

School Zone 

Red Light Camera 

Playground 

Deer Crossing 

Hazardous Intersection 
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The post processing application included GIS map databases for the regions in 

the study and CSV samples were augmented with the posted speed limit for the 

road if known and any road hazards/conditions summarized in Table 5-3.   

The tool generates a detailed 1Hz sample record and summary records for each 

trip including date, distance traveled, duration, and trip start and end time defined 

as the engine turning on and off respectively. The resulting CSV files included the 

fields in Table 5-2 and blanks for OBDII values that were not recorded resulting in 

141 fields for each sample. 

5.3.3. Data Integrity and Data Format Processing 

The resulting CSV files were further analyzed for data integrity issues and data 

reformatted to ease subsequent processing.  The data integrity issues included: 

• Identification of any incomplete sample records: Infrequently single 

samples were discarded that did not include all fields potentially because 

of power failure within the recording device, OBDII interface issues or 

other unknown causes.  Subsequent signal processing included 

considerations for missing samples. 

• Missing GPS information: This may occur when the vehicle was in a 

tunnel, parking garage or other area with poor GPS reception or due to 

GPS failure such as sensor disconnection.  These samples were tagged 

to allow subsequent inclusion or exclusion as appropriate [121].   

Table 5-4: Summary of the data integrity results for the transformation of the files for 13 
Candrive Participants for 4 years of detailed driving data.  The participants 
were chosen based on a sample of convenience. 

 Minimum Mean Maximum Mean Std Dev 

Total Data Size 
for CSV files for 

participant 
(MB) 

1350 2250 4010 822 

GPS location 
failure  

(% of samples) 

0.0% 5.0% 91.8% 11.7% 

GPS excluding 
outlier files 

(% of samples) 

0.0% 2.9% 10.3% 1.8% 
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Table 5-4 provides a summary of the data archive files for a sample of 

convenience from the Ottawa Candrive dataset and shows the significant size of 

the detailed sensor data that has been collected for each of the drivers.  For this 

set of participants, there were no incomplete samples that had to be discarded.  

The table also shows the performance of the GPS sensor. One of the vehicles had 

4 archive files with between 31% and 91.8% failure while another vehicle had a 

single archive with 73% GPS failure for a total of 5 of the 152 archive files. The 

cause is likely a faulty sensor connection to the recording device as the faults 

extended over periods of days.  

To ease subsequent processing, the CSV files needed to have numerical only 

data, string data were converted to a numerical representation: 

• Date/Time stamp information that was provided by the sensor system in 

a "18 January 2013 10:05:10" format was converted to fields for each of 

year, month, day, hour, minute and second using a 24-hour clock. 

• GPS precision information such as "3D Fix" was converted to a numerical 

code representation for each of the precision cases. 

• Road hazard information as shown in Table 5-3 was converted to a 

unique numerical code.  The hazards were frequently seen in combination 

such as a Crosswalk within a School Zone so a unique code was created 

for each unique combination resulting in 22 codes. 

The processing applications for this stage were coded in the C++ language, 

which is ideally suited to process the ASCII CSV files.  To enable automation of the 

conversion, the tools used an adaptive list technique for the text strings conversion.  

Specifically, the set of road hazards / road conditions was unknown a priori so the 

programs compared every GIS message to a table of messages observed so far. 

If a new message was found, a new table entry was created with an associated 

new code number.     
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5.3.4. Trip Inclusion and Outlier Filtering 

Non-meaningful driving information such as warming up a vehicle or moving it 

within a driveway was excluded as all trips <100m in length or <120 seconds in 

duration were excluded from the analysis. 

An outlier detection and correction algorithm was applied to the GPS timestamp, 

longitude/latitude and velocity data where the relative difference between the two 

velocity measures was calculated per equation 5-1: 

if ( (VGPS[n] ==0 and VONDII[n] ==0) [5-1] 

        relativeDifference[n]= 0; 

 else 

        relativeDifference[n]=  

                (VGPS [n]- VONDII [n])/ mean(VGPS [n], VONDII [n]); 

The standard deviation of the relative differences was calculated and GPS outlier 

samples were identified as those samples with relative difference greater than +/- 

3 standard deviations.  In these cases, the OBDII velocity sample was used as a 

replacement velocity measure.  

Outlier date and time stamps were detected by ensuring date/time stamps were 

monotonic increasing and removing any samples outside 24 hours of the trip mode 

date allowing a trip to cross over midnight once.  

Outlier latitude and/or longitude samples were detected by first rejecting all 

samples that indicated invalid GPS through the GPS fix signal and then through 

identification of any individual samples not on the trip path as indicated by samples 

that were significantly off (>100km) from prior and subsequent samples.  These 

samples were removed from trip distance travelled calculations.    

The GPS outlier detection algorithm impact was found to be highly dependent 

on the driver, as a driver’s regular driving patterns may typically include or exclude 

areas with poor GPS reception.  For many drivers and for most trips, there were no 

outlier values. The impact to the measures for driving distance, driving time and 

number of deceleration events for most drivers was minimal or nil. 
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5.3.5. Fusion with Additional Data Sources 

In addition to GIS information, the data can be augmented with data from other 

sources.  In many regions, historical weather data are available for local weather 

reporting stations [121]. These data are available from government and private 

sources in both summary form, such as daily summary, and more time precise 

information, including hourly reports.  The geographic location of the vehicle can be 

used to identify the nearest weather recording station, and this weather data can 

now be added to the records with attributes such as temperature, precipitation 

amounts for rain and snow, visibility, and wind speed and direction. 

The time of day and location information can be used to determine solar day for 

sunrise and sunset allowing classification as night, dawn, day, or dusk. 

5.3.6. Privacy and Anonymity Considerations 

The rich set of data amassed for a single driver or vehicle is substantial and 

hence the issues of privacy for the individual driver are significant.  In addition to 

requirements for anonymity that are required through research ethics, many other 

applications that capture driving data will need to ensure the privacy of the driver. 

This is an example of a general problem that is increasing in prevalence with the 

increasing deployment of GPS sensors (smart phones) and associated ability for 

this information to be tracked, monitored and recorded.  Privacy and anonymity 

issues presented in the literature and discussed in section 2.4.1 introduce the 

concepts of k-anonymity and differential privacy within other applications and the 

challenge of GPS sensors.  This work needs to apply these concepts to the 

anonymity in recorded GPS data and associated augmentations of the data from 

GIS and other sources. As a result, a number of privacy attributes were analyzed 

based on ensuring k-anonymity across the data with differential privacy options: 

• Direct driver identification:  All driving files are stored without any 

demographic or personal information (name, sex, birth date, address).  A 

participant ID allows multiple files for a participant to be associated. 

• GPS location differential privacy:  The data are stored using a zero 

longitude/latitude origin where the first sample in each trip is set to 0,0 
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and all subsequent samples relative to this.  This allows three levels of 

differential privacy the files: 

1) "as is" provides no indication of actual location 

2) "original region" (e.g. Ottawa, Canada) allows a shift to the general 

region but not to the precise location, or 

3) "absolute origin reference" allows the files to attain the full precision of 

the original GPS data. 

The privacy management of the location information is absolutely critical. The 

full precision data can easily allow identification of the participant’s home (where 

the vehicle spends most nights), place of work or other frequent daily destinations 

and other common locations allowing identification and knowledge of private 

details. 

Table 5-5: Summary of the effects of differential precision for sunrise / sunset calculations 
for Ottawa On metropolitan area 

Attribute Value 

Population 1.2M 

Metropolitan Area Size 
~100km East - West 

~50km North - South 

Variation in SunRise/Sunset time  
from Center to East/West limits 

+/- 4 mins 

Variation in Solar Day SunRise to Sunset time  
from Center to North/South limits 

+/- 1 min 

 

Within the dataset, the seven parameters that in combination potentially allow 

the re-identification of the user are longitude, latitude, region, sunrise, sunset, 

weather data and road hazards. The differential privacy technique is applied to the 

parameters to achieve k-anonymity for any combination of these parameters to 

ensure that they cannot be used to rebuild the vehicle location: 

• Sunrise and Sunset information: The date with sunrise and sunset times 

can provide the trip location as the difference between sunrise and sunset 

indicates latitude while the absolute value of sunrise or sunset indicates 

relative longitude within a time zone. As an example - for Ottawa, Canada 

shown in Table 1-4 (45.4214° N, 75.6919° W), a 1 second precision 
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sunrise allows longitude to be determined within ~200m (100km width has 

~500 second difference in sunrise time).  

• Weather information can also be used to identify a region through 

archived online weather reports. In the differential privacy model, this data 

may only be shared where there is some level of trust in the user such 

that they can know the driver's region. 

• Road hazard/Road condition information can identify a more precise 

location for a vehicle through comparison with GIS map data.  The relative 

location for example of 2 school zones and the associated road network 

connections could be used to precisely relocate the trip.  To prevent this, 

the numerical code and conversion to text would only be shared with 

trusted data users. 

As a result, k-anonymity is required in the sharing of the above attributes such 

that weather information can only be shared with users that are trusted to some 

level, as this information provides an alternative mechanism to determine the 

regional location of the driver. Sunrise/sunset information can be shared using a 

differential privacy model where it is calculated not for the absolute location of the 

driver but instead for the general region for the trip. 

The use of differential privacy on the sunrise and sunset calculations is shown 

in Table 5-5 for an example metropolitan area where the center of the region has 

the effect of changing the sunrise and sunset by at most 4 minutes while the impact 

on the total length of the solar day is 1 minute. These small impacts on the precision 

of solar cycle information will have minimal impact on the use of the data, while 

ensuring the privacy of the study participant.  Data could have additional noise 

added so that there is a larger uncertainty in the solar day length.   

The differential privacy models are summarized in Table 5-6, where 3 models 

have been provided for “fully trusted”, “intermediate trust”, and “open access” users 

and their access to the data. With 3 levels of trust for the data, the open access 

model provides the highest level of privacy, while the intermediate trust level 

provides additional details. The models also provide guidance for maintaining 

privacy in published results. A single master big data archive of the data with the 
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origin of trips set to zero longitude/latitude and a set of supplemental files allows 

the data to be shared while ensuring privacy at the three trust levels.  

Table 5-6: Differential Privacy Models  

 Fully Trusted 
User 

Intermediate Trust 
User 

Open Access User 

Dataset 
Access 

Zero referenced Longitude/Latitude trip Data 

Regional 
Weather 

Data 
Yes Yes No 

Sunrise/ 
Sunset 

Data 
Yes Yes for region center Yes with added noise 

Location of 
trip origin 

Absolute origin 
Regional central 
reference only 

No 

Road 
Hazards 

Codes and code 
meanings 

Codes only Codes only 

Latitude  
Accuracy 

GPS limited  
+/- 10m typical 

Defined by size of the 
region for Ottawa  

+/-25km 
+/- 100km 

Longitude 
Accuracy 

GPS limited  
+/- 10m typical 

Defined by size of the 
region for Ottawa  

+/-50km 

+/- 100km but for 
every time zone 

 

Open access users of the data will at best be able to calculate the actual latitude 

and latitude of the user to a controlled precision that can be set to +/- 100km with 

minimal impact on the data. Anonymity is further enhanced as this position will be 

relative to the boundary of an unknown time zone.   

Users with intermediate trust on their use of the data can be provided additional 

supporting information that enable more accurate location information, while still 

ensuring the absolute privacy of a participant’s home, place of work or other 

destinations.  Fully trusted users have the absolute location to the limit of the GPS 

precision and hence identify a participant’s home and other frequent destinations. 

These techniques for differential privacy and data augmentation are generally 

applicable to any study of location based behaviours of individuals or groups.  That 

would include studies of driving related activity such as individual driving studies or 

studies of groups of vehicles such as fleets.  It is applicable to studies beyond 
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vehicular use as it could be applied to other modes of transportation such as cycling 

and also walking. 

Figure 5-1 shows the resulting automated workflow for the processing and 

augmentation of the sensor data through the stages required to convert the raw 

sensor data into a sharable repository.  Figure 5-2 shows the plot of an actual trip 

for one participant at the intermediate trust level as it has been repositioned to the 

Ottawa region only.  This trip is 13.4 minutes in duration and 7.7km in length.  The 

trip has been shown with the GIS map data augmentation including speed limits 

and road hazard / road condition information. 

 

Figure 5-1: Flowchart showing the processing steps required to convert raw vehicle 
sensor data to a reference repository with Differential Privacy and k-
anonymization.  Processing steps include the augmentation of the sensor 
data through fusion with GIS and weather reference data sets. 
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Figure 5-2: Example trip path presented using Intermediate Trust level where the data 
has been located back to the Ottawa area while continuing to not show the 
precise origin and destination of the user.  Trip starts at the 'o' and ends at 
the 'x'.  The posted limits on the roads traveled are 40km/hr (blue), 60km/hr 
(green), 80 km/hr (red) and 100km/hr (black).  The regions highlighted in 
orange have road hazard or condition notifications. 

5.3.7. Alignment to Cloud Computing Programming Models 

The Candrive dataset aligns with the scalability attributes required by the 

Hadoop architecture for cloud processing.  The trip data sets could be easily 

distributed within a Hadoop distributed file system, while the processing is highly 

scalable across cloud computation since the processing of the data for individual 

trips and/or drivers provides simple foundations for parallel processing. 

Table 5-7 provides a demonstration of the scalability of the processing of the 

driving data making use of a multi-core architecture.  An identical extensive feature 

extraction and analysis algorithm was used for both of the test cases without 

change and four years of data records for three users were used as a test data set.  

The data sets for the three drivers captured approximately 111,000km, 43,000km 

and 102,000km of driving and 5899, 2217 and 9813 trips respectively. The 

algorithm was configured to process a batch set of Candrive records where: Case 

1: a single Matlab image had all of the files assigned to it; Case 2: the files were 

divided such that each Matlab image was assigned 25% of the files while running 

within the same system sharing a common file storage system.  The result is that 

by distributing the task across four Matlab images the total elapsed time was 



Chapter 5: Data Preparation and Sensor Signal Processing Methods   

PhD Thesis - Bruce Wallace  57 

reduced by 61% while the total combined computation time for the four parallel 

tasks was only increased by 25%. 

Table 5-7: Summary of performance impacts and the ability to parallelize the computation 
for the analysis of the all the data for Three Candrive participants. 

Attribute Case 1 Case 2 

Software 
Windows 8.1 64bit 
Matlab 2014 64bit 

Hardware 
Intel Core i7-4770 CPU @ 3.4GHz 

(quad core) 

Storage Solid State SATA 

Processing Model Single Matlab instance  Four Matlab instances 

Matlab application No use of Matlab Parallel Processing Toolbox 

Data Assignment 
All data processed by 

single instance 

25% of the data files 
assigned to each Matlab 

Instance 

Processing elapsed 
time 

0.92 hrs 
Range 0.28-0.35 hrs 

mean 0.29 hrs maximum 
0.35 hrs 

Total CPU time 0.92 hrs 1.14 hrs 

5.4. Discussion 

Tracking of longitudinal driving data has many applications, whether it be the 

driving behaviours of older adults that is the purpose of the Candrive study, the 

management of fleet vehicles to optimize utilization and maintenance strategies, or 

the study of traffic flows and congestion by planners exploring the need for changes 

to the road network. All of these applications are dependent on the accessibility to 

big data sets of longitudinal sensor records.   

This work shows that longitudinal data, once captured with “simple-to-deploy” 

vehicle-based recording systems, can be automatically processed to ensure the 

integrity of the sample records. It also shows the automatic augmentation of the 

data with additional information through fusion with other data sources to add sun 

cycle, weather, road speed limit and hazard information. These come from GIS 

sources, enhancing the potential analysis and research questions that may be 

applied to the data. 
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It then presents general solutions to enable a differential privacy based model 

for sharing the data of GPS based driving logs with other researchers that allows 

for use by researchers with different trust levels.  Specifically, it presents an 

example of three trust levels for the data. The data set has been analyzed based 

on a k-anonymity model to ensure that data set parameters individually and in 

combination have been captured and are shared so the participant anonymity is 

maintained.  This general solution for privacy can be applied to many studies of 

location based behaviour.   

Lastly, it shows that the resulting data set supports the distribution of analysis 

processing across multiple processors within a cloud-computing model. The result 

is large-scale research repositories for use by multiple researchers while still 

ensuring research participant privacy and anonymity. 
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Chapter 6:   EEG as Cognitive Indicator 

 
Objective: This chapter proposes EEG based ERP techniques as measures of 

brain function to allow healthy subjects to be distinguished from MCI patients.  The 

work specifically explores potential test methods that can be used in conjunction 

with the ERP technique, potential feature measurements of an ERP leading to 

identification of distinguishing features and comparison of the performance of 

various machine learning classifiers.   Topics covered include: 

• Application of neuropsych cognitive assessment techniques such as n-

back tests in conjunction with EEG/ERP measurement. 

• ERP analysis and feature measurement methods within a test group of 

32 volunteers including both healthy and MCI subjects, 

• Application of classification techniques to measured features providing 

classifiers and feature sets that distinguish between the two groups. 

6.1. EEG and ERP Analysis 

The Event Related Potential (ERP) based on the Electroencephalogram (EEG) 

is a method where the cortical response to a stimulus is measured through repeated 

presentation of a stimulus with capture of the responses. The set of responses are 

then filtered for noise, outliers removed (such as eye blinks) and averaged after 

being time aligned to the stimulus event. The averaging has the effect of removing 

noise and signals due to activity that is uncorrelated with the stimulus, allowing the 

activity that is correlated to the stimulus to be observed.  
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The potential for ERP results to be used in conjunction with or in place of 

neuropsychological cognitive testing was studied through the comparison of the 

ERP testing in a group of 32 older adults where 15 were patients with MCI and 17 

cognitively intact healthy older adults presented in Section 3.1.2. Cognition was 

tested using the MoCA [31]; RBANS subtests for immediate and delayed memory, 

attention, visuo-spatial and language [29] abilities; Trails Making Test A and B [30]. 

Participants were also asked to perform a number of cognitive tasks to elicit working 

memory relevant ERPs.  

6.1.1. Cognitive Task: n-Back 

The 1-back test is an example of an n-back task [38] that can be used with the 

ERP technique.  In the 1-back task, the subject is presented with a sequence of 

symbols, and asked to press a button if the symbol presented is the same as the 

previous symbol and to do nothing if the symbol is different.  This provides two 

different measures of the brain response that can be captured through an ERP, as 

the participant must make a decision and also make the response action or take no 

action.  

For the 1-back assessment, participants were presented with 180 trials where 

they were asked to press the mouse key when the same number appeared 

consecutively.  Numbers were presented for 1.0 sec with 1.7 sec between trials. 

Within the 180 trials, 60 trials required a button press and 120 trials did not.  This 

resulted in data categorized into four cases based on whether a response action 

was required and whether the participant took the correct action or not.   

The 0-back test uses a similar model to the 1-back except in this case, the 

participant is given a specific symbol at the start of the trial and is requested to 

press the button when that symbol is presented.  This test presents a lower 

cognitive load as the target symbol is unchanging.  The 2-back test is similar to the 

1-back, except the participant is asked to press / not press the button based on the 

current symbol matching the symbol prior to the previous symbol.  This represents 

an increased working memory cognitive load, as the participant must keep track of 

more historical symbols. 
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6.1.2. Cognitive Task: Verbal Recognition  

Participants also performed a verbal recognition task that consisted of the 

presentation of a series of words on the computer screen that were presented one 

at a time and the participant indicates if they have seen this word previously 

(repeated word) or if it is a new word.  

6.1.3. Cognitive Task: Go - No-go 

In this test, the research subject is presented with a sequence of 2 symbols such 

as two different letters of the alphabet and is asked to press a button when a one 

symbol is presented (go: about 80% of time) and not press the key when the 

alternate symbol is presented (no-go: about 20% of time).     

6.1.4. HC and MCI Group Comparison 

The cognitive assessment scores were analyzed with IBM Statistical Package 

for the Social Sciences (SPSS) to determine if they showed statistical differences.  

The results shown in Table 6-1 demonstrate the differences between the two 

groups as there were significant differences between all neuropsychological test 

results such as mean Trails B time for MCI was 173.5 seconds compared to 76.4 

seconds in the HC (p<0.001).   Within the cognitive tasks shown in Table 6-2, the 

behavioural scoring of the performance also demonstrated some of the differences 

in the two groups such as the HC group having more correct responses. The 

reaction time for HC was faster than the MCI patients in all 3 n-back conditions 

(p=0.002).  

To determine the initial potential for EEGs and specifically ERPs to indicate if the 

two groups were MCI or HC, the ERP amplitude and latency for the maxima near 

200 msec, 300 msec and minima near 400 msec were analyzed using Brain 

Analyzer 2.0. ERP results in the n-back revealed: there was an increase in latency 

in the 200msec maxima as shown in Table 6-3 with a decrease in 400 msec post 

stimulus amplitude in MCI patients when compared to HC in all n-back conditions 

(p = 0.04). 
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 Table 6-1: Summary of behavioural test scores for the HC and MCI groups showing 
mean score achieved and the SPSS p-value measure for the significance 
of the statistical difference between the two groups. 

Test MCI HC p 

MoCA 22.3 27.4 0.00 

RBANS Total 79.2 113.3 0.00 

    Immediate Memory 71.1 107.6 0.00 

    Delayed Memory 59.2 110.3 0.00 

    Visuospatial & Constructional 107.2 124.9 0.01 

    Language 89.8 99.3 0.06 

    Attention 93.5 103.1 0.09 

Trails A (sec) 57.4 35.9 0.04 

Trails B (sec) 173.5 76.4 0.00 

Table 6-2: Summary of n-back accuracy and reaction time results for the HC and MCI 
groups showing mean score (standard deviation) achieved and the SPSS 
p-value measure for the significance of the statistical difference between 
the two groups. 

 ACCURACY - % REACTION TIME - msec 

 MCI HC p MCI HC p 

0-back 97.3 (2.4) 96.8 (2.9) 0.7 480 (69) 424 (43) 0.002 

1-back 88.9 (7.6) 95.0 (2.0) 0.02 562 (70) 467 (41) 0.002 

2-back 52.9 (14.6) 74.3 (11.5) 0.002 628 (77) 532 (44) 0.002 

Table 6-3: Summary of P2 latency measure for the HC and MCI groups showing mean 
value (standard deviation) and the SPSS p-value measure for the 
significance of the statistical difference between the two groups. 

Condition  MCI - msec HC - msec p  

0-back  196 (24)  177 (24)  0.04  

1-back  196 (21)  175 (21)  0.04  

2-back  195 (25)  174 (25)  0.04  
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6.2. LDA Classification 

The potential for the application of classification technologies to be used with the 

ERP test results as a means to distinguish between healthy and MCI participants 

was explored. This required the systematic analysis of the potential large space of 

options: 

• Selection of EEG sensors to use within the 32 lead EEGs captured. 

• Selection of the best test paradigm(s) to use from the N-back (0,1 and 2 

back), Go/no-go, and Verbal recognition [38,39,133] test paradigms 

performed. 

• Definition and measurement of potential features of the ERPs. 

• Systematic exploration of these features to identify the features or sets 

of features that provided the best performance. 

6.2.1. EEG Sensor and Test Pardigm Selection 

The ERPs captured by the NeuroScan NuAmps system included the analysis by 

those tools of a number of ERP features across the set of EEG leads as reported 

in [133] that included a base set of features and signal leads.  EEG signals included 

Cz, CPz, Pz, Fz and FCz and the features measured included P2, N2, P3 for N-

back, P3 for Go/no-go, and N4 and Late Positive Complex (LPC) for Verbal 

recognition. 

 Adaptive LDA classifiers were trained using a leave one out train and test 

method for these ERP components and measurement paradigms.  Given the goal 

was the identification of potential ERP signals and components, the behavioural 

performance measures associated with the test paradigms were excluded for this 

analysis.  

For this group of MCI and HC, the N-back paradigm provided the best 

performance with an error rate of 15.6% using the 1-back P2 latency at Pz electrode 

with the CPz electrode showing the second best performance.  The 0-back and 2-

back did not improve on the 1-back results.  For the Go/NoGo, the best performance 

was achieved with an error rate of 21.9% using P3 amplitude at Fz and FCz 

electrodes.  The Verbal recognition paradigm provided the same performance 
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using two features including the N4 amplitude in repeated words at CPz.  No 

combination of the features from the three tests improved results. 

6.2.2. Expanded Feature Identification 

Based on these results a focused analysis of CPz and Pz electrodes for the set 

of six ERP responses for the 1-back test paradigm for each participant was 

performed.  This ERP set consisted of three ERP responses for each of the two 

electrodes for three cases: where a response was required, where no response 

was required and the combined response for these two cases. 

A series of features were then calculated for the CPz and Pz responses for each 

participant: 

• P1, N1 - latency and amplitude of the first maximum and minimum in the 

combined response respectively post stimulus. 

• P2, N2 - latency and amplitude of the second maximum and minimum in the 

combined response respectively post stimulus. 

• P3 - latency and amplitude of the third maximum in the combined response 

post stimulus. 

• The amplitude for the response required and no response required ERPs at 

the same latencies for each of the above maxima and minima. 

• A series of mean ERP response features were also calculated where the 

mean ERP signal is calculated for +/- 20msec window for each of the 

identified maxima and minima for each of the 6 ERPs for the participant. 

• The ERP does not always show clear maxima and minima beyond 400 msec 

post stimulus; thus, a series of mean ERP response features for 400, 450 

and 500 msec +/- 20msec window post-stimulus for each of the 6 ERPs for 

each participant was calculated. 

• The correlation was calculated between the response required and no 

response required ERP for each of the two electrodes (CPz and Pz) providing 

a similarity measure. 



Chapter 6: EEG as Cognitive Indicator   

PhD Thesis - Bruce Wallace  65 

These maxima and minima were located using a local peak [34] technique to 

identify a maximum/minimum within a window of samples. A local peak requires 

that the identified maximum/minimum must not be in the furthest right or left position 

within the window such that it must have samples on either side that were 

lower/higher than the chosen value. 

From this set of results, a number of additional measures were calculated 

including: 

• Latency and amplitude differences between each of the chosen 

maxima/minima and the subsequent minimum/maximum respectively. (i.e. 

N1 to P1). 

• Latency and amplitude differences between each of the chosen 

maxima/minima and the subsequent maximum/minimum respectively. (i.e. 

N1 to N2). 

• The magnitude of the ERP response may vary between individuals, so a set 

of relative magnitude measures was generated by scaling the amplitudes of 

the calculated maxima, minima and means for each participant by the 

maximum amplitude in that participant’s post-stimulus ERP response. 

This results in 314 features for each of the ERP responses to the 1-back test 

paradigm in addition to the 4 behavioural measures associated with the 1-back test.  

6.2.3. LDA Classification 

The development of classifiers was performed using Matlab's quadratic LDA 

classifier models and the 32 participants. Models were developed and tested using 

a leave one out trial model where the results of all 32 leave one out cases were 

averaged to provide an error rate for the model.  

The Matlab "sequentialfs" and "classify" tools were used for this study to allow 

for the exploration of the measured features to identify the subsets that provide the 

best performance. The developed feature set includes many distinct features that 

are correlated with each other to varying known and unknown degrees, 

complicating the use of "sequentialfs", because subsets of features that are too 
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correlated can lead to failures within the classifier algorithms as they assume 

independence of the features.  

The default implementation of "sequentialfs" creates optimal feature sets through 

evaluation of all features individually and the choosing the best individual feature.  

It then tries all remaining features with that feature to select a second feature. This 

procedure is repeated and features added until no further improvement occurs but 

this leads to the potential evaluation of subsets of features that are too correlated.  

The application of sequentialfs was enhanced to ensure that any feature when 

added to the candidate set that caused this issue was adaptively excluded. The 

exclusion list was generated uniquely and automatically for each trial so that once 

features were selected, any subsequent additional feature that caused issues was 

excluded. 

6.2.4. LDA Classification - 1-Back ERP Measures Only 

The Matlab classification tools were applied within the following cases:  

• Individual feature performance - The performance for each of the 

generated features to classify the participants was measured.  

• Incremental from best individual feature performance - Using the 

enhanced Matlab sequentialfs tool, the feature set was evaluated to 

determine the incremental classification value of adding additional 

features to the identified best individual feature.  

• All 2 feature case evaluation - The performance for all pairs of generated 

features to classify the participants was measured to determine if a pair 

existed that provided better performance (i.e., a pair that excludes the 

best individual performing feature).  

• Incremental from best feature pair performance - Using the Matlab 

sequentialfs tool, the feature set was evaluated to determine the 

incremental classification value of additional features to the identified best 

feature pair.  

The exploration of all feature pairs is a required step to overcome a potential 

limitation of the sequentialfs tool to create optimal feature sets as it evaluates all 
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features and chooses the best individual feature and then trials all remaining 

features with that feature to select a second feature. This method will never find 

potential cases where an initial choice of two features that excludes the best 

individual provides better performance, and so all features pairs were evaluated.  

Table 6-4: Summary of the performance of the LDA classifiers using an incremental 
search from best feature for only the ERP analysis features 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Case Features 
Performance (%) 

TN TP FN FP 

Single best 
feature 

(1)   No response required CPz P2 
amplitude 82 67 33 18 

Adding 
second 

feature to 
single best 

Feature (1) plus:  

(2)   Response required Pz N2 to P3 
amplitude difference 

82 73 27 18 

Adding third 
feature 

No improvement compared to 
features (1) and (2) only n/a 

Adding 
fourth feature 

Features (1) and (2) plus: 

(3)   Response required CPz P1 to 
P2 latency  

(4)   Combined CPz P1 relative 
amplitude 

94 80 20 6 

 

The initial classification results for the ERP trials using only the ERP derived 

features is summarized in Table 6-4 showing the analysis of the calculated features 

and identifying the best-performing feature.  Once this feature was selected, the 

analysis was repeated combining this feature with all other features to identify pairs 

of features that improved the model’s performance.  This method was repeated 

again through the addition of a third feature and then a fourth feature.  No 

improvement was found with the addition of a fifth feature. 

The best single feature had 3 false positive (FP) / 5 false negative (FN) errors, 

indicating that almost one-third of the participants were incorrectly classified.  A 

small improvement to 3 FP / 4 FN errors and 1 FP / 3 FN errors was achieved 

through the use of 2 and 4 features respectively. Combinations of 3 features did not 

improve on the performance of the 2 feature case.  
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All possible pairs of features were tested to determine if there was a pair of 

features that in combination outperformed the best performance found for two 

features including the best individual feature.   This case now allows for the use of 

feature pairs that do not include the feature that provided the best overall 

performance individually.  The result of this analysis is summarized in Table 6-5. 

One pair of signals that provides 2 FP / 2 FN errors was identified, which is an 

improvement over the 2-feature result shown in Table 6-4 and comparable to the 

4-feature case in Table 6-4. The inclusion of the mean amplitude in the 450msec 

post stimulus range for the classification of individual participants aligns with the 

results in López Zunini et al. [133].  Classification models were then analyzed 

adding incremental features to the two-feature pair.  The addition of a third feature 

to the best pair was analyzed and it improved performance to 2 FP / 0 FN errors.  

Additional features did not further improve performance.  

Table 6-5: Summary of the performance of the LDA classifiers based an initial best pair 
search for only the ERP analysis features 

 

 

 

 

 

 

 

 

 

 

 

 

 

Case Features 
Performance (%) 

TN TP FN FP 

Best pair  

(1)   Response required Pz 450ms 
mean amplitude 

(2)   Pz correlation 
88 87 13 12 

Best Pair + 
third feature 

Features (1) and (2) plus: 

(3)   Response required Pz N1 to 
N2 latency     

88 100 0 12 

 

6.2.5. LDA Classification - 1-Back Behavioural Measures Only 

The results for the classification of the participants into participant groups 

(Healthy or MCI) using only the 1-back behavioural test scoring measures is 

summarized in Table 6-6. The model exhibits relatively poor performance, with 

classification errors of 2 FP/ 5 FN errors when the best 2 of the 4 available features 

are used and 1 FP / 7 FN when only 1 feature is used.  No further improvement 

was found if 3 or all 4 features were used.  
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Table 6-6: Summary of the performance of the LDA classifiers using an incremental 
search from best feature for only the 1-back behavioural test scoring 
features. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Case Features 
Performance (%) 

TN TP FN FP 

Single 
Feature 

(1)   1-back Omission errors 94 53 47 6 

Two 
Features 

Feature (1) plus: 

(2)   1-back Accuracy     
88 67 33 12 

 

6.2.6. LDA Classification - 1-Back ERP and Behavioural Measures 

The potential for the combination of the 1-back behavioural and ERP analysis 

features combined is summarized in Table 6-7 using an incremental search starting 

from the base single performing feature, as performed with the ERP only case.  

These results show that 1 FP / 3 FN errors was achieved using 3 features which is 

poorer than the best found in Table 6-2.  No additional performance improvement 

was found using a fourth feature.  

Table 6-7: Summary of the performance of the LDA classifiers using an incremental 
search from best feature for the 1-back behavioural scoring and ERP 
analysis combined 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Case Features 
Performance (%) 

TN TP FN FP 

Single 
feature 

(1)   1-back Omission errors 94 53 47 6 

Two 
features 

Feature (1) plus: 

(2)   Response  required CPz N1 
to P1 amplitude difference 

100 67 33 0 

Three 
features 

Features (1) and (2) plus: 

(3)   Response required  Pz P2 
to N2 latency 

94 80 20 6 

 

Again a search of all feature pairs using the combined feature set was performed. 

This search is summarized in Table 6-8: the best pair of features from the combined 

set yielded 1 FP / 1 FN errors, and through an incremental search from this pair, a 
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third feature was identified that yielded 1 FP / 0 FN errors. The inclusion of 

additional features beyond 3 did not improve the error rate.  

Table 6-8: Summary of the performance of the LDA classifiers based on initial best pair 
search for the 1-back behavioural scoring and ERP analysis features 
combined 

 

Case Features 
Performance (%) 

TN TP FN FP 

Best Pair 
(1)   1 back Response Time 

(2)   CPz correlation 
94 93 7 6 

Best Pair + 
third feature 

Features (1) and (2) plus: 

(3)   Response required Pz P1 to 
N1 latency    

94 100 0 6 

 

6.3. Alternative Classifiers 

The LDA classifier based on discriminant analysis is one of many classification 

methods that could be applied.  Other classifiers include those based on decision 

trees (DT), logistic regression (LR), support vector machines (SVM), k-nearest 

neighbour (KNN) and ensemble classifiers (EC).  The Matlab 

"classificationLearner" provides 23 different classifiers as shown in Table 6-9 and 

allows their relative performance to be compared.  The features identified in Table 

6-5 were used with the "classificationLearner" tools with initial focus on the use of 

only the best pair of features identified. 

The results for the 23 classifiers have been summarized on Table 6-10 where 4 

classifiers in addition to LDA (Quadratic) are shown.  These classifiers are the only 

cases from the 23 that provided similar or better performance than the LDA 

(Quadratic) classifier.  The table shows the specificity and sensitivity results for 

each of the classifiers and in the case of classification errors shows the 

participant(s) that were incorrectly classified. The results for LDA (Quadratic) and 

Medium Gaussian SVM are identical with the same error rate and the errors 

occurring on the same participants.  Weighted KNN had similar performance also 

but the False Negative error occurred on a different participant. Logistic Regression 

performance was also similar but the errors differed with 2 false negative and no 
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false positives.  In all of the above cases, participant 7 was misclassified.  Fine KNN 

performed the classification with no errors. 

Table 6-9: Summary of the 23 classifier models 

Classifier Family Classifier Model 

Decision Trees 

Complex Tree 

Medium Tree 

Simple Tree 

Discriminant Analysis 
LDA (Linear) 

LDA (Quadratic) 

Logistic Regression Logistic Regression 

Support Vector Machines 

Linear SVM 

Quadratic SVM 

Cubic SVM 

Fine Gaussian SVM 

Medium Gaussian SVM 

Coarse Gaussian SVM 

k-Nearest Neighbour 

Fine KNN 

Medium KNN 

Coarse KNN 

Cosine KNN 

Cubic KNN 

Weighted KNN 

Ensemble Classifiers 

Boosted Trees 

Bagged Trees 

Subspace Discriminant 

Subspace KNN 

RUSBoosted 

One figure of merit for the performance of a classifier is the area under the ROC 

curve with an area of 1.0 representing perfection, while an area of 0.5 implies 

performance no better than random.  An example plot of the ROC curve for the LDA 

(Quadratic) classifier is shown in Figure 6-1 and the area calculations for each of 
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the classifiers is shown in Table 6-10.  As expected, the results for this figure of 

merit are very similar for the classifiers that have similar error results. 

Table 6-10: Sensitivity and specificity data for each of classifier using the best pair of 
features from Table 6-8.  For false positive and false negative cases, the 
incorrectly classified participant number is noted in ().  Table also shows 
the area under the ROC curve for the classifier. 

Classifier 

True 
Positive 

(MCI) 
N=15 

True 
Negative 

(HC) 
N=17 

False 
Positive 

False 
Negative 

Area 
Under 
ROC 

LDA 
(Quadratic) 

14 16 
1 

(7) 

1 

(25) 
0.97 

Fine KNN 15 17 0 0 1.00 

Weighted 
KNN 

14 16 
1 

(7) 

1 

(18) 
0.99 

Medium 
Gaussian 

SVM 
14 16 

1 

(7) 

1 

(25) 
0.98 

Logistic 
Regression 

13 17 
2 

(7,14) 
0 0.93 

 

 

Figure 6-1: Example ROC showing the area under the curve calculation for LDA 
(Quadratic) classfier. 

The classification results for the LDA (Quadratic) classifier are shown as a 

scatter plot in Figure 6-2 where the 32 participants are shown against the measures 
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for the best two features in Table 6-8.  A split between the two classes is shown 

with the HC participants in the lower left triangle and the MCI participants in the 

upper right triangle.  The close proximity of the two groups is clear, as are the two 

classification errors for this classifier. The figure shows the 4 participants 

(7,14,18,25) that were misclassified by one or more of the classifiers and all of these 

as expected reside near the transition between the two triangular regions. 

Each of the classifiers produces decision scores to provide an indication of the 

relative likelihood that the data represents each of the two classes. For LDA, KNN 

and LR, the score is presented as percentage likelihood with the larger value 

indicating the predicted class and values with larger spread indicate confidence in 

the decision.  For SVM, the scores are two values with differing sign, the positive 

value indicates the predicted class, and the magnitude provides a measure of the 

confidence in the prediction.  The score results for each of the classifiers are shown 

in Figures 6-3 to 6-7. 

 

Figure 6-2: Example Scatter Plot for LDA (Quadratic). Orange - classified as MCI, Blue - 
classified as HC.  Dot - classified correctly, X - classified incorrectly.  Figure 
identifies the 4 participants from Table 6-5 that were incorrectly classified 
by one or more classifier. 

The scores for the LDA (Quadratic) classifier in Figure 6-3 shows in general the 

large differences in the scores with the key exceptions being the two decision errors 
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with participants 7 and 25, with a close but correct score for participant 17.  In Figure 

6-4, the scores for Fine KNN results are shown with this classifier providing a binary 

score of 0 or 1.  The Weighted KNN scores shown in Figure 6-5 show participants 

7, 17 and 25 as the three with scores closest to even with the same errors as LDA.  

The Medium Gaussian SVM scores are shown in Figure 6.6 where the four 

participants with scores closest to even are 7, 13, 17 and 25.  The LR scores are 

shown in Figure 6.7 and again these are binary scores with the two errors on 

participants 7 and 14.  The introduction of the third feature from Table 6-8 did not 

significantly change the results for any of the alternate classifiers. 

 

Figure 6-3: Decision scores for LDA (Quadratic) using best 2 features from Table 6-5 for 
each of the 32 participants.  Blue - "Healthy" score and Yellow - "MCI" score 
with participant classified into the class with the larger score.  15 MCI 
subjects on the left and 17 HC subjects on the right. 
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Figure 6-4: Decision scores for Fine KNN using best 2 features from Table 6-5 for each 
of the 32 participants.  Blue - "Healthy" score and Yellow - "MCI" score with 
participant classified into the class with the larger score.  15 MCI subjects 
on the left and 17 HC subjects on the right. 

 

Figure 6-5: Decision scores for Weighted KNN using best 2 features from Table 6-5 for 
each of the 32 participants.  Blue - "Healthy" score and Yellow - "MCI" score 
with participant classified into the class with the larger score.  15 MCI 
subjects on the left and 17 HC subjects on the right. 
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Figure 6-6: Decision scores for Medium Gaussian SVM using best 2 features from Table 
6-5 for each of the 32 participants.  Blue - "Healthy" score and Yellow - 
"MCI" score with participant classified into the class with the positive score.  
15 MCI subjects on the left and 17 HC subjects on the right. 

 

Figure 6-7: Decision scores for Logistic Regression using best 2 features from Table 6-5 
for each of the 32 participants.  Blue - "Healthy" score and Yellow - "MCI" 
score with participant classified into the class with the larger score.  15 MCI 
subjects on the left and 17 HC subjects on the right. 
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6.4. Discussion 

This work explores the potential for ERP responses to help with the identification 

of MCI in patients. It found that measures of the participant's ERP responses along 

with their associated behavioural measures during a 1-back task outperformed the 

results from the behavioural measures only and also outperformed the results ERP 

and behavioural measures for the other two N-back tests, Go/No-Go and Verbal 

Recognition tests.  

The work further explores the development of classifiers to distinguish HC and 

MCI participants with the analysis of 314 ERP measurement features and 4 

behavioural measures for the 1-back test.  Using LDA classification, the 3 features 

that provide the best classification are identified with the 3 providing 1 FP / 0 FN 

errors and using only 2 features, an error rate of 1 FP / 1 FN was found.  The 

potential for other classifiers to improve the performance was then analyzed where 

23 classifiers were tested with the best features with 4 classifiers providing similar 

or better performance than LDA with Fine KNN identified as a classifier that 

performed with no errors.  

Classifiers and machine learning techniques identified a decision rule based on 

the two features represented by a diagonal decision rule between the two 

participant groups that is not possible with a single feature. The decision rule for 

the classifier shows that healthy subjects exhibited faster response times and a 

larger difference in their ERPs for the response required and not required cases. 

The response time measure is related to processing speed for the participant 

and it would be expected that healthier subjects should be able to respond faster. 

In a clinical cognitive test, the participant is asked to do a timed task such as draw 

an analog clock once. This is scored once by the observing clinician based on time 

and accuracy.  Should the participant make an error unrelated to their ability, this 

could lead to diagnostic consequences. The 1-back cognitive test uses a simpler 

cognitive task: click or not-click a mouse button based on a presented number, and 

the test is repeated and click speed measured each time by the test computer.  The 

simpler task and repetition allows the participant to focus and perform at their ability 
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level with averaging ensuring effects of a single outlier or natural variation in a single 

result measure reduced. The participant also does not have the stress of direct 

observation and measurement by the clinician. 

The ERP is a measure of the cortical response signal for the participant with the 

two cases within the 1-back test requiring different actions by the participant; with 

a mouse click action required in only one case. The cortical signal measured by 

ERP is an aggregate of the cognitive pathways associated with the processing for 

each of the two response cases. Physiologically, one of the impacts of cognitive 

decline and reduced brain ability is a reduction in the diversity of cortical pathways 

within the brain.  The proposed correlation measure indicates that the ERP for the 

response required and not required cases for an individual have more similarity for 

the MCI participants than HC. This could be an indication that healthy brains have 

more options for routing information to perform a task through the use of different 

pathways for the two response cases. On the other hand, MCI causes patients have 

higher similarity in the ERP indicating less diversity in the brain response between 

the two cases. 

Future studies of 1-back testing with ERP measurement should explore the 

extensibility of these results through study of a larger population of both MCI and 

HC control participants with the possible inclusion also of mild dementia patients.  

Studies are also required that explore the variation in these measures for an 

individual, such as day to day or time of day, or impact of fatigue or caffeine, while 

also managing for practice effects that may also occur. 
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Chapter 7:   Games as Cognition Measure 

 
Objective: This chapter explores methods for the measurement of cognition 

through computer based games.  Computer gaming represents a method for 

cognition measurement that can be easily deployed to patient’s homes allowing the 

them to easily perform between appointments. The chapter explores the features 

and capabilities required in games. Topics covered include: 

• The features and capabilities of games designed for the measurement of 

cognition with older adults is presented including the need to be 

interesting, relevant and at an appropriate ability level for the group. Ability 

is supported through hint systems to support play. 

• The instrumentation of the games to provide the needed sensor 

information for cognition measurement is presented. 

• The design of two games developed for this work is presented. 

• The functional validation of the games with volunteer students and 

cognition distraction presented showing the measures that are possible 

with the games.   

• The results from pilot trials of the games with MCI patients is presented. 

7.1. Method 

Two custom games were developed for use with MCI patients as both a 

mechanism to stimulate cognitive ability and to detect cognitive change over time 

of use. There are many games that could be used including card games (solitaire, 
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memory) or word jumbles [54, 55].  CWG (Word Search) and CSG (Sudoku) were 

chosen and developed as research games because they always have a solution 

whereas many card games have luck of the deal and high potential for no winning 

solution.  Word search games focus on language centers and the brain functions 

to search the grid for the hidden word. Sudoku’s use of numbers and logic makes 

use of different brain centers. 

7.1.1. Carleton Word Search Game (CWG) 

 

Figure 7-1: Example CWG game board showing word list on left, letters being selected 
for a new word in boxes, letters in previously found words in red and letters 
included within a hint (letter A) for the next word in magenta. 

The game presents a grid of letters with the hidden words along with the list of 

words.  A screen shot is shown in Figure 7-1.  Key features of CWG include: 

• Hint system: It is important that MCI patients are able to make progress 

to avoid frustration.  After no progress for a set time limit, the game 

highlights all letters that match the first letter of the next word to be found. 

It will then highlight the second and third letters in turn based on the timer. 

• Detailed record of user activity:  In addition to overall time to complete, a 

detailed time log for the following user activities is created: 

o All mouse movements 

o Letter selection and de-selection 

o Words found 

o Hints provided 
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7.1.2. Carleton Sudoku Game (CSG) 

 

Figure 7-2: Example CSG game board showing given numbers in grey squares, solution 
numbers in large font with white background, user pencil marks in small 
font and a hint for a cell that can be solved highlighted in blue. 

The game presents the user with a game grid that has some prefilled cells.  An 

example game screen is shown in Figure 7-2.  Key features of CSG include: 

• Pencil Marks: A user can enter a single value in a cell as the solution 

value but many game players need to make notes in cells of potential 

values as they work the logic of the puzzle.  CSG allows both solution 

values and pencil marks. 

• Hint System: Two types of hints are provided by CSG, if a user has any 

cells where the entered number is incorrect, the game will highlight those 

cells in red after an adjustable time limit of no progress.  If there are no 

errors, the game will instead provide a solution hint by highlighting a row, 

column or 3x3 square where there is a cell that can be solved.  Hints will 

cycle through all three hints for a given cell so that once all are shown; 

the hinted cell is uniquely located for the user. 

• Detailed Record of User Activity:  The specific measures included by CSG 

in the time log include: 

o All mouse movements 

o Solution number entries and erasures 

o Pencil mark entries and erasures 

o Hints provided including hint type 
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7.2. Experimental Results - Students 

The CWG and CSG were operationally validated with volunteers and then used 

within a pilot study of MCI patients.  The volunteer study allowed the game 

functionality and the associated measurement system to be validated.  It also 

provided data for the development of analysis algorithms and through the use of 

cognitive distraction, data with varied cognitive performance for the same individual. 

The study with MCI patients provided pilot data on the actual use and performance 

of the games with a target population. 

7.2.1. Carleton Word Search Game (CWG) 

Operational validation of the games was completed through a study with healthy 

students and staff as summarized in Section 3.1.1. Figure 7-3 shows an example 

timeline plot for one participant showing many key aspects of game play.  The 

selection and de-selection of letters by the user including clearly distinguishing 

selection of letters that are in hidden words and those that are not (errors).  The log 

also shows when words were found and these allow exploration of the variation in 

a given user’s play.  The last part of the figure shows when the user received hints. 

Figure 7-5 plots a portion of the mouse track for CWG play showing how the 

mouse is used as a visual aid for the user as they search the grid, including a word 

being found (loop) and selected (line) near (925, 200).  Application of signal 

processing techniques to these traces could identify typical search strategies along 

with regions on random activity. Table 7-2 shows example results for 2 players and 

the student group.  These show a number of the measures of game play that can 

be derived from the game log, including various measures of user activity such as 

average time between each found word indicating search skill, and how quickly the 

letters in a word are selected measuring motor control. These preliminary results 

show the differing performance of the users, such as their use of the hint system 

and the number of errors made.  The ability of the measures to show differing 

performance is indicated by the lower number of words found and the larger 

average time between words found when distracted.  The word rate standard 
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deviation indicates the expected variation in rate as players find obvious words 

quickly and then slow as they search for other words. 

 

Figure 7-3: CWG log trace showing the record of game play.  Letters found shows the 
selection of letters by the user with 1 = letter in hidden word, -1 = letter 
not in hidden word (error).  Letters de-selected shows letters being 
unclicked. Words found shows the time of each found word.   
Hints shows when they were provided. 
 

Table 7-2: CWG results showing measures of game performance calculated from the 
game log for two example users and the overall group (n=17). 
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Table 7-3: CSG results showing measures of game performance calculated from the 
game log for two example users and the overall group (n=17). 
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1 N 10.68 10.36 5.25 8.70 5 10 0 1 1 5 

1 Y 19.53 22.12 6.41 9.61 6 0 0 1 0 6 

2 N 12.46 14.89 6.96 16.58 2 2 0 6 0 2 

2 Y 10.33 10.85 4.82 7.96 12 0 0 0 0 12 

all N 23.0 22.6 7.2 4.1 4.9 5.2 0.9 5.4 0.8 4.9 

all Y 25.3 28.0 7.9 5.6 4.8 4.8 0.9 3.5 0.5 4.8 

7.2.2. Carleton Sudoku Game (CSG) 

Figure 7-4 shows a timeline plot of CSG game play.  The entry and erasure of 

solution entries shows the user’s progress towards the solution and the log 

indicates if each entry is correct or incorrect.  The Pencil Mark entry information 

provides an indication of activity by the player as they work through the logic of the 

puzzle. The last portion of the figure shows when the user received hints and 

whether the hint was for an incorrect entry or showing a cell that could be solved. 

Table 7-3 shows summary CSG results for 2 players and the student group.  

Analysis of the game log information for the player action following a hint related to 

the hint such as a player being shown an incorrect cell and choosing to correct it 

(hint used) or working elsewhere in the grid.  The ability of the measures to indicate 

performance differences when distracted is shown in the increased time between 

actions. Figure 7-5 shows a portion of the mouse track for the game play and this 

shows how the mouse is moved around the grid to aid focus and between the cells 

as results are entered.   
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Figure 7-4: CSG results showing all the actions of game play.   
   Solution entries: 1=correct entry into cell  -1= incorrect 
   Pencil mark entries shows:  1 = pencil mark entry -1 = pencil mark erase 
   Hints shows type: 1 = error hint 2 = solution hint 

 

 

Figure 7-5: Left: CWG mouse track for 180 to 200 seconds in Figure 7-3.    
Right: CSG mouse track for 150 to 250 seconds in Figure 7-4. 

7.3. Experimental Results - MCI Patients 

The 15 MCI participants summarized in Section 3.1.2 were split into two groups 

with 7 completing a series of sessions playing CSG and CWG while the other 8 

played an online cognitive game (BrainHQ). In this section the performance metrics 

plots of two of these participants will be summarized. Specifically, the results for 

two players (P1, P2) are shown.  In the study group, six of the participants were 

cognitively stable over the over the trial period and showed stable play at their given 
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ability level.  An example participant (P1) from this group is presented in this work 

in contrast to the one participant that suffered significant cognitive decline (P2) over 

the trial leading to conversion from MCI to Dementia post trial. This work show how 

this methodology and metrics may be used to monitor changes in participant’s 

cognitive ability.  

7.3.1. Carleton Sudoku Game (CSG) 

Figure 7-6 shows the bar plots of the CSG game completion time metric for two 

participants over a 9-week study with 3 sessions per week. A lower mean game 

completion time indicates that the participant was able to finish the games more 

quickly and hence represents better performance. Conversely longer completion 

time indicates that the participant took more time to complete the game.  It is clear 

from the figure that participant P1 tended to complete the games more quickly that 

participant P2.  

 

 

Figure 7-6: Mean and standard deviation of Game Completion Time metric for Sudoku 
game. 

 

Figure 7-7 shows the bar plots of the Error Rate metric for completed games for 

both participants that indicate that the participant P1 was able to solve puzzles with 

fewer errors than P2. The higher standard deviation of the Error Rate for P1 

indicates that P1's performance varied to a larger degree over the trial period. It is 
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clear from Figure 7-6 and 7-7 that the participant P1 outperforms participant P2 in 

both of the CSG performance metrics.  

 

  Figure 7-7: Mean and standard deviation of Error Rate metric for Completed Sudoku 
Games. 

7.3.2. Carleton Word Game (CWG) 

Figure 7-8 shows the bar plots of CWG game completion time metric for both of 

the participants showing that for this metric, both of the participants, P1 and P2, 

were almost same. Figure 7-9 shows a plot of the number of words found per game 

metric for both participants. Participant P1’s mean for words found per game is 

20.75 while for participant P2 it is 4.48. There is significant performance difference 

in number of words found metric between the participant P1 and P2. The participant 

P1 outperforms P2 by a factor of 4.  

 

Figure 7-8: Mean and standard deviation of Play Time game metric for word search 
game. 
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Figure 7-10 shows the number of words found per minute metric for P1 and P2 

and it is again clear that participant P1 performed significantly better compared to 

participant P2 on word rate metric.  

 

Figure 7-9: Mean and standard deviation of Number of Words Found per Game metric 
for word search game. 

 

  Figure 7-10: Mean and standard deviation of Number of Words Found per Minute (Word 
Rate) metric for word search game. 

7.3.3. MoCA and RBANS Cognitive Test Scores 

The participants P1 and P2 both underwent MoCA and RBANS cognitive tests 

before start of the trial to establish baseline cognitive ability. Figure 7-11 shows the 

test scores for MoCA test and Figure 7-12 shows the test scores for RBANS test. 

P1’s results are just below the threshold to be considered healthy and not MCI for 

both MoCA and RBANS tests (Healthy is 26 or higher for MoCA and mean of 100+/-

15 for RBANS). These test results show that participant P2 has more severe 

cognitive impairment than the participant P1 that is clinically significant and 

correlates with the lower performance observed in the game play for participant P2.  
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  Figure 7-11: MoCA test scores for participant P1 and P2. 

 

Figure 7-12: RBANS test scores for participant P1 and P2. 

7.3.4. Participant during cognitive decline 

Participant P2 coincidentally underwent significant cognitive decline during the 

period that ultimately resulted in the participant being re-diagnosed as full dementia 

shortly after the trial.  This presented a unique opportunity to explore the changes 

in game play performance during this transition. Figure 7-12 shows the play time 

for CWG while Figure 7-13 shows the number of works found and this shows a 

negative trend in play with a drop off in the last few sessions. 

 

  Figure 7-12: Play Time game metric for word search game for particpant P2 for each of 
the games played.  Games shown in order played over the trial period. 



Chapter 7: Games as Cognition Measure   

PhD Thesis - Bruce Wallace  90 

 

  Figure 7-13: Number of words found for word search game for particpant P2 for each of 
the games. Games shown in order played over the trial period, no games 
were completed.  

 

Figure 7-14: Game play time metric for Soduko games for particpant P2 over the trial 
period. Games shown in order played over the trial period. Cyan - game 
not completed, Red - game successfully completed.   

Figure 7-14 shows the CSG game completion time plot over the trial period while 

Figure 7-15 shows the error rate for the participant over the same sessions.  The 

plots show that in the first few sessions, the user had a learning curve with the game 

and did not complete a game until game 7 followed by more regular success. 

Although in the early sessions, the puzzles were not solved, the error rate in Figure 

7-15 is at its lowest level for this player.  In later sessions, the error rate has a 

general trend towards higher levels and the user demonstrated an inability to 

recover from errors in cases when the puzzle was not completed. This suggest that 
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the participant was not able to use the hint system or otherwise recover from the 

error and instead continued to make additional errors compounding the problem. 

 

Figure 7-15: Number errors made per minute for Sudoku games for particpant P2 over 
the trial period. Games shown in order played over the trial period. Cyan - 
game not completed, Red - game successfully completed. 

7.4. Discussion 

This section presents the design and operational validation of two games that 

have been designed for use with cognitively impaired subjects.  The paper shows 

the key aspects required in game design for this user group including a hint system 

so users can be assisted to ensure they progress in the games.  The game log that 

is included in both games provides a detailed record of the user interactions that 

will allow insight into the player game play actions, including overall performance 

and detailed performance for both logic phases and fine motor control phases of 

the solution.  

The performance of the participants from the Bruyère Memory Program was 

compared using the proposed performance metrics for Sudoku and word search 

game. Both the cognitive test results and computer based game results show that 

the participant P2 is cognitively more impaired than participant P1 and provided 

indications of the changes being experienced by participant P2. The results indicate 

that computer based games and its metrics data may be used to measure patient’s 

cognitive performance outside the clinical setting on a regular basis.  

The game based measures that have been shown to indicate cognitive ability 

and change include: 
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• Measure of errors in play and specifically trends that show changing 

performance. 

• Number of words found and the rate words are found. 

The game based measures that have been shown to have limited value: 

• Game completion time as variation in specific difficulty of specific starting 

grids causes natural variation in player performance. 

This may allow for unobtrusive monitoring of patient cognitive status over a 

period of time. The data could be collected on a schedule established by the 

clinician, e.g. weekly or monthly, and allowing for tracking as well as early detection 

of improvement or decline in the patient’s status. Clinicians may use the variations 

in weekly/monthly statistics like mean and standard deviation to look at trends in 

performance. Longitudinal measurements of the game performance can then be 

provided for long term tracking as well as monitoring effectiveness of treatments 

patients might be having. 

 Future work on games should explore games more appropriate for subjects 

with lower cognitive ability such as dementia patients as CSG and CWG proved to 

be challenging for many of the MCI users and it is likely that they will be too difficult 

for subjects with even lower cognitive ability. 
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Chapter 8:   Driving: Signature Analysis 

 
Objective: This chapter explores methods for the measurement of driving 

behaviour which has three main applications: 

1. Changes in behaviour may provide an indication of changes in the 

patient's health (cognitive or physical). 

2. Driver behaviours provide measures that are unique to a given driver that 

allow drivers of a shared vehicle to be distinguished from each other 

allowing the driver to be identified. 

3. Driving behaviours provide measures that could allow the personalization 

of self-driving vehicles to drive more like their owner, improving owner 

acceptance. 

.  The measurement of driving behaviour includes: 

• Measurement of trip level attributes for each trip taken by a driver within 

a multiyear longitudinal study including distance, time of day, rush hour 

and many other attributes. 

• Detailed second by second trip measurements, including analysis of 

driver's velocity, acceleration and relative velocity to speed limit. 

• Trend analysis for driver behaviours. 

• Acceleration and deceleration event measurements identified that provide 

direct measure of a driver unique driving behaviour. 
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• Big data analytic techniques to process extremely large datasets of 

longitudinal driving information. 

• Ability of the features to distinguish drivers is measured.   

• Performance of machine learning based classification methods to 

distinguish drivers. 

8.1. Method 

This section presents methods that were used to identify and measure 

behaviours of drivers leading to their use as features to distinguish between drivers.  

8.1.1. Driver Behaviour Attributes - 100 Trip Views 

Initial analysis of the Candrive study data (2008 to 2016) focused on the Ottawa 

based participants. Their demographic information is summarized in Table 3-2.  The 

initial focus was on the identification of features, algorithms and methods that could 

distinguish between drivers of a vehicle, with a goal of building classifiers that allow 

for drivers of the same vehicle to be differentiated from each other. This initial 

analysis focused on the data for 100 trips for four example sole drivers from different 

vehicles.  

Table 8-1: Summary travel distance and time statistics for 100 trips for each of 4 drivers. 

 Driver 
1 

Driver 
2 

Driver 
3 

Driver 
4 

Trip length (km) 

Mean 
Std Dev 

Min 
Max 

 

5.2 
5.1 

0.50 
27.3 

 

26.2 
41.8 
0.35 

207.9 

 

6.4 
6.2 
0.02 
29.3 

 

5.5 
4.7 
0.02 
24.9 

Trip duration (min) 

Mean 
Std Dev 

Min 
Max 

 

11.0 
6.5 
3.6 

32.1 

 

23.7 
30.1 
2.1 

154.4 

 

16.1 
12.1 
3.4 

73.9 

 

11.4 
8.0 
2.0 

53.0 

 

The summary trip statistics for the drivers is shown in Table 8-1. Drivers 1, 3 and 

4, show similar results, with mean trip lengths being 5-7km and with a maximum 

trip length being less than 30km. This contrasts with the results of Driver 2.  Trip 

duration data shows more variation than distance for drivers 1, 3 and 4.  Drivers 3 



Chapter 8: Driving: Signature Analysis   

PhD Thesis - Bruce Wallace  95 

and 4 had longer maximum trip times than driver 1 indicating that they may leave 

their vehicle idling more frequently, travel at slower speeds either by choice or 

because of travel at times with higher congestion, or the speed limits of the 

roadways used. 

Data analytics techniques allows for a number of different attributes to be 

considered, including: time of day, day of the week, and driving at peak (rush hour) 

traffic times, and day/night/twilight driving. GIS information, including posted limits, 

allows for the determination of a driver’s chosen driving velocity relative to the 

posted speed limit and road choice habits. The use or avoidance of expressways 

(typical 100 km/hr limit in study area), highways (80 km/hr limit) or city streets (50 

km/hr limit) indicates driving speed preference, which may influence chosen route.  

The date and longitude/latitude information with solar cycle [137] for a region 

indicates the times the driver was driving during daylight hours, at dawn, at dusk, 

or during night hours. Dawn and dusk driving are defined as driving within 1 hour 

prior to and 1 hour after sunrise and sunset times respectively. As the selected 

Candrive participants reside in greater Ottawa, a northern latitude city, there is 

significant variation in sunrise/sunset over the year. 

 

Figure 8-1: Histogram of trip distances for the 100 trips for each of the participants shown 
on two different scales.  Plot (a) shows the detailed histogram for trip 
distances for all trips 40km or less while plot (b) includes the longer 
distance trips with enlarged vertical scale.  Driver 1 - dark blue, 2 - light 
blue, 3 - yellow, 4 - red.  
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Driving during high traffic times may generate different behaviours because of 

the influence of the other vehicles and is classified using equation 8-1.  

Rush Hour : [8-1] 

   if (Saturday or Sunday or holiday) {not rush hour} 

    else if (time between 7am and 9am) {rush hour} 

   else if (time between 4pm and 6pm) {rush hour} 

   else {not rush hour} 

 

Figure 8-2: Histogram of trip durations for the 100 trips for each of the participants shown 
on two different scales.  Plot (a) shows the detailed histogram for trip 
duration for all trips 40 minutes or less while plot (b) includes the longer 
duration trips with enlarged vertical scale.  Driver 1 - dark blue, 2 - light 
blue, 3 - yellow, 4 - red. 

Figures 8-1 and 8-2 provide a more detailed histogram analysis of the distances 

and trip durations for the 100 trips for each of the four participants.  Both figures 

show the tendency for driver 2 to do longer trips with a number of trips greater than 

50km and 40 minutes in duration. For all drivers, the most frequent trips are 

between 0 and 5km in distance, with drivers 1, 3 and 4 trips most frequently lasting 

5-10 minutes while driver 2's most frequent trips are 0-5 minutes in duration. 

Many older drivers choose to restrict their driving through avoidance of higher 

risk situations, such as the use of highways or driving at busy times. The type of 

road is indicated by the posted speed limit and Table 8-2 provides a summary of 

the percent of time each of the drivers used the various road types.  The table 

excludes times where the speed limit is unknown, indicating that the driver is using 
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non-roads (e.g. parking lots) or driving in areas outside the region where GIS data 

was available, such as the long distance trips for driver 2.  Drivers 2 and 4 choose 

to make use of highways, while drivers 1 and 3 do not use 100 km/hr expressways. 

Driver 1 also makes minimal use of 70-90km/hr highways.  Except driver 2, the 

drivers use city streets for over 85% of their travel. 

Table 8-2: Summary for 4 drivers showing  percent of time each driver traveled by road 
choice based on posted limit where posted limit known. 

 Posted 
Limit 

Driver 
1 

Driver 
2 

Driver 
3 

Driver 
4 

c
it

y
 

40km/hr 40.4 0.0 6.0 5.9 

50km/hr 50.6 69.0 69.2 44.6 

60km/hr 8.2 2.6 20.3 35.9 

Total 99.2 71.6 95.5 86.4 

h
ig

h
w

a
y
 70km/hr 0.2 1.4 0.1 0.1 

80km/hr 0.2 3.5 4.3 3.3 

90km/hr 0.0 6.7 0.0 0.0 

100km/hr 0.4 16.8 0.1 10.2 

Total 0.8 28.4 4.5 13.6 
 

The time of day that a driver chooses to drive allows them to manage risk and 

avoid conditions related to both traffic levels and visibility (i.e. night). Table 8-3 

summarizes the timing of trips against the typical traffic patterns where there is a 

typical morning and evening rush hour on weekdays.  The table shows that all the 

drivers generally avoid early morning rush hour driving and the preponderance of 

their driving is during the daylight hours.   Additional analysis of these 4 drivers is 

included in Appendix A.  

Table 8-3: Summary for 4 drivers showing percent of time based on time of day and 
related traffic levels (Note statutory holidays counted as weekend days) 

Rush Hour Driver 
1 

Driver 
2 

Driver 
3 

Driver 
4 

Weekday - over night 7.0 2.0 1.3 4.2 

Weekday - morning rush 2.2 4.6 2.5 0.0 

Weekday - mid day 56.3 46.9 60.6 49.2 

Weekday - evening rush 9.5 19.5 3.1 10.6 

Weekend - over night 0.0 2.0 1.3 4.0 

Weekend - morning rush 1.0 1.6 0.0 0.0 

Weekend - mid day 24.0 17.1 28.8 24.1 

Weekend - evening rush 0.0 6.2 2.5 7.9 
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8.1.2. Driver Behaviour Attributes - Month to Month Trends 

Fourteen drivers that demonstrated stable general, physical and cognitive health 

over their first year in the Candrive study [135], from the Ottawa region and that did 

not share their vehicle were chosen for detailed analysis.  Stable general, cognitive, 

and physical health allows for analysis while controlling for any influence on their 

driving behaviours caused by changing health.  As sole drivers, all data for the 

vehicle can be associated with the specific driver.  The demographics of these 14, 

drivers are summarized in Table 8-4. The table shows that the participants are all 

older drivers that make regular use of their vehicle. 

Table 8-4: Summary of the dataset for 14 Triple Stable Candrive Participants Analyzed 

Demographic Data 
Total 14: Male 9, Female 5 

Age at entry: mean 75.7 yrs, st dev 5.4 yrs 

Trips / yr mean 1567, st dev 647 

Distance / yr mean 20,200 km, st dev 10,600 km 

Average Trip Duration mean 15.0 min, st dev 3.1 min 

Average Trip Distance mean 13.6 km, st dev 7.0 km 

 

Figure 8-3: Number of trips taken by three sample drivers each calendar month for 1 year 
from their entry into the study.   

 

Figures 8-3 and 8-4 show the general driving habits for three example drivers 

from the 14 drivers showing the number of trips taken and the distance driven for 

each month respectively over their first year in the study.  One of the drivers joined 

the study in September while the other two joined in December. The figures show 

some of the attributes of the drivers, such as the almost 2-month period where one 
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of the drivers was away (March-April), otherwise the drivers drove every month with 

some variation.  Two of the drivers typically drive more than 100 trips per month. 

The distance per month indicates different patterns; although two of the drivers 

have similar trips/month counts, they have very different distance driving patterns. 

 

Figure 8-4: Distance driven by three sample drivers on a calendar month basis for 1 year 
from their entry into the study.  

 

Figure 8-5: Analysis of the velocity driven by three sample drivers showing calendar 
month averages of the velocity (km/hr) histogram distributions.  

 

Figure 8-5 shows example histograms of percent of time in 13 velocity ranges 

for each month for the same three sample drivers. The large amount of time spent 

at lower velocities is expected, since this would include time spent in slow traffic, at 

traffic signals, slow moving areas and when accelerating from and decelerating to 

a stop.  The data shows some of the expected differences, such as a driver 

spending more of their driving time at the lower velocities.  The figure also shows 

that drivers may have a habit to exceed the speed limit as there are no roads with 
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speed limits above 100 km/hr in the region driven and it shows one driver that 

spends more of their time at higher speeds compared to the other two.   

Figure 8-6 presents data on the time of day when driving occurred and 

specifically compares time of day to the solar cycle. Although there appears to be 

variation in night, dawn, and dusk driving during the winter months of the study 

period, this change is likely caused by the seasonal solar variation in the northern 

hemisphere (Ottawa, Canada).  Drivers that habitually make trips at the same time 

of day will have trips shifted into the dawn, dusk, and night periods during the winter 

months. This feature has limited value to distinguish specific trips between drivers, 

as an average 15-minute trip spans a limited portion of the solar day with all drivers 

completing trips during each period of the solar day and 97.2% of the trips 

completed within a single solar period. 

 

Figure 8-6: Analysis of the time of day for three sample drivers for trips driven showing 
calendar month averages of the time in the solar day (dawn, day, dusk, 
night).  

8.1.3. Sensors signals excluded from analysis 

The Candrive sensor system captures many signals associated with the details 

of the engine operation and behaviour such as engine RPM and other direct 

measures of the engine and these at best provide very indirect measures of the 

driver’s behaviour.  As an example, with the prevalence of automatic transmission 

cars, a driver’s choice of speed which is a direct behavioural decision is translated 

into a transmission gear choice and associated engine RPM.  Both of these 

influenced by the car design.  The goal of this work is the identification of measures 
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of the driver behaviour and as a result measures available in the Candrive set that 

provide vehicle measures and not driver choice alone were excluded.     

8.1.4. Acceleration and Deceleration Events 

Measuring driver acceleration characteristics is important as it could lead to 

insights into driver performance and potentially help indicate who is driving. 

Appendix B compares the acceleration signals derived from the GPS and OBDII 

velocity sensors with accelerometer measures and the Central 2-point derivative 

(equation 8-2) where h is the sample period (1 second) of the vehicle GPS velocity.     

�′�n�= 
f�n+1�-f�n-1�

2h
					   [8-2] 

The analysis of behaviours associated with acceleration requires a focused 

analysis of acceleration and deceleration events.  Data analytics techniques used 

to identify deceleration and acceleration events that met the specification in 

equation 8-3 & 8-4: 

Deceleration event specification: [8-3] 

         Acceleration[n] <0    for n=k, k+1,... m  AND 

         VGPS [k] - VGPS [m] >= 4 km/hr  AND 

         No sample gaps > 2 seconds (i.e. max 1 sample gap) 

 Acceleration event specification: [8-4] 

         Acceleration[n] >0    for n=k, k+1,... m  AND 

         VGPS [m] - VGPS [k] >= 4 km/hr  AND 

         No sample gaps > 2 seconds (i.e. max 1 sample gap) 

This defines events as a continuous set of measures with a total velocity change 

of 4 km/hr or more while ensuring that events that contain sample gaps are split or 

discarded.  This removes events with very small changes in velocity to allow focus 

on events where the driver is more likely to be making the change through direct 

choice or need. It also ensures events do not falsely span gaps in the data.  
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Table 8-5: Summary of the features calculated for all acceleration and deceleration 
events over the study period where a 4 km/hr or larger velocity change 
occurred. 

Acceleration Attributes 

Mean acceleration 

Minimum acceleration (deceleration events) 

Maximum acceleration (acceleration events) 

Actual acceleration values (vector) 

Velocity Attributes 

Velocity change 

Initial & Final velocity for event 

Actual velocity values (vector) 

Duration Attributes Duration of event 

Time Attributes 

Time of day 

Date of event 

Solar cycle position 

Traffic level (Rush hour or not) 

Road Network Posted speed limit 
  

 

The data analytics classification filters were applied for the first year of study 

participation leading to the identification of every deceleration and acceleration 

event for each trip.  Table 8-5 summarizes the analytics data structure generated 

for each event. All trips driven by the driver were analyzed to identify every event 

within the trips.  This leads to a set of acceleration and deceleration events for each 

trip.   

Initially all the identified events for each driver were pooled into a single set, 

sorted and summarized based on these various attributes, including the use of 

moving averages and histograms.  Histograms were further analyzed using the 

Matlab fit function for a Gaussian distribution to provide measures of the mean and 

standard deviation of the resulting distributions.  Linear regression techniques were 

applied to identify relationships within the analyzed results. 

8.1.5. Distinguishing Features - t-tests 

The measurements of a trip feature for two different drivers can be compared 

through a 2-tail t-test assuming unequal standard deviations to determine if 

measurements for two drivers are different, where an alpha value of <5% has been 

used to reject the hypothesis that the two drivers have the same behaviour.  The 

sequences for each driver are independent of each other and represent a series of 

measures of the behaviour of each driver.  The t-test, as applied, indicates that the 
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two drivers have different or similar behaviours and hence measures the ability of 

the feature to distinguish the two drivers. The 14 sole drivers allow for 91 distinct 

pairs of drivers to be formed. 

8.2. Experimental Results 

This section presents experimental results showing how they can be used to 

identify and measure behaviours of drivers and provide features to distinguish 

between drivers.  

8.2.1. Acceleration and Deceleration Events 

 

The patterns in the deceleration events for the drivers is explored starting in 

Figure 8-7 where deceleration events are compared with total velocity drop for the 

event and the event duration for an example driver.  As expected, there is some 

correlation R2 = 0.749 between duration and velocity drop. Figures 8-8, 8-9, and 8-

10 show different views of the monthly distributions of events. The Figures all show 

a vacation period with limited driving but otherwise do not show any significant 

variation. Winter/summer seasonal variation could have been expected, but there 

are minimal differences between months 12-3 (winter) to 6-9 (summer). 

 

Figure 8-7: Distribution of deceleration events for one driver compared to the size of the 
velocity change and the duration of the event (N= 25016 events). 
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Figure 8-8: Monthly velocity change profiles for 1 year. (N= 24794 events in total). 

 

Figure 8-9: Distribution of the monthly mean acceleration values for the deceleration 
events. (N= 24794 events in total). 

  Figure 8-11 compares the number of deceleration events identified using 

equation 8-3, against the event mean deceleration and duration, showing, the high 

occurrence of short duration, small deceleration events. As well, results show that 

mean deceleration has an almost constant value once an event is of sufficient 

duration. This indicates the potential for a two phase deceleration relationship. 

Figure 8-12 shows monthly distributions of minimum (largest) deceleration within 

deceleration events and again there are no significant seasonal variations.  

 

 

 



Chapter 8: Driving: Signature Analysis   

PhD Thesis - Bruce Wallace  105 

 

Figure 8-10: Distribution of the monthly minimum acceleration (largest deceleration) 
values for each of the deceleration events. (N= 24794 events in total). 

 

 

Figure 8-11: Distribution of the deceleration events for one driver comparing the number 
of events to both the mean event acceleration and duration. (N= 25016 
events). 

Figure 8-13 and 8-14 explore the relationship between driver mean and minimum 

acceleration and velocity drop size.  In both cases the plots show a clear 

relationship with a ridge line in the distributions. The mean acceleration for a given 

velocity change starts near zero and increases with the size of the velocity drop 

until growth slows for the largest decelerations.  This indicates two possible phases 

for decelerations: smaller changes where the driver might be influenced by external 

factors such as traffic, and larger changes where the driver’s preference or habit 

may dominate. The same characteristic dual phase deceleration relationship is 
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present in Figure 8-26 for the minimum acceleration value, with similar attributes 

other than the size of the acceleration values.  

 

Figure 8-12: Distribution of the monthly minimum acceleration (largest deceleration) 
values for an example driver for the deceleration events. (N= 40213 
events). 

 

Figure 8-13: Distribution of the mean acceleration for one driver against the size of the 
velocity change in the deceleration event.  (N= 25016 events). 

These characteristics were explored on a number of subsets of the data such as 

looking at only trips where the posted limit indicates the driver was on a street with 

a velocity of 40-70 km/hr - typical for city streets in the study area (Figure 8-15) with 

very similar ridge line attributes to Figure 8-13. The distribution of deceleration 

events ending with a stopped vehicle is shown in Figure 8-16. Again a ridge line is 

present and similar to Figure 8-13.  The same observation was found for minimum 

acceleration values and was found across all examined data subsets for both mean 

and minimum acceleration. The similarity of the Figures 8-13, 8-15 and 8-16 is 
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shown in Figures 8-17 and 8-18 where a best fit Gaussian distribution was 

calculated for each of the acceleration histograms to provide a measure for the 

ridge line position indicated by the best fit mean and the ridge line variation 

indicated by the standard deviation of the best fit mean.  

 

Figure 8-14: Distribution of the minimum acceleration for one driver against the size of 
the velocity change in the deceleration event.  (N= 25016 events). 

 

 

Figure 8-15: Distribution of the mean acceleration for one driver against the size of the 
velocity change in the deceleration event for driving on roads with speed 
limits >40 km/hr and <=70 km/hr (N= 16750 events). 
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Figure 8-16: Distribution of the mean acceleration against the size of the velocity change 
for events where the final velocity was a stop (0 km/hr). (N= 7685 events). 

 

 

Figure 8-17: Comparison of the estimated best fit Gaussian mean for one driver to 
indicate the ridge lines: Figure 8-13, blue □, all decelerations; Figure 8-15, 
red ◊, city street; Figure 8-16 - yellow ○, final velocity of 0 km/hr. 

 

Figure 8-18: Estimated standard deviation for best fit Gaussian distributions for one driver 
as measure of ridge width: Figure 8-13, blue □, all decelerations; Figure 8-
15, red ◊, city street; Figure 8-16 - yellow ○, final velocity of 0 km/hr. 
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Figure 8-19: Distribution of the mean acceleration for a second example driver against 
the size of the deceleration for the event.  (N= 22469 events). 

The other 13 drivers were analyzed for these same characteristics and similar 

patterns were found in all of the drivers. An example second driver is shown in 

Figure 8-19 for deceleration event mean and Figure 8-20 for deceleration event 

minimum. Although the similar pattern was observed, there are differences between 

the drivers as to the location of the ridge lines and transitions vary between the 

drivers. This leads to the further exploration of these two phase relationships as a 

means to differentiate drivers. 

The Two Phases of Deceleration 

Figure 8-21 explores the ridge lines for the distributions shown in Figures 8-13 

and 8-14.  The best fit Gaussian mean for each histogram is shown along with the 

95% confidence intervals for each of these mean estimates with a similar pattern 

of two linear phases: one for velocity drops between 4 km/hr through to the 25-30 

km/hr region. The second linear phase then starts and continues through to the 

largest continuous velocity drops that were larger than 70 km/hr. 

The optimal fit for the two phases for both the mean and minimum acceleration 

curves was found using linear regression within each phase.  The location of the 

optimal phase transition is presented in Figure 8-22.  The resulting regression lines 

for each phase were combined for a correlation coefficient for the resulting paired 

lines.  The figure shows the results for one driver where a peak correlation of 0.989 

was achieved for the mean acceleration ridge line and 0.993 for the minimum 

acceleration ridge line with a transition between the phases at 27.3 km/hr and 27.8 
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km/hr respectively.  These optimal fit lines are shown in Figure 8-21. The best fit for 

each of the two phases provides a feature that characterizes the driving habits for 

the driver. 

 

Figure 8-20: Distribution of the minimum acceleration for a second example driver against 
the size of the deceleration for the event.  (N= 22469 events). 

 

 

Figure 8-21: Plots of the ridge lines for one driver for the mean surface in Figure 8-13 
(blue) and minimum surface in Figure 8-14 (red) where the estimated peak 
is shown along with 95% confidence intervals. Best fit two phase 
relationship with optimal transition between the phases is shown by the 
lines. 

Figure 8-23 shows the mean and minimum lines found for 4 example drivers 

from the set of 14 drivers. This shows that although some drivers can have very 

similar relationships, such as the ones shown in blue and red in the 25-30 km/hr 

region on the minimum line, the other two drivers are much more distinctive.  A 

general pattern for the drivers to have more diversity in the minimum lines than in 

the mean lines is apparent and this pattern is followed across all 14 drivers and 
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may be an indication that personal behaviour manifests itself more in that feature 

as it has less normative effects. 

 

Figure 8-22: Correlation coefficient compared to phase transition for the two phase linear 
interpolation for one driver for the surface ridge lines shown in Figure 8-21. 
Mean surface (blue) and Minimum surface (orange). 

 

Figure 8-23: Plot of the ridge lines for four different drivers showing the two phase linear 
relationship for each of the drivers while also showing the variations in the 
curves that will be explored to determine if they allow the differentiation of 
drivers. 

Table 8-6 shows the summary results for all 14 drivers and the high correlations 

that were achieved for the ridge lines for each of the drivers.  Testing of the ridge 

lines derived from all driver events to subsets of the events is also presented in the 

table.  The correlations with day time driving had minimal change while there was 

more change for night time driving as may be expected as drivers may change their 

behaviours.  The large change in the non-rush hour data was caused by one driver's 

low correlation for mean (0.498) while still having a high correlation for minimum 

(0.946).  
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The Two Phases of Acceleration 

Similar to deceleration, acceleration events provide another potential measure 

of a driver's behaviour. Figure 8-24 and 8-25 explore the relationship between driver 

mean and maximum acceleration and velocity drop size respectively, for identified 

acceleration events.  The plots again show a clear relationship with a ridge line for 

the distributions and again indicate two possible phases for accelerations: smaller 

changes where the driver might be influenced by external factors, and larger 

changes where the driver’s preference or habit may dominate.  

Table 8-6: Deceleration correlation coefficients results for the two phase linear 
relationships for the 14 cognitive and physically stable drivers.   

 
MEAN LINE 

MIN MAX MEAN ST DEV 

All 0.965 0.996 0.989 0.0080 

Day 0.962 0.994 0.986 0.0081 

Night 0.761 0.973 0.889 0.0531 

Rush Hour 0.767 0.981 0.912 0.0784 

Off Rush Hour 0.498 0.988 0.939 0.1279 

 MINIMUM LINE 

All 0.981 0.998 0.994 0.0046 

Day 0.980 0.998 0.992 0.0047 

Night 0.743 0.981 0.924 0.0641 

Rush Hour 0.797 0.988 0.931 0.0638 

Off Rush Hour 0.927 0.995 0.975 0.0195 

N (EVENT COUNT) 17593 60153 30156 11010 

 

Figure 8-24: Distribution of the mean acceleration for one driver against the size of the 
velocity change in the acceleration event.  (N= 25261 events). 
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Figure 8-25: Distribution of the minimum acceleration for one driver against the size of 
the velocity change in the acceleration event.  (N= 25261 events). 

 

 

Figure 8-26: Distribution of the mean acceleration for a second example driver against 
the size of the acceleration for the event.  (N= 23022 events). 

The other 13 drivers again showed the same characteristics, and an example 

second driver is shown in Figure 8-26 and Figure 8-27. Although the similar pattern 

was observed, again there are variations between the drivers that will be explored 

to determine if they allow drivers to be distinguished. 

Figure 8-28 explores the ridge lines for the distributions shown in Figures 8-24 

and 8-25.  The best fit Gaussian mean for each histogram is shown along with the 

95% confidence intervals for each of these mean estimates.  Similar to 

decelerations, the two sets of data have a similar pattern where there are two linear 

phases: one for velocity drops between 4 km/hr through to the 25-30 km/hr region, 

the second linear phase then starts and continues through to the largest continuous 

velocity drops that were larger than 70 km/hr. 
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Figure 8-27: Distribution of the minimum acceleration for a second example driver against 
the size of the acceleration for the event.  (N= 23022 events). 

 

 

Figure 8-28: Plots of the ridge lines for one driver for the mean surface in Figure 8-25a 
(blue) and maximum surface in Figure 8-26a (red) where the estimated 
peak is shown along with 95% confidence intervals. Best fit two phase 
relationship with optimal transition between the phases is shown by the 
lines. 

The optimal fit for the two phases for both the mean and minimum acceleration 

curves was found using linear regression within each of the phases. Figure 8-29 

shows the mean and maximum lines found for 4 example drivers from the set of 14 

drivers and this again shows that although some drivers can have very similar 

relationships, there are differences.  A general pattern for the drivers to have more 

diversity in the maximum lines than in the mean lines is apparent. 

8.2.2. Two-Phase Relationship Feature Measures  

The performance of the two phase deceleration relationships as a measure of 

their typical driving behaviour was analyzed through comparison of the summary 

behaviour for each driver and the events within each trip that they drove. For this 
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analysis, the set of events associated with a particular trip is compared with the two 

phase relationships derived for the pooled set of events. The results are 

summarized in Table 8-7. Within a given trip, the number of deceleration events 

can be highly varied, as typically shorter duration trips will have fewer events but 

also extremely long duration trips can also have a relative low number of 

deceleration events if they include long periods of highway driving.  

 

Figure 8-29: Plot of the ridge lines for four different drivers showing the two phase linear 
relationship for each of the drivers while also showing the variations in the 
curves that will be explored to determine if they allow the differentiation of 
drivers. 

Table 8-7: Summary of the trip level correlations for all drivers between the Deceleration 
events in each trip and the driver’s two-phase relationship showing the 
effect of the minimum number of events in each trip. 

NUMBER OF 

DECELERATION 

EVENTS 

MEAN LINE MINIMUM LINE 

MEAN ST DEV MEAN ST DEV 

>=2 0.500 0.0421 0.701 0.0386 

>=4 0.512 0.0435 0.714 0.0379 

>=6 0.527 0.0467 0.728 0.0380 

>=8 0.544 0.0503 0.741 0.0396 

>=10 0.559 0.0549 0.751 0.0411 

>=12 0.573 0.0578 0.758 0.0426 

>=14 0.582 0.0598 0.762 0.0432 

>=16 0.588 0.0635 0.764 0.0430 
  

The data were further analyzed based on the number of deceleration events in 

the trip and the results show that the trip level correlation increases with the number 

of deceleration events in the trip until it reaches a plateau around 8 events.  84.6% 

of the analyzed trips had 8 or more deceleration events.  Table 8-7 also shows how 
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the performance of the minimum deceleration measure is much higher than the 

mean measure which given the greater diversity in these relationships indicates 

more potential for these to differentiate between drivers. 

Table 8-8 shows the same performance comparison for acceleration events and 

similar to the minimum measure from deceleration events, the maximum measure 

for acceleration events is better than the mean measure. Given the greater diversity 

in these relationships between drivers, this again indicates more potential for these 

measures to differentiate between drivers. 

Table 8-8: Summary of the trip level correlations for all drivers between the Acceleration 
events in each trip and the two-phase relationship for that driver showing 
the effect of the minimum number of events in each trip. 

NUMBER OF 

ACCELERATION 

EVENTS 

MEAN LINE MAXIMUM LINE 

MEAN ST DEV MEAN ST DEV 

>=2 0.464 0.0632 0.689 0.0479 

>=4 0.476 0.0658 0.705 0.0441 

>=6 0.492 0.0709 0.722 0.0426 

>=8 0.507 0.0752 0.737 0.0414 

>=10 0.519 0.0780 0.748 0.0396 

>=12 0.530 0.0784 0.756 0.0399 

>=14 0.541 0.0776 0.761 0.0397 

>=16 0.549 0.0757 0.765 0.0386 

 

Figures 8-30 and 8-31 show the specific results for 4 example drivers from the 

set of 14 and show the distinct maximums in the correlations for each of the drivers 

for deceleration events and also show the higher performance for the minimum 

relationship over the mean for each of the drivers. Figures 8-32 and 8-33 show the 

acceleration events.  
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Figure 8-30: Plot of the impact of the minimum number of decelerations events in each 
trip on mean correlation to the driver's two phase relationship for four 
sample drivers. 

 

Figure 8-31: Plot of the impact of the minimum number of decelerations events in each 
trip on mean correlation to the driver's two phase relationship for four 
sample drivers. 

 

Figure 8-32: Plot of the impact of the minimum number of accelerations events in each 
trip on mean correlation to the driver's two phase relationship for four 
sample drivers. 
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Figure 8-33: Plot of the impact of the minimum number of accelerations events in each 
trip on mean correlation to the driver's two phase relationship for four 
sample drivers. 

8.2.3. Distinguishing Features 

The 14 sole drivers allow for 91 distinct pairs of drivers to be formed, where every 

driver is independent of each of the others and the distinguishing ability of the 

features is compared through t-test as shown in Table 8-9. The measurements for 

most of the measurement features have many attributes that cause non Gaussian 

attributes [146] in their distributions. Such asymmetry in the distributions is caused 

where there are no possible negative values but positive tails can be very large 

compared to a mean such as an extremely long trip with trip distance or duration 

measures. The trip distance and duration features show that 90.1% (distance) and 

90.1% (duration) of the 91 cases demonstrate distinct behaviours. Distance or 

duration showed distinct behaviours all but 1 of the 91 pairs.  

A t-test was also performed on each of the velocity histogram bins for the 13 

velocity bands, showing that these have varying potential to be used to differentiate 

between drivers.  The poorest performance is in the higher velocity bands, as they 

provide no value to differentiate drivers where neither one travels at this speed, but 

do where only one driver does and may if both drivers do. 

The performance of the two phase relationships to provide a measure to 

differentiate drivers was performed by using each of the 91 driver pairs and using 

a t-test on the correlation for the trip level events to each of the two phase 

relationships for both drivers as distinct measures.  The result is 8 total tests for 

each driver pair given that there is a mean and min/max relationship for both 
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deceleration and acceleration events for each driver in the pair. The results are 

summarized in Table 8-13 and show that 83.5% of the mean and 85.7% of the 

minimum relationships had a p value of <5% for deceleration events and 84.6% of 

the mean and 80.2% of the maximum relationships.  For the 91 driver pairs, at least 

one of the four deceleration relationships provided a p value of <5% indicating that 

at least one has the potential to distinguish between the drivers. 

Table 8-9: t-test results each feature using all possible pairs of 2 drivers from the set of 
14 drivers (91 unique pairs) showing percent of pairs distinguished (p<5%).  

Feature Percent t-Test p<5% 

Trip measures 
Length - km 90.1% 

Duration - min 90.1% 

Velocity bin - % of trip 

<10km/hr 93.4% 

>10 & <20km/hr 91.2% 

>20 & <30km/hr 91.2% 

>30 & <40km/hr 95.6% 

>40 & <50km/hr 93.4% 

>50 & <60km/hr 82.4% 

>60 & <70km/hr 90.1% 

>70 & <80km/hr 86.8% 

>80 & <90km/hr 93.4% 

>90 & <100km/hr 86.8% 

>100 & <110km/hr 83.5% 

>110 & <120km/hr 85.7% 

>120km/hr 60.4% 

Deceleration Event - m/s2 
Event Mean 83.5% 

Event Minimum 85.7% 

Acceleration Event - m/s2 
Event Mean 84.6% 

Event Minimum 80.2% 

8.3. LDA Classification 

As presented for the EEG / ERP classification in Chapter 6, machine learning 

tools based classifiers provide a potential mechanism to combine the broad set of 

trip features that have been developed leading to a classification between two 

potential drivers.   
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8.3.1. Features and Test Cases  

The work has presented the analysis and measurement of each of the trips 

driven providing a large number of features for each trip.  The resulting set of 162 

features is summarized in Table 8-9 and includes 8 features derived from the 

acceleration and deceleration events within the trip. An additional 2 features are 

provided by the overall trip duration and 43 features are available related to the time 

of day for the trip.  The type(s) of road chosen by the driver provide another 5 

features while velocity and associated acceleration and jerk measures provide 26, 

35 and 43 features respectively. 

Similar to the t-test analysis presented previously, the 14 triple stable sole drivers 

provide a set of 91 gold standard cases that can be used for analysis as the trips 

for two drivers are mixed to create a "shared" vehicle, the actually driver for every 

trip is known.  Given the large number of trips driven by the 14 drivers within the 

year as shown in Table 8-4, thousands of trips were available for training and testing 

of the resulting classifier. A 90/10 test and train method was used where the given 

data for a case was divided randomly into 10 groups containing 10% of the trips 

each and all 10 cases where 90% of the data was used to train and 10% used for 

testing with the performance based on the average across the 10 cases. 

8.3.2. LDA Classification - single feature 

The potential for each of the 162 identified features was initially explored by 

evaluating the classification performance for LDA classifiers for both linear and 

quadratic for all 91 driver pairs using the 90/10 test and train methods for each of 

the driver pairs.  The results demonstrated the highly variable performance of 

features across the driver pairs. 
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Table 8-9: Summary of features fore each trip used with classification algorithms.  

Feature Group Features Number of features 

Acceleration Events 
• Trip events correlation 

to self/other driver for 
Mean/Max 

4 

Deceleration Events 
• Trip events correlation 

to self/other driver for 
Mean/Min 

4 

Trip Attributes 
• Length of trip in 

seconds and 
kilometers 

2 

Time of Trip 

• Time of day histogram 
(hourly bins) 

• Rush hour driving 
• Solar cycle driving 
• Day of week 

24 
 
8 
4 
7 

Posted Limit on Road 
• <=40km/hr, <70km/hr, 

<=90km/hr, >90km/hr, 
unknown 

5 

Velocity 

• Actual velocity  
(10km/hr bins) 

• Velocity ratio to 
posted (10% bins) 

13 
 

13 

Acceleration 

• Trip minimum and 
Maximum 

• Actual Acceleration 
histogram bins  
(-3m/s2 to 3m/s2) 

2 

 
33 

Jerk 

• Trip minimum and 
Maximum 

• Actual Jerk histogram 
bins (-5m/s3 to 5m/s3) 

2 
 

41 

Total  162 

A number of features provided no classification value at all, but this was expected 

as these features measured driving attributes that were atypical of the older drivers 

in the sample.  Features that failed for all driver pairs were middle of the night driving 

between 1am and 5am while late night (10pm-1am) and early morning (5am-8am) 

failed for some driver pairs.  Similarly driving at dawn failed for some driver pairs.  

Older drivers typically do not drive during these times of day and hence the features 
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contained minimal information.  Night driving because of early sunset in Ottawa did 

contain enough information for each driver to provide some classification value. 

Other features that failed in some or all cases include the highest and lowest bins 

for acceleration and jerk, especially the large positive jerk bins as these histograms 

were designed to span the values observed in the drivers and some drivers again 

did not exhibit behaviours at the extremes.  The imbalance in the jerk values is 

expected as hard braking is a more frequent event than matching levels of hard 

acceleration.  The result, up to 22 of the features provided no distinguishing value 

in some or all of the driver pairs. 

The feature group that provided the good overall performance with error rates as 

low as 3.4% for one driver pair was road type choice as measured through posted 

speed limit information.  Although these provided strong classification performance 

for some driver pairs, the average error performance for these features individually 

across all 91 pairs was 30-43% with worst case error rates of over 50%.   

Another group that shows low error rates performance for some pairs is the 

velocity ratio features that have best errors rates for some driver pairs between 5 

and 16% while again having average error rate performance between 30-40% and 

worst case error performance over 50%. 

No other feature group exhibited best error performances better than 10%, 

although many provided error rates between 10 and 25% for best cases and the 

summary shown in Table 8-11 shows the number of features providing various 

levels of best performance. 

These results lead to the conclusion that there is no one feature that can be used 

to distinguish every driver pair and that combinations of features are likely going to 

be required to achieve the best performance. 

8.3.3. LDA Classification - two features 

To further explore the classification potential of the features, LDA classification 

models similar to the single feature models in the previous section were run for all 

pairs of features across all 91 driver pairs using the same 10 repetitions of the 90% 

train, 10% test models.  The results are presented for the quadratic LDA classifiers.   
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Table 8-10: Single feature LDA classification performance statistics for the set of 91 driver 
pairs.  For each feature, all 91 pairs were classified and the aggregate 
performance statistics for the feature were calculated for Linear and 
Quadratic LDA models.  Columns compare stats for single features to other 
features.  Rows compare aggregate performance for single feature 
classifiers.   

Attribute LDA (Linear) LDA (Quadratic) 

 

Lowest 

Error 

Rate 

Mean 

Error 

Rate 

Standard 

Deviation 

Largest 

Error 

Rate 

Best 

Error 

Rate 

Mean 

Error 

Rate 

Standard 

Deviation 

Largest 

Error 

Rate 

Best  3.4% 29.2% 3.5% 51.9% 4.9% 29.9% 3.5% 49.7% 

Mean 19.2% 42.8% 10.7% 66.6% 19.0% 42.0% 10.0% 62.5% 

Largest 37.6% 55.5% 17.6% 81.8% 37.6% 55.7% 17.2% 83.2% 

 

Table 8-11: Summary of features for each driver pair used with classification algorithms.  

Error Rate LDA (Linear) LDA (Quadratic) 

<=5% 2  2  

>5% and <=10% 13  11  

>10% and <=15% 23  27  

>15% and <=20% 42  47  

The results for the 2 feature classifiers are presented in Figures 8-34 through 8-

36 where the performance is presented on the basis of the driver pairs.  The 

diagonal line on the plots can be ignored as both drivers being the same is not a 

valid test case (applies to Figures 8-34 through 8-41).  Figure 8-34 shows the best 

performance from a 2 feature classifier and a number of attributes can be observed.  

Driver 3 appears to be more easily distinguished from all of the other drivers and 

the driver 10 and 14 combination is the most difficult to distinguish.  The large 

number of combinations with error rates higher than 15% indicates the need for 

classifiers using larger number of features.  Figure 8-35 shows the worst 

performance level for the driver pair excluding features pairs that included features 
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that completely failed individually (100% error rate) as discussed previously.  This 

figure shows that in most cases the worst performance was above 50%, which is 

worse than guessing.  Figure 8-36 shows the mean error performance for 2 features 

for each of the driver pairs. 

 

Figure 8-34: Error performance for quadratic LDA classsifiers using 2 features showing 
the best error provided by two features for each driver pair. 

 

 

Figure 8-35: Error performance for quadratic LDA classsifiers using 2 features showing 
the worst error provided by two features for each driver pair. 
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Figure 8-36: Error performance for quadratic LDA classsifiers using 2 features showing 
the mean error provided by two features for each driver pair. 

The results for the 2 feature classifiers are presented in Figures 8-37 through 8-

39 where the performance is presented on the basis of the feature pairs.  In these 

plots, all features are presented including those that provide no classification ability.  

In all three figures, the set of yellow lines shows features that failed to provide any 

classification as single features as older drivers do not exhibit those behaviours.  

Figure 8-37 shows the best performance from a 2 feature classifier and the darker 

blue bands show the feature bands that provide the best classification performance.  

Again, these bands align with the features groups that provided best single feature 

performance. Figure 8-38 shows the worst performance for each feature pair and 

the lack of any dark blue indicates that no feature pair provides good performance 

across all driver pairs.  Figure 8-39 shows the mean performance for the feature 

pairs and this also shows that no feature pair provides strong performance across 

all driver pairs. 
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Figure 8-37: Error performance for quadratic LDA classsifiers using 2 features showing 
the best error provided by two features for each feature pair. 

 

Figure 8-38: Error performance for quadratic LDA classsifiers using 2 features showing 
the worst error provided by two features for each feature pair. 
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Figure 8-39: Error performance for quadratic LDA classsifiers using 2 features showing 
the mean error provided by two features for each feature pair. 

8.3.4. LDA Classification - best performance 

The results for the individual features indicates that the best features to 

distinguish two drivers from each other will be highly dependent on the behaviours 

of the two drivers and that there will not be a single classifier model, let alone set of 

classification features, to distinguish any two drivers from each other.  The 

"sequentialfs" capability of Matlab, including the modifications for highly correlated 

features presented in Chapter 6, were used to analyze each of the 91 possible 

driver pairs where the best classifier was formed for each driver pair using as many 

or as few features as needed to achieve the best error performance.  

The acceleration and deceleration event features are based on a correlation 

measure between the events within a given trip and the two phase models for the 

two drivers.  The value of these measures will likely depend on the number of 

events within a trip so the models were developed using trips with 5 or more event 

and again for trips with 10 or more events.  As for the single feature studies data 

was segmented so that 10 different 90% train and 10% validate cases were 

performed using quadratic models.  

Table 8-12 and Figures 8-40 and 8-41 summarize the results for the 91 driver 

pairs showing the ability for a quadratic LDA classifier to distinguish the drivers.  

The best performance observed has 1.5% error rate across year 1 trips.  The 
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poorest performance was an error rate of over 22.0% with a mean of just over 8.6%. 

The performance for trips with greater than 10 events was slightly better than trips 

with greater than 5 events.  The figures show that the performance for the classifiers 

has some variation with only a couple of driver pairs that had poor performance.  

 

Table 8-12: Summary LDA performance for quadratic classifier.  Classifier used an 
adaptive number of features to achieve best possible performance.  Effect 
of number of acceleration and deceleration events in the trips shown.  

Error Rate  Acc/Dec events >= 5  Acc/Dec events >= 10  

Best  1.6%  1.5%  

Worst  23.5%  21.5%  

Mean  8.7%  8.6%  

standard deviation  4.4%  4.0%  

 

Figure 8-40: Plot of the best-achieved error performance for the 91 driver pairs when trips 
have at least 10 acceleration and deceleration events. 
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Figure 8-41: Plot of the best-achieved error performance for the 91 driver pairs 

when trips have at least 5 acceleration and deceleration events. 

 

8.4. Alternative Classifiers 

Similar to the classification analysis of the ERP data, the LDA classifier based 

on discriminant analysis is one of many classification methods that could be 

applied. So again the 23 different classifiers that are available in the Matlab 

"classificationLearner" toolbox, as shown in Table 6-9, were tested to determine if 

there was a potential for any performance improvement.  Figures 8-40 and 8-41 

present 182 potential classifier designs cases and for this section, the focus will be 

on two cases.  The classifiers in Figure 8-40 with the poorest performance (Driver 

7 and 11) and with the best performance (Driver 3 and 6) are presented.  In each 

case, the features chosen for the best performance from the LDA classifier were 

used and the tested classifiers includes those based on decision trees (DT), logistic 

regression (LR), support vector machines (SVM), k-nearest neighbour (KNN) and 

ensemble classifiers (EC).  For this analysis, the results are presented for a train 

on 75% of the data and the results for the 25% of the features used for test are 

shown. The "classificationLearner" performs a single train and test, and does not 

present the aggregate of doing multiple train and tests models such that all cases 

are used in a test group. 
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8.4.1. Driver 7 and 11 

Driver 7 and 11 proved to be difficult to distinguish from each other as 

demonstrated by the low accuracy achieved using Quadratic LDA classifiers and a 

sequential search classification design.  These two drivers appear to have very 

similar driving styles based on the features measured. Figure 8-42 shows the two 

features that provide the best separation between the drivers.  Clearly, there is 

significant overlap for these two features.  The best performing Quadratric LDA 

classifier used 6 features and these features were provided to all 23 classifiers.   

Table 8-13 summarizes the results where 2 classifiers were identified that 

performed slightly better than the Quadratic LDA with Medium Gaussian SVM 

improving the accuracy to 82.0% from 79.3%.  All three of the classifiers had similar 

sensitivity and specificity with a general balance of the errors between the two 

cases. 

Figures 8-43 through 8-45 show the scoring results examples for each of the 3 

classifiers and as expected the errors in classification are clear and there are also 

many cases of correct decision for scores close to the 50/50 decision point. 

Table 8-13: Comparison of classifier accuracy, sensititivy and specificity along with area 
under ROC for the best three classifiers to distinguish Driver 7 from 11. 

Classifier Accuracy 
True  

Driver 7 
 

True  
Driver 11 

 

False  
Driver  
7 as 11 

False  
Driver  
11 as 7 

Area 
Under 
ROC 

LDA 
(Quadratic) 

79.3% 153 177 45 41 0.84 

Medium 
Gaussian 

SVM 
82.0% 162 179 36 30 0.89 

Bagged 
Tree 

81.5% 161 176 37 40 0.88 
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Figure 8-42: Example Scatter Plot for LDA (Quadratic). Orange - classfied as Driver 7, 
Blue - classfied as Driver 11.  Dot - classified correctly, X - classified 
incorrectly.   

 

Figure 8-43: Quadratic LDA classifier scoring for driver A=7 and B=11. 
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Figure 8-44: Medium Gaussian SVM classifier scoring for driver A=7 and B=11. 

 

Figure 8-45: Bagged Tree classifier scoring for driver A=7 and B=11. 

8.4.2. Driver 3 and 6 

Driver 3 and 6 is an example of a pair that could be easily distinguished from 

each other as demonstrated by the high accuracy achieved using Quadratic LDA 

classifiers.  These two drivers appear to have very distinct driving styles based on 

the features measured. Figure 8-46 provides an example two features that provide 

a very clear separation between the drivers. The best performing Quadratic LDA 

classifier used 8 features and these features were provided to all 23 classifiers. 
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Table 8-14: Comparison of classifier accuracy, sensititivy and specificity along with area 
under ROC for the best three classifiers to distinguish Driver 3 from 6. 

Classifier Accuracy 
True  

Driver 3 
 

True  
Driver 6 

 

False  
Driver  
3 as 6 

False  
Driver  
6 as 3 

Area 
Under 
ROC 

LDA 
(Quadratic) 

98.9% 254 208 2 3 0.99 

Weighted 
KNN 

98.7% 253 208 3 3 0.99 

Subspace 
KNN 

98.7% 254 207 2 4 0.99 

 

Figure 8-46: Example Scatter Plot for LDA (Quadratic). Orange - classfied as Driver 3, 
Blue - classfied as Driver 6  Dot - classified correctly, X - classified 
incorrectly.   

Table 8-14 summarizes the results with no classifiers outperforming the 

Quadratic LDA.  The table does show the next best pair of classifiers that both 

provided a slightly lower accuracy of 98.7% compared to the best of 98.9%.  All 

three of the classifiers again had similar sensitivity and specificity with a general 

balance of the errors between the two cases. 

Figures 8-47 through 8-49 show the scoring results examples for each of the 3 

classifiers with Quadratic LDA showing a clear score with few 50/50 cases while 

Subspace KNN has many examples near 50/50. 
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Figure 8-47: Quadratic LDA classifier scoring for driver A=3 and B=6. 

 

Figure 8-48: Weighted KNN classifier scoring for driver A=3 and B=6. 
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Figure 8-49: Subspace KNN classifier scoring for driver A=3 and B=6. 

8.5. Discussion 

This section provides an overview of some potential analysis techniques that can 

be applied to the driving data captured within the Candrive dataset.  The results 

show how the various analysis techniques create features that distinguish the 

differing driving habits and tendencies of drivers and their behaviours including how 

they drive, when they drive and road types chosen.  Specifically, the analysis of 100 

trips by four different drivers shows the potential for road choice and time of day of 

travel to differentiate between drivers based on the tendency to avoid risks 

associated with higher speed or driving in the dark.  Velocity data and 

velocity/posted limits indicate the different driver habits including their tendency to 

drive at or above the posted speed limit.  Acceleration analysis provides indications 

of drivers’ habits for fast or slow accelerations.   

The work demonstrates that acceleration information derived from GPS position 

sensors and OBDII velocity sensors provides a valid measurement of acceleration 

when compared to direct acceleration measurement. This provides the foundation 

for the use of these signals for the analysis of acceleration and deceleration 

behaviours of drivers.  

This work analyzes the data set for a set of 14 older drivers that have stable 

general, cognitive and physical health over a one-year period and do not share their 
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vehicle. The analysis focused on identification of features of driving behaviour that 

have the potential to allow for the differentiation between two drivers and shows 

that distance and duration for each trip along with histogram summaries of the 

actual velocity traveled have potential to differentiate drivers.  The time of day of a 

trip within the solar cycle has limited value to differentiate between drivers. The 

analysis has shown that these drivers may not have seasonal variation in their 

driving patterns. 

Table 8-15: Summary of behaviour measures for their performance to differentiate 
drivers. 

Features that fail in some or alll cases Best Performing Features 

Overnight driving  
 - between 1am and 5am (all drivers) 
 - between 10pm-1am and 5am-8am 

(some drivers) 

 - dawn driving (some drivers) 
Acceleration and jerk 
 - highest and lowest acceleration levels  

(all drivers) 

Road type choice 
 - measured through posted limits 
Velocity 
 - both actual velocity choices and 

velocity relative to posted limit. 
Acceleration 
 - through comparison to acceleration 

and deceleration event models. 

Deceleration and acceleration habits of the drivers are shown to have two distinct 

phases based on the size of the net velocity change within the event.  For the lower 

velocity net changes, the mean and min/max acceleration values within the event 

change with the size of the velocity drop while for larger net velocity changes, the 

attributes are much more stable and only change slightly as the size of the velocity 

increases.  This pattern has been shown for all 14 drivers within the group, while it 

has also been shown each that each driver has distinct features. 

The performance of the two phase relationships was then tested through 

comparison with specific trips for the driver, and it was found that the performance 

reached a maximum performance providing the trip has at least 8 deceleration 

events. At this level of performance, the minimum measure was better at 

distinguishing drivers than that of the mean measure and combined with the greater 

variation on the minimum relationships between the various drivers provides the 

potential for this feature to be used to differentiate between two drivers.  It is also 
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possible that changes in a driver's behaviours could provide an indication of 

cognitive or physical health change. 

Machine learning classification tools were evaluated for their ability to distinguish 

between gold standard reference driver pairs.  LDA classifiers trained for each of 

the 91 gold standard pairs had a mean error rate of 8.6% and a best error rate of 

1.5%.  Other machine learning algorithms provided some performance 

improvement with limited impact for the driver pair with the best error performance 

and a 2.7% improvement for the lowest error performance pair.  The potential 

remains for the identification of additional driving behaviour features that could 

improve the performance for these challenging cases.  One example would be more 

detailed exploration of behaviours of the drivers under particular driving conditions 

such as features derived for driving on only city streets, only on expressways or 

during particular weather events such as rain or snow. 

This work augments previous works that focus on identification of specific driving 

behaviours through the association of behaviours with particular drivers.  In 

insurance applications, features that measure risk related behaviour or diversity of 

drivers for a vehicle could lead to increased or decreased premiums.   

Future work on driver unique behavior measurement includes identification of 

additional driving behaviour features to improve the performance, especially for 

driver pairs that prove to be difficult to distinguish based on the already identified 

driving features. In addition, the future work should explore drivers that are known 

to having changing health (cognitive, physical or general) and determine if the 

identified behaviour feature measures are stable or change in conjunction with the 

health changes.  
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Chapter 9:   Driving: Navigation 

 
Objective: This chapter explores methods to measure the navigational abilities 

of a driver as a measure of executive cognitive function.  This required the creation 

of methods to measure and compare a driver’s navigational and trip planning 

decisions through comparison against navigational references generated a 

posteriori from the trip data.   Topics covered include: 

• GPS route information analysis - Analysis of the GPS sensor driving 

routes to determine trip events including stop detection, driving distance. 

• Navigational reference generation - To provide a navigational 

performance reference measure, crow flight and GIS navigational routes 

for trips retroactively generated automatically. 

• Optimal trip identification - a performance reference generated from 

navigational information for multi-stop trips. 

• Performance measurement - as driven information compared with 

segment and multi-stop trip level references to provide measure of driver 

performance. 

• Trend measurement - measurement of driver performance and patterns 

over time to identify changes in driving behaviours and ability over 

longitudinal study. 
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9.1. Method 

The widespread and cost effective availability of GPS technology provides a 

sensor mechanism to measure, track and record vehicle movements. An iPhone 

4GS running a GPS tracking application [134] logs the real-time GPS information 

(time, latitude, longitude, velocity, bearing, altitude) to a network server.  A network 

based GPS system provides the ability for trip information to be automatically 

centrally stored and analyzed with an option for the results to be conveyed to 

relevant parties.  Local storage on the device requires subsequent retrieval (as in 

Candrive) delaying analysis but eliminating the need for network access and the 

risk of data loss when the network is not available. The iPhone application allowed 

GPS data to be collected without driver interaction. 

This section reports on data collected from healthy volunteers from the research 

team that drove to a series of familiar locations.  The trips included efficient, 

although not necessarily optimal, routes that can be used to establish the baseline 

performance, and various inefficient routes (such as backtracking to home location) 

to demonstrate various coping mechanisms. 

The collected data is analyzed through a series of steps: 

• Stop filter: GPS measurement error and noise appears as jitter in the 

position.  When the vehicle is not moving (velocity = zero), the data 

contains multiple measurements for a single location that can be found 

through an averaging (low pass filter) per equation (9-1).   

if velocity(i:i+n)==0  [9-1] 

lat(i:i+n)=mean(lat(i:i+n)) 

long(i:i+n)=mean(long(i:i+n)) 

This removes potential errors in the detection of vehicle turns just prior to 

or after a stop caused by short distance noise related segments.  

• Latitude and longitude data traces are then analyzed using the algorithm 

shown in (5.2) to identify vehicle stops that may be traffic related or actual 

destinations. A threshold of 2 minutes was used to distinguish traffic 

related stops from destinations. 
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if (lat(i:i+k)==constant [9-2] 

and  long(i:i+k)==constant) 

or velocity(i:i+k)==0 

  stoptime= time(i+k)-time(i) 

  case stoptime 

   >60 minutes→long errand stop 

   >5 minutes→medium errand stop 

   >2 minutes→short errand stop 

   otherwise traffic related stop 

• The GPS data is then analyzed for the actual distance driven for each of 

the trip segments. The distance between location points is calculated 

using the Haversine formula for great circle paths shown in (5.3). 

Providing actual distance driven for each trip segment per (5.4). 

for each longitude-latitude point pairs                     [9-3] 

dlat=lat�i+1�- lat�i� 
dlon=long�i+1�- long�i� 

 � 	 sin
2 
dlat

2� �  + cos(lat�i��* cos
lat�i+1�� *sin
2
( dlon

2� );   

c=2*atan2(sqrt�a�,sqrt�1-a�) 

distance=R*c;     // Where R=6371km (mean earth radius)  

segmentdistance= ∑ distances for point pairs [9-4]  

• Route options: Based on trip destinations a set of five alternative route 

options were identified.  Crow flight distances - direct minimum distance 

between the destinations is calculated without reference to the road network.  

Road network distances - used actual road network optimal routing.  The 

Google maps API [138] uses Dijkstra’s algorithm to search the known road 

network for optimal routing between locations providing a gold standard 

reference. Crow flight and Google Maps derived navigation provide two 

different independent comparators with Crow flight being very simple to 
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calculate but failing to include the actual road network restrictions; hence 

typically underestimating travel time and distance. 

• Crow flight - as driven: For destinations in the order chosen by the driver 

– overall and segment distance using (9-3). 

• Crow flight - optimal destinations order: Keeping the initial location fixed, 

the balance of the destinations are placed in optimal order to minimize the 

overall direct distance for trip.  A search of all the potential orders for the 

minimum distance was used for this travelling salesman problem. 

• Google maps API - as driven: Crow flight distances do not deal with road 

network limitations, so Google maps [138] API was used to automatically 

calculate the road network based distance reference for the stops in the 

order driven.  A URL containing the destination locations is automatically 

formed and the API response provides a table for A B and B A 

distances and times which allows the distance for the as driven route. 

• Google maps API - optimal distance order: The Google maps API 

response includes distances between all the destinations in both 

directions allowing for asymmetry in the road network. This gold standard 

reference allows the optimal (minimum distance) order to be found again 

using a travelling salesman search. 

• Google maps API - optimal distance order: The Google maps API 

provides the estimated gold standard travel times. These times are used 

to calculate the optimal (minimum time) order for the destinations.  

• These destination order sets and trip attribute measures are compared with 

the actual trip attributes, and variation from the reference routes provides an 

indication of the overall route planning capability for the individual.  It is not 

expected that individuals will perform optimally, but that initial performance 

will give a baseline indication of their ability and typical choices. 

• The segment distances as driven are compared to the references for those 

segments, providing an indication of the driver's navigation capability. Again 
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it is not expected that individuals will perform optimally but that initial 

performance will provide a baseline. 

• Establish baseline: A set of trips were identified as representative of baseline 

performance and were used to create reference attributes.  From the trips the 

following baseline attributes are determined: 

• Baseline trip summary - Mean and standard deviation each of (3-10) 

1. Number of stops 

2. Stop location (longitude and latitude) 

3. As-driven total distance 

4. Crow flight as-driven total distance 

5. Crow flight optimal total distance 

6. Google as-driven total distance 

7. Google optimal total distance 

8. Google time optimal total distance 

9. Segment ratio - As-driven segments / Crow flight segments 

10. Segment ratio - As-driven segments / Google segments 

• Comparison to Baseline: Measure to compare to baseline: 

• Trip complexity change: 

• increase or decrease in the number of stops 

• presence of each baseline destination (within 100m of baseline stop) 

• identification of additional (non baseline) stops 

• Trip distance change: 

• Increase/decrease in overall trip distance: actual change, percentage of 

baseline distance and relative to baseline trip standard deviations. 

• Trip level planning and navigation performance: comparing trip overall 

distance driven using the 5 reference trips to the baseline trip with 
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percentage of baseline and number of standard deviation difference 

calculated. 

• Segment level detailed navigation performance: comparing the segment 

level distances for the trip under consideration against the Crow flight and 

Google Maps reference distances for those segments with percentage of 

baseline and number of standard deviation difference calculated.  

Trip complexity provides an indication of driver choice such as a reduction in the 

number of destinations or variety of destinations, indicating a coping mechanism.  

Similarly trip distance change will indicate drivers coping by staying closer to home.  

Trip level planning provides an indication of high level cognitive ability to determine 

an efficient order for destinations while segment level navigation shows the ability 

of the driver to get between two locations efficiently. 

9.2. Experimental Results 

This research problem includes 3 major steps: 

1. Collection and analysis of the GPS data for each trip. 

2. Calculation of baseline reference trip features and attributes. 

3. Comparison of trip with baseline to identify performance changes. 

 

Figure 9-1: Example route trace for a training trip with stops identified in green and trip 
origin location in red.  Trip starts at origin (stop 1) and follows through stops 
in order 2 through 5 and then returning to the origin.  
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9.2.1. Trip Analysis 

 Driver 1 drove three trips in another region of the city to provide data for 

algorithm development with validation against the 10 trips. 

Figure 9-1 shows an example plot of the de-jittered GPS data per equation (1) 

for a training trip. The trip began at the red circle (origin – stop 1) with four 

destinations (stop 2 through 5) returning to the trip origin.   

 

Figure 9-2: Example stop identification for training trip showing the 4 stops with the first 
being between 2 and 5 minutes, stop 2 and 3 between 5 and 60 minutes 
and a final stop of greater than 60 minutes.  The diagram also shows slow 
movement and short duration stops related to traffic. 
      stop_flag =  0 - not stopped ;  1 - <3km/hr;  
 2 - <2 min;   3 - >2min and <5min;  
 4 - >5min and <60min; 5 - >60min. 

Table 9-1: Example route optimization analysis for training trip 

Case Distance (km) Stop Order 

As-driven 54.3 1, 2, 3, 4, 5 

Crow flight as driven 35.9 1, 2, 3, 4, 5 

Crow flight optimal 34.9 1, 4, 2, 3, 5 

Google as driven 54.5 1, 2, 3, 4, 5 

Google optimal distance 53.4 1, 4, 3, 2, 5 

Google optimal time 53.4 1, 4, 3, 2, 5 

   Figure 9-2 shows an example time line for the same trip with the vehicle stops 

and slow moving segments (9-2) identified.  The four stops (destinations) are clearly 

visible with 3 short initial stops, one less than five minutes and 2 longer than five 
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minutes around 17:00 and one long duration stop.  There are also a number of 

traffic related stops or slow movements correctly classified. 

Table 9-1 shows an optimization analysis for the overall trip with the actual trip 

distance and each of the five references.  The as-driven distance is slightly shorter 

as Google calculates distance using more precise measures of road curves 

compared to 5 second sampled GPS data with piecewise linear approximation. 

Table 9-2 shows the analysis for the training trip on a per segment basis showing 

the measured travel distance and time for each trip segment in comparison to the 

Crow flight, Google optimal route and optimal time.  Although the Google distances 

are similar to the as-driven values, the time differs as Google routing assumes 

speeds on some rural roads that differ significantly from posted limits, but this will 

be consistent between trips on those roads.    

For this training trip, the results show that a trip can be measured, identifying the 

stops and route driven, and the results can be compared with derived optimal routes 

using crow flight and Google maps information. The road network for this trip 

requires some back tracking near the trip origin and this is not detected in the crow 

flight analysis but is noted on Google routes.  In this case, the Google data finds a 

small improvement would occur with a reordering of the destinations.  It shows that 

trips can be analyzed to create a baseline driver performance relative to gold 

standard navigation information from Google maps. 

Table 9-2: Example comparison of segment trip information with crow flight and Google 

Origin 
stop 

Destination 
stop 

As-driven 
(km) 

Crow flight 
(km) 

Google 
route (km) 

As-Driven 
(min) 

Google 
route (min) 

1 2 21.26 14.48 21.19 19.80 19.93 

2 3 0.56 0.46 1.14 2.50 3.85 

3 4 2.01 1.59 2.24 4.92 5.17 

4 5 17.30 13.03 17.31 18.82 22.92 

5 1 12.71 6.34 12.62 14.82 18.28 
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Table 9-3 summarizes the trip data collected for a series of trips to typical 

destinations (shopping, recreation, and library) within a region of the city.  Trips 

were repeated over a number of days for a total of 10 trips.  

A trip with 6 destinations (including start point) was repeated 6 times with an 

example trace shown in Figure 9-3 for Trip 1.  Four trips were performed with the 

stops in near optimal order and efficient navigation between the destinations. Two 

additional trips were captured for those same 6 stops to provide examples of 

backtracking to home (Trip 5) - common coping mechanism, a trip (Trip 6) that has 

a small routing error (wrong turn leading to a quick U-turn on a side street). Trip 7 

and 8 capture two other expected variations in trips where an extra stop (Trip 7) 

was included or a stop was skipped (Trip 8) indicating trip variation.  

   Table 9-3: Summary of the driving trips captured 

Trip Use Attributes Driver 

1 Baseline 6 stops, clockwise Driver1 

2 Baseline 6 stops, clockwise Driver1 

3 Baseline 6 stops, counter-clockwise Driver1 

4 Test 6 stops, clockwise Driver2 

5 Test 6 stops, clockwise,  
backtracking to home 

Driver1 

6 Test 6 stops, counter-clockwise, 
small routing error 

Driver2 

7 Test 7 stops, counter-clockwise Driver2 

8 Test 5 stops, counter-clockwise,  
stop 4 skipped 

Driver2 

9 Test 5 stops, stop 2 from baseline + 3 
new stops, navigation errors 

Driver1 

10 Test 5 stops, same as trip 9, no 
navigation errors 

Driver1 

 

The performance of the stop detection algorithm is provided in Table 9-4 and 

shows that all 58 stops were detected successfully by the algorithm with no false 

positives or negatives.  The algorithm was able to correctly reject all traffic related 

stops including extremely slow moving traffic (road construction in trip 1). Three 
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example route traces for the validation trips are shown in Figures 9-3 – 9-5.  Figures 

9-3 and 9-4 show the trip with stops in optimal order and optimal routing between.  

Figure 9-3 had the stops in a clock-wise order while Figure 9-4 had the stops in a 

counter clock-wise order.  Figure 9-5 has the stops in an optimal order but routing 

between includes backtracking to home. 

Table 9-5 summarizes the distance measurements for the validation trips.  The 

as-driven distances from the GPS data correspond closely to the Google as-driven 

data as expected.  The Google data underestimates the total distance as it does 

not include any driving that was not road network restricted, such as movements 

through parking lots for each stop.  The Crow flight references for both as driven 

stop order and optimal stop order grossly under estimates the total trip distance as 

expected. 

Table 9-4: Summary of performance of the stop detection algorithm for all stops within 
the validation data set.  No stop detection errors were observed. 

Attribute Count 
Total stops on trips 58 
Stops found by algorithm 58 
Extra stops found (false positive) 0 
Stops missed (false negative) 0 

    

Both of the Google optimal measures provide good references for the as driven 

trip.  They both underestimate the total travel distance as both drivers chose road 

route options that were close to the shortest time route over options that were 

shorter in distance.  The challenge with the use of travel times as a method to detect 

slower driving as a coping mechanism was demonstrated in Trip 1 where travel was 

greatly slowed for one segment because of construction delays.  Although the travel 

distance was not affected, the travel time was greatly affected. Also variability in 

traffic lights could obscure any driver related variance. 

Two final trips were captured that were of similar complexity (number of stops) 

to the baseline trip but included stops in a different direction from the home location.  

This provides examples of trip variation.  In one case (Trip 9), the route included 

navigation errors, while Trip 10 used efficient routing. 
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Figure 9-3: Stop detection for Validation Trip 1 with direction of travel in clock-wise 
direction. Trip origin (red circle) and stops (green circle). 

 

 

Figure 9-4: Stop detection for Validation trip 3 with direction of travel in counter clock-
wise direction. Trip origin (red circle) and stops (green circle). 

 

Figure 9-5: Stop detection for Validation trip 5 with direction of travel in clock-wise 
direction. Trip origin (red circle) and stops (green circle). 
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Table 9-5: Summary of the distance measurements for validation trips.  Overall mean 
and standard deviation is provided and the mean and standard deviation 
for the difference between the measure and the trip as driven. 

Measure Optimization Mean 
(km) 

Std Dev 
(km) 

Delta Mean 
(km) 

Delta Std 
Dev (km) 

Trip as driven 8.7 1.8 --- ---- 

Crow flight as driven 5.2 0.9 3.4 1.4 

Crow flight distance optimal 5.1 0.9 3.6 1.6 

Google as driven 8.3 1.0 0.4 1.1 

Google distance optimal 7.8 1.0 0.8 1.7 

Google  time optimal 8.3 0.7 0.4 1.7 
    

 

9.2.2. Baseline Trip Analysis 

Table 9-6: Baseline trip summary attributes and features. 

 

Trips 1, 2 and 3 were chosen as the baseline, leaving the 7 trips to be analyzed.  

In practice, it would be expected that a larger number of trips for a given subject 

would be used to generate the baseline. The training trips included travel in both a 

clockwise and counter clockwise path between the destinations, which has minimal 

effect on route as compared to optimal route and represents a driver choice. The 

summary analysis of the 3 baseline trips is shown in Table 9-6, where key summary 

features have been identified along with measures of the variation in these features.  

The crow flight features with their large variation from actual travel distance show 

the limitation of this reference.   

Baseline Attribute Units Mean St Dev Mean St Dev

Number of stops on trip 6

Stop 1 longitude/latitude degrees -75.6935 6.11E-05 45.3875 4.16E-05

Stop 2 longitude/latitude degrees -75.6913 8.81E-05 45.3878 8.85E-05

Stop 3 longitude/latitude degrees -75.6840 4.48E-05 45.3957 1.05E-04

Stop 4 longitude/latitude degrees -75.6867 1.11E-04 45.3999 1.33E-04

Stop 5 longitude/latitude degrees -75.6784 2.76E-04 45.3862 1.39E-04

Stop 6 longitude/latitude degrees -75.6859 1.39E-04 45.3826 1.39E-04

As driven distance m 7559 263

Crow flight distance m 4836 116

Crow flight optimal distance m 4719 49.7

Google as driven distance m 7742 227

Google optimal distance m 7470 64.1

Google time optimal distance m 7470 64.2

Segments as driven/crow flight m/m 2.00 1.36

Segments as driven/Google m/m 0.971 0.0389
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9.2.3. Validation Trip Analysis 

Figures 9-5 and 9-6 show the trip routes for trips 5 and 7 respectively, and the 

backtracking in Trip 5 to the start location is clearly visible. This is a common 

navigational coping mechanism for patients with cognitive decline through use of 

familiar routes.  The additional stop in Trip 7 is in the lower right hand corner.  

 

 

Figure 9-6: Trip trace for validation Trip 7 showing travel path and stops. Trip includes an 
extra stop. Trip origin (red circle) and stops (green circle).  

Table 9-7 shows the comparison of the 3 baseline trips to the baseline attributes 

for each of the proposed measurement criteria while Table 4 shows the results for 

the 7 validation trips. The broad range of measures was used so that attributes and 

measures that were more effective at identifying changes could be determined. As 

expected, the training trips are all in close agreement with the baseline trip, but the 

table does give an indication of the size of variation that can be observed in the 

measures for similar trips. 

The comparisons to crow flight routing was problematic as expected.  Table 9-7 

shows that 50% and greater variation, and as a result this measure is discarded 

from further exploration. 

 Actual travel time and a comparison to optimal travel time was also determined 

to be an ineffective measure as the actual travel time for city travel has many effects 

that are beyond a drivers control such as traffic congestion, traffic lights and other 

controls and lastly construction delays.  None of these reflect driver ability but cause 

variation in the measured data. 
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Table 9-7: Analysis of the 3 baseline trips as compared to the baseline summary trip. 

 

 

Table 9-8: Summary of the analysis results for the 7 validation trips as compared to the 
baseline trip formed from trips 1, 2 and 3. 

 

 

Attribute \ Trip Base 1 Base 2 Base 3

Actual stops 6 6 6

trip stop difference from 

baseline
0 0 0

Number of baseline stops 

missed
0 0 0

Baseline stop missed stop # none none none

Count of non baseline stops 0 0 0

Overall trip delta from 

baseline 
m 165 138 -304

% 2.2% 1.8% -4.0%

#sd 0.63 0.53 1.15

% -0.23% -0.58% -6.28%

#sd 0.08 0.20 2.14

% 60% 59% 50%

#sd 24.8 24.6 20.8

% 64% 63% 54%

#sd 60.4 59.9 51.0

% 3.41% 3.05% -2.87%

#sd 3.97 3.55 3.34

% 3.41% 3.04% -2.87%

#sd 3.96 3.54 3.34

% 0.59% 0.68% -1.26%

#sd 0.01 0.01 0.02

% -0.09% 0.37% -0.28%

#sd 0.022 0.092 0.069

Segment variation from 

baseline crow flight

Segment variation from 

baseline Google segments

Overall trip distance change

Trip variation from Google as-

driven route 

Trip variation from Crow 

flight as-driven route 

Trip variation from Crow 

flight optimal route 

Trip variation from Google 

distance optimal route

Trip variation from Google 

time optimal route

Attribute \ Trip Test 4 Test 5 Test 6 Test 7 Test 8 Test 9 Test 10

Actual stops 6 6 6 7 5 5 5

trip stop difference from 

baseline
0 0 0 1 -1 -1 -1

Number of baseline stops 

missed
0 0 0 0 1 4 4

Baseline stop missed stop # none none none none 4 3 4 5 6 3 4 5 6

Count of non baseline stops 0 0 0 1 0 3 3

Overall trip delta from 

baseline 
m -266 4904 482 1596 -1266 3060 1461

% -3.5% 64.9% 6.4% 21.1% -16.7% 40% 19%

#sd 1.01 18.63 1.83 6.06 4.81 11.6 5.5

% -5.80% 60.98% 3.87% 18.25% -18.71% 37% 17%

#sd 1.98 20.78 1.32 6.22 6.37 12.7 5.62

% 51% 158% 66% 89% 30% 120% 87%

#sd 21.1 65.5 27.5 37.1 12.5 49.7 35.9

% 55% 164% 70% 94% 33% 125% 91%

#sd 51.8 155.7 66.8 89.2 31.7 119 86.5

% -2.36% 66.85% 7.66% 22.56% -15.74% 42% 21%

#sd 2.75 77.87 8.92 26.28 18.34 49.1 24.2

% -2.37% 66.84% 7.65% 22.56% 15.75% 42% 21%

#sd 2.75 77.76 8.90 26.24 18.32 49.0 24.1

% -12.7% 25.33% 0.48% -7.33% 9.61% 3.3% 0.31%

#sd 0.19 0.37 0.01 0.11 0.14 0.40 0.0046

% -5.48% 41.72% 1.00% -2.67% -4.83% 10.1% 3.2%

#sd 1.37 10.40 0.25 0.67 1.20 2.52 0.79

Segment variation from 

baseline crow flight

Segment variation from 

baseline Google segments

Overall trip distance change

Trip variation from Google as-

driven route 

Trip variation from Crow 

flight as-driven route 

Trip variation from Crow 

flight optimal route 

Trip variation from Google 

distance optimal route

Trip variation from Google 

time optimal route
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Trip 4 was driven by a different driver and although the training trip route was 

followed exactly, the driver had small variations in decisions such as parking 

locations within lots at destinations. The resulting trip was within baseline range for 

comparative trip level attributes, but showed segment level variations. 

Trip 5 includes a large amount of backtracking and this is clearly visible in most 

of the attributes for this trip. Trip 6 included a small navigational error that is 

detected in the features even though this effect is minimal. 

Trip 7 included an additional stop that has been detected by the stop level 

analysis, so although this leads to variation in many of the trip level attributes, the 

additional stop allows it to be distinguished from a trip with poor routing decisions 

alone. The segment level variation is comparable to the variation seen in Trip 4, 

providing an indication of trip to trip expected variation and not an indication of a 

performance decline trend.  Trip 8 excluded stop 4 and this missing stop has been 

identified but again the trip level analysis shows changes relative to the baseline 

that are much smaller scale than for backtracking for segment level comparison. 

 

Figure 9-7: Trip trace for validation Trip 10 showing travel path and stops. Trip used same 
home location and initial stop (lower right corner) as trips 1 through 8. It 
then included 3 additional stops in another area of the city near the home 
locations.  

Trips 9 and 10 clearly indicate the significant changes in destination set and as 

expected, this resulted in large changes in the overall trip measures given that the 

trips are so different from the baseline trip.  The segment level analysis for Trip 10 

shown in Figure 9-7 shows again similar variation to that observed in Trips 4, 7 and 
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8 indicating expected variations that could be seen in trips over time whereas the 

segment level analysis for Trip 9 clearly indicates the navigational errors. 

9.3. Discussion 

This section proposes and validates algorithms for the measurement of driving 

navigation behaviours as an example of an instrumental activity of daily living that 

requires high level cognitive function. The work specifically provides an algorithm 

for the detection of destination stops within a GPS trace for a trip that operated 

without error.  Google Maps is used to provide gold standard reference measures 

for as-driven and optimal travel distances for identified destinations.  

The work showed that use of Crow flight measures does not provide a useful 

reference. It demonstrates that the navigational decisions for drivers can be 

detected through sensing and analysed to identify changes in navigational 

performance. Similarly changes in trip complexity, including number and variety of 

destinations chosen by the driver can be detected.  A driver's baseline performance 

measurement is proposed that provides a reference for the driver’s ability.  Google 

Maps distance is shown to be an effective gold standard reference for navigational 

performance while a Crow Flight reference is shown to be ineffective.  

With the nature of many trips taken, there is a high repetition in destinations 

(work, shopping, family, social activities) and this work shows that these trips can 

be analyzed to form a summary performance set of features. The work then shows 

that new trips can be compared against this baseline and trips with normal 

variations of destination choice can be distinguished from trips that are indicative of 

the coping mechanisms typical for cognitive decline.   
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Chapter 10:   Driving: Vehicle Operation 

 
Objective: This chapter explores methods for the measurement of specific 

vehicle operation tasks performed by a driver as a measure of an over learned 

cognitive task.  The example explored is the use of turn signals with the goal to 

have methods be able to measure use of turn signals by the driver along with 

methods to determine when they were needed leading to a possible performance 

measurement.    Topics covered include: 

• Turn signal use - detected through image processing and event analysis. 

• Actual vehicle turns - detected through analysis and event detection of 

as-driven GPS location data. 

• GIS turn augmentation - use of GIS information to retroactively identify 

turns and merges in a trip using GIS navigational databases. 

• Sensor fusion - merging GPS and GIS turn information with turn signal 

use events requiring time alignment of the three sources. 

• Performance measurement - Providing a measure of driver ability.  

10.1. Method 

The measurement of turn signal use as an indication of autonomous cognition 

while driving requires sensors to detect both signal use and the events to signal.  

The chosen sensors consisted of dashboard video of the signal lamps and a smart 

phone based GPS sensor.  The sensor data are combined with navigation analysis 

from chapter 9 to create as-driven GIS turn information from Google Maps in 
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addition to direct GPS path analysis.  The dashboard video had to accommodate 

dashboards that had the turn signal lamps widely separated (two cameras) and 

those with closely placed lamps (one camera). CANbus signal information uses 

manufacturer proprietary protocols and could not be used. Signal lamp voltage was 

also rejected to avoid potential impact to operation of the signals and the need for 

no permanent modification on the vehicle.  

10.1.1. Dashboard Signal Lamp Detection 

Identification of the turn indicator status is an example of a general image 

processing problem where the event being detected has known features (arrow 

shape in this case) but unknown size/scale, position, orientation (tilted or not 

coplanar with camera), noise (vibration) and the detectable feature (lamp lit) 

repeats, indicating a longer duration event (signal engaged). The algorithm requires 

the analysis of the video to detect that the lamp and signal are “on” between the 

first detected “on” transition through to the last detected “off” transition. The 

algorithm must adapt to the location of the signal lamps on the dashboard, support 

variation in dashboard lamp placement (one camera or two), it needs to distinguish 

arrows from other signal lamps and determine the direction of the arrow. Grey scale 

converted video images (Figure 10-1 shows source image examples) represented 

by unsigned integers were used in the work and analysis was performed on forward 

and backward 5 frame difference images and associated measures of the variance 

and energy in the delta images with the frame gap allowing time for lamp to 

transition on or off.    

�������� 	 � �!��"� # 	� �!��" # 5�        [10-1] 

%�&'����� 	 � �!��" # 5� # 	� �!��"� [10-2] 

���(�� 	 (��	����������                            [10-3] 

%�&'(�� 	 (��	�%�&'������	   [10-4] 

���)"��!* 	 	∑��������+ [10-5] 

%�&')"��!* 	 	∑%�&'�����+ [10-6] 
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Regions in the image were identified by looking for localized areas of high energy 

in the delta images: 

,-�"."!	�":				���(�� 0 150 ∗ ���)"��!* [10-8] 

,-�"."!	���:	%�&'(�� 0 150 ∗ %�&')"��!* [10-9] 

 The location of the lamp was observed to move within the image through 

vibration or by bumping causing a step move in position. A candidate window is 

chosen in the region with highest energy. Given that the signals cannot be 

guaranteed to be horizontally aligned with the camera frame, the correlation is 

measured for the candidate arrow from -15o to +15o rotations in 1o steps. At each 

rotation of the candidate arrow, the image is cropped based on Matlab canny edge 

detection and the correlation of candidate arrow with ideal left and right arrows 

scaled to same size as candidate is measured. If maximum correlation of left vs. 

right is not more than 2% different, candidate is rejected as not an arrow removing 

lamps other than arrows. Turn signal state is then created by processing the lamp 

on-off states where the signal is on between the first lamp “on” detection to a lamp 

off detection that does not have a lamp on within 0.5 seconds. 

10.1.2. Turn Detection in GPS Data 

The GPS data is analyzed to locate vehicle turns.  At each GPS location point, 

two vectors are formed; A for segment entering the location and B for segment 

leaving the location.  To avoid noise from GPS jitter while stopped, short segments 

are omitted. The magnitude of the direction change is determined from a dot 

product, while cross product provides direction. 

angle 	 &�789��: ∙ %�/�|:|	|%|��																 [10-10] 

direction 	 	7.!"��: B %�C	DEFGEHIHJ�	            [10-11] 

Candidate corners are then identified as changes greater than 30o, which are 

then filtered to ensure higher velocity turns (ramps) only have the first of 

consecutive detections accepted. 
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10.1.3. GIS Turn by Turn Route Creation 

Google Maps, as presented in chapter 9, provides a GIS database accessible 

through APIs that can also be used to find the location of turns and merges within 

a route retroactively. Each trip segment is represented by a start and stop location 

(longitude, latitude) and up to 8 (Google API limitation) intermediate locations that 

are equally spaced in time, resulting in a set of routing directions. The route query 

is repeated for 1 fewer intermediate locations providing a second measure as 

different intermediate points may prevent the vehicle from being placed on the 

wrong road, for instance a small GPS measurement error near a bridge. 

The XML file returned by Google Maps Directions API includes turn by turn 

directions for the trip along with trip summary information. The trip distance estimate 

for the two sets of directions is compared to the actual as-driven distance, and the 

result closest to actual driven distance is chosen.   The XML turn and merge events 

set (longitude, latitude, direction (left/right) and type (turn/merge)) from the 

directions is a series that has a known order of occurrence and a known location, 

while the GPS trip data is a time series of longitude and latitude samples. The turn 

events need to be time aligned to the actual as-driven trip through a minimum 

distance error measure between the as-driven location samples and the turn event 

locations.  A tree search is used to find the ordered as-driven locations that provide 

the minimum total distance error for the turn events. 

)����	�.7��"&� 	 	∑ |�.7��"&�	�����7|				HKL9 	  [10-12] 

10.1.4. Correlation of GPS and GIS Turns with Dashboard Video 

The now time aligned GPS data and GIS identified turns must be sampling rate 

aligned with lamp events. This is an example of a general sampling rate 

transformation problem where data is not only at highly differing sampling rates, but 

in the case of GPS data, the sampling rate is variable and the key features of the 

higher sampling rate must be maintained (signal events).  

The video events are down sampled to align with GPS/GIS information, where 

each new sample reflects the state of the turn signal lamps in preceding interval 

(left, right or off).  GPS and GIS turns data and lamp status information is then 
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compared, resulting in three event sets {Signal events associated with turns, Signal 

events not associated with turns, Turns with no associated signals}. 

10.2. Experimental Results 

Data was collected for a total of ten trips driven by two healthy drivers, each 

driving their personal vehicle. The drivers were both male, ages 48 (driver 1) and 

51 (driver 2).  The two vehicles had different dashboard configurations, with one 

having adjacent turn signal lamps (driver 2), allowing one camera to capture both 

signals, while the other (driver 1) required separate cameras for each signal.   

Video capture of the dashboard proved challenging as car designs include shade 

structures to prevent sunlight from getting onto the dash, in addition to the steering 

wheel blocking many camera positions.  Only 2 locations were found to give an 

acceptable image of the turn signals.   The first, mounting near the driver’s head, 

was considered unsafe as it could interfere with driver head movements and vision. 

Hence, the second, hanging the cameras from the top of the dashboard between 

the steering wheel and dashboard, was chosen.  The cameras used were extremely 

small in size (66mm x 29mm x 15mm) and minimally obscured the dashboard, while 

the location caused them to be mounted upside down, requiring analysis to account 

for the image inversion.  

 

Figure 10-1: Example right turn lamp image: (a) vehicle 1; (b) vehicle 2. 

An example dashboard image is shown in Figure 10-1 for each of the vehicles.  

The video included a time stamp, aligning the video and GPS data, which was 

excluded from all image analysis. The turn signal events captured on video include 

225 separate uses of the signals. These were almost evenly split between left and 
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right (118 right, 107 left) and ranged from a single flash of the lamp through to 

events of over 100 flashes.  The performance of the detection algorithm is shown 

in Table 10-1 where 100% of the signal events were detected, with no missed or 

false positive detections. The algorithm proved to be robust to the effects of 

vibration or incidental bumps of the camera. The addition of rotation to the algorithm 

was key to achieving the performance. 

Table 10-1: Summary of results for signal arrow detection showing all turn signal events 
were detected with no false positive or false negative errors. 

Signal Detected False 
Positive 

False 
Negative 

Right signal (n=118) 100% 0% 0% 

Left signal (n=107) 100% 0% 0% 

Combined (n=225) 100% 0% 0% 
 

 

Figure 10-2: Example of arrow detection algorithm image processing steps.   
   a – Difference image for raw window containing potential signal arrow.  

b – Candidate image rotated to position with optimal correlation.  
c – Edge detection results for rotated candidate arrow.  
d – Cropped candidate arrow used for correlation. 

Examples of the algorithm steps are shown in Figure 10-2. The candidate arrows 

are incrementally rotated before correlation to determine the optimal result, with 

a b

c d
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grey-scale isolating the algorithm from variations in lamp colour.  To be able to 

easily identify both the on and off transitions, a delta image provided the best 

reference. The delta image excluded most of the background other than vibration 

effects and a 5 frame delta was found to ensure that at least 2 deltas were 

calculated between full on and full off for each flash, allowing time to change state. 

The results of the GPS analysis and Google based GIS remapping are 

summarized in Table 10-2. Of the 215 turns taken, 73% of them were correctly 

detected by the GPS turn detection algorithm, while only 58% were detected by the 

Google GIS algorithm.  A key difference in the two algorithms is that the Google 

GIS algorithm performed well locating turn and merge events on the road network, 

but failed off the road network (parking lots).  The GPS algorithm was able to locate 

non-road events, but missed merges and some turns into/out of parking lots, where 

parking allowed minimal travel distance pre/post turn. 

Table 10-2: Summary performance for the GPS and GIS remapping algorithms in the 
detection of turn and merge events within the trips. 

Turns GPS only Google only 

Right turns (n=131)   

Detected turns 73% 62% 

False Positive errors 3% 5% 

False Negative errors 14% 23% 

Left turns (n=86)   

Detected turns 72% 55% 

False Positive errors 2% 6% 

False Negative errors 15% 24% 

Total (n=215)   

Detected turns 73% 58% 

False Positive errors 3% 4% 

False Negative errors 14% 21% 
 

The false positive detection rate on roads is relatively low at 2 - 6% for identified 

corners that are not actual corners.  Most of these detections are associated with 

long curved segments of a road, where traffic causes the driver to slow. The extra 

false positive errors for the Google data are mostly associated with two segments, 
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where there was a drop out in the GPS data, so an alternative path for a portion of 

the segment was returned by the API.  

The correlation of the turn signal usage events identified in the video signals is 

shown in Table 10-3. On a standalone basis, the GPS algorithm performs better 

than the Google GIS algorithm. This is expected because the Google algorithm 

does not identify non-road events.  When the signal events for the two algorithms 

are combined, the performance improves. 

Table 10-3: Resulting association of signal lamp use with identified turns. 

Signalled Turns GPS 
only 

Google 
only 

Combined 

Right turns 81 74 89 

Left turns 55 46 62 

Total 136 120 151 

Table 10-4: Turn signal usage rates for the two drivers. 

Signalled Turns Driver 1 Driver 2 

Right turns 67% 70% 

Left turns 68% 77% 

Total 67% 73% 
 

Table 10-4 shows the performance measures for the two drivers, where Driver 2 

demonstrates a higher tendency to signal turns than Driver 1. This provides a 

different measure of driving performance that can be combined with navigational 

performance. It is not expected that a driver will remember to use their signal at 

every turn, but it is expected that a driver will have relatively consistent 

performance, and any long term change in this performance could indicate 

cognitive change.    

10.3. Discussion 

This work demonstrates that an automatic over-learned cognitive function 

associated with driving can also be measured, adding to the more complex 

executive cognitive functions reported previously.  A fusion algorithm was created 

for sensor signals captured from a GPS location recording system in conjunction 
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with GIS mapping information.  The work specifically shows methods to remap the 

driving behavior a posteriori so that turn and merge requirements for the trip driven 

can be determined.  This information augments the turns identified from analysis of 

the GPS path.  The GIS data provides better performance for areas hard to detect 

in the path such as merges while GPS analysis allows turns off the road network to 

be detected such as parking lots.  Turn signal use is detected through analysis of 

dashboard video. The algorithm provides a measure of the driver’s performance for 

use of turn signals for actual turns performed. The result is an algorithm that can 

analyze a given driver’s performance over time as an indirect indication of change 

in driver cognitive ability. 
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Chapter 11:   Summary and Future Work 

 
 

This work has presented the episodic cognition assessment framework that 

provides potential for ongoing assessment of patient well-being through IADL 

assessment.  The work presents methods for cognition assessment for 3 sub-

systems within the framework: 

• Methods for classification of EEG / ERP features has been shown to 

allow for MCI subjects to be distinguished from healthy controls. 

• Methods for the measurement of performance within two computer 

games has been shown to allow for the longitudinal measurement of 

ability allowing for change in ability to be detected. 

• Methods for the measurement of driving behaviours have been proposed 

that allow drivers of a shared vehicle to be distinguished and also for 

change in navigational or vehicle operations to be detected over 

longitudinal studies. 

11.1. Future Work 

There are a number of areas for future exploration: 

11.1.1. Episodic Framework 

• Expand the Episodic Framework to include additional monitoring 

subsystems. 
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• Development of real time implementation of Episodic framework for array 

of sensor sources. 

• Capture of longer term study data using multiple cognition measurement 

techniques for a set of subjects. 

11.1.2. EEG/ERP 

• A study of ERP measures for a larger group of participants and also 

include longitudinal study of the participants to explore stability of 

EEG/ERP as a measure for both stable and subjects undergoing 

cognitive change. 

• Exploration of the potential for consumer EEG devices to be used that 

allow for simpler and hence more frequent EEG/ERP measurements. 

11.1.3. Games 

• Extension of gaming studies to include dementia patients with the 

potential need for alternative game designs for these patients. 

• Explorations of game designs that allow for the integration of EEG / ERP 

measurements. 

11.1.4. Driving 

• Development of real time deployment implementations for real time in car 

analysis. 

• Exploration of the effects that health changes such as cognitive, physical 

or general health have on driving behaviours. 

o Exploration of the long term effects of cognitive change on driving 

behaviours and the required adaption of a signature over time. 

o Use of driving signature change as indication of driver change 

(cognitive or physical health). 
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Appendix A:   Additional Driver Behaviour Attributes 

Figure A-1 provides a further analysis of the driving patterns for each of the four 

drivers showing a histogram of the time of day using 1-hour bins for each trip taken 

by the driver and the histogram for each of the 100 trips is then averaged.   The 

figure clearly shows that all drivers drive during the day and early evening avoiding 

the overnight, very early morning and late evening. The wide spread in the standard 

deviations show large trip to trip variation that is expected as many of the trips are 

short in duration so the histogram for a particular trip tends to occur within only 1 or 

2 bins. 

Figure A-2 shows histograms of the GPS reported velocity for each of the drivers.  

The data for drivers 1 and 3 further demonstrates the avoidance of high-speed 

(80+km/hr) roads as the velocity profiles have minimal actual driving at 80km/hr 

and above.  The use of highways by driver 4 is visible in the increased travel at 80 

and 90km/hr and aligns with the higher use of 100km/hr highways in Table 4-7 but 

also indicates a tendency for travel below the posted speed limit.  Driver 3 data 

shows the much higher use of highways and driving at 100km/hr. The figure also 

shows that there is reduced variation in the trip-to-trip velocity profiles through the 

narrowed standard deviation spread.   

Figure A-3 further explores the velocity choices of drivers by comparing their 

choice of velocity with the posted speed limit on the road where known.  Drivers 1 

and 3 did not make use of 80km/hr highways but they do have a much higher 

occurrence of travel above the posted speed limit as shown by the non-zero results 

for the 110% and >120% of the posted limit while drivers 2 and 4 do not show this 

tendency indicating different driving habits for the drivers.  The detailed data as 

summarized in Table 8-2 allows the speed limit of the road to be used in conjunction 

with the drivers chosen speed. Again, the standard deviation spreads show the 

limited trip-to-trip variation in this measure. 
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Figure A-1: Histogram for time of day travel for each of the drivers showing the mean 
value for each of the 1 hour wide bins for the 100 trips. + signs show one 
standard deviation  (a) - driver 1, (b) - driver 2, (c) - driver 3, (d) - driver 4.  
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Figure A-2: Histogram of velocity habits for the GPS report velocity showing the mean 
value for each of the 10km/hr hour wide bins for the 100 trips. + shows one 
standard deviation. (a) - driver 1, (b) - driver 2, (c) - driver 3, (d) - driver 4.     
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Figure A-3: Histograms of the ratio of velocity to posted speed limit for each of the drivers.  
Data excludes all samples where the speed limit is unknown.  (a) - driver 
1, (b) - driver 2, (c) - driver 3, (d) - driver 4. 
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Appendix B:   Acceleration Measurement 

B.1. Method 

Measuring driver acceleration characteristics is important as it could lead to 

insights into driver performance and potentially help indicate who is driving through 

different characteristic behaviours.  The Candrive sensors do not directly capture 

acceleration information, as no accelerometer was included in the sensor set due 

to concerns about added complexity, cost, and storage requirements.  The sensor 

system does record the vehicle velocity from the engine computer (Dashboard 

velocity) inertial sensor, and GPS system velocity.     

Acceleration Measurement Techniques 

The derivative of the GPS and OBDII velocity signals provides two acceleration 

measures, and Table B-1 summarizes difference formulas that can be used to 

estimate the derivative of discrete data [136].  This section explores the optimal 

choice of difference formula and sensor source so that the derived acceleration 

best corresponds to direct acceleration measurement. 

The authors’ vehicle was outfitted with the Candrive sensor and with 3 

Blackberry Z10 smart phones (each containing 3 axis accelerometers). An 

application [139] was deployed on each of the smart phones that allowed local 

recording of the accelerometer readings.  The smart phones were set to a 40Hz 

sampling rate to provide over sampling from the 1Hz GPS and OBDII velocity data. 

The accelerometer and velocity sensors were recorded during 4 acceleration / 

deceleration profiles with the smart phone in the following positions: 

• All 3 phones oriented with top in direction of travel. 

• 2 phones with bottom / 1 with top in direction of travel. 

• All 3 phones oriented with right side in direction of travel. 

• 2 phones with left / 1 with right side in direction of travel. 
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Table B-1: Comparison of finite difference formulas for derivative estimate. 

 Newton 

Fwd/Bwd 2-point 

Fwd/Bwd 

3-point 

Central 

2-point 

Central 

4-point 

Filter Type high pass 

linear phase 

high pass non-

linear phase 

band pass 

linear phase 

high pass 

linear phase 

Interpolation  Linear 2nd Order 2nd  Order 4th Order 

Symmetry Asymmetric Asymmetric Symmetric Symmetric 

Noise free Error 

Order 

O(h) O(h2) O(h2) O(h4) 

 

 The 16 acceleration/deceleration profiles and a mean accelerometer signal 

was produced by time aligning the smart phone signals and averaging the readings. 

The estimated acceleration from the velocity signals was estimated using difference 

formulas with the Newton 2-point method shown in equation B-1 and estimates the 

derivative using the next point (Forward) or previous point (Backward) with the 

estimate based on the slope of the interpolating line.   

The Newton 2-point technique is extended to 3 points evaluating the derivative 

of the interpolating quadratic polynomial with three cases: Forward 3-point using 

the next 2 points, (equation B-2) Backward 3-point using the previous 2 points, 

(equation B-3) and Central 2-point using 1 point on either side (equation B-4).    

Central 4-point formula (equation B-5) is a fourth method derived through the 

application of Richardson extrapolation [136] to the Central 2-point formula and is 

equivalent to measuring the derivative of an interpolating fourth order polynomial.   

�M�"� 	 	 N�HO9�8N�H�P 													       [B-1] 

�M�"� 	 	8N�HO+�OQN�HO9�8RN�H�+P                             [B-2] 

�M�"� 	 	8RN�H8+�OQN�H89�8N�H�+P                             [B-3] 

�M�"� 	 	 N�HO9�8N�H89�+P 					   [B-4] 

�M�"� 	 	8N�HO+�OSN�HO9�8SN�H89�ON�H8+�9+P 																					 [B-5] 
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The two central difference formulas are symmetric through the use of a balanced 

set of points on either side of the reference point, while the Newton 2-point and 

Forward/Backward 3-point formulas are asymmetric. 

Each of these methods has a noise free measurement error term [136] 

associated with their accuracy in measuring the derivative of a noise free signal.  In 

all cases, the error is heavily influenced by the distance between the intervening 

points (h) (Table B-1). The actual signals measured will include noise and 

measurement error, so their impact on the derivative estimates must be evaluated. 

The measured signal from each of the sensors is shown in equation B-6, where the 

measured signal f[n] is the combination of the actual signal g[n] and a Gaussian 

noise/error term Ζ[n]. 

��"� 	 !�"� T U�"�		        [B-6] 

The substitution of this noisy signal into each of equations B-1 through B-5 leads 

to equations B-7 through B-11, respectively. 

�M�"� 	 V�HO9�8V�H�
P T +W�H�

P 													       [B-7] 

�M�"� 	 8V�HO+�OQV�HO9�8RV�H�
+P T QW�H�

P    [B-8] 

�M�"� 	 8RV�H8+�OQV�H89�8V�H�
+P T QW�H�

P    [B-9] 

�M�"� 	 V�HO9�8V�H89�
+P T W�H�

P 							   [B-10] 

�M�"� 	 8V�HO+�OSV�HO9�8SV�H89�OV�H8+�
9+P T 9.YW�H�

P 							 [B-11] 

The predicted noise performance of each of the finite difference formulas is quite 

different where the derivative estimate is the sum of the desired value and a noise 

term that is based on the signal noise multiplied by a gain. The Central 2-point 

method has the best predicted performance, with a gain of 1/h, while the Central 4-

point method is 50% greater at 1.5/h with the others showing higher gains. The 

result is that the performance prediction for each of the finite difference formulas for 

noisy signals is different than for noise free signals, with Central 2-point having the 

best predicted noise performance. 
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The similarity of the signals from each of the sensors for each of the 

acceleration/deceleration profiles was measured through the maximum correlation 

coefficient (equation B-12) where P[n] and K[n] are two measures of the profile 

being compared.  This equation assumes that both signals have the same sampling 

rate and the shift parameter n allows time alignment of the signals to provide the 

maximum correlation. 

Z 	 max	8R]H]R ^
∑ _∗�F�`�FOH�a

bcdce f									     [B-12] 

gh���	)_ 	 ∑ �i� ��+F  [B-13] 

 The correlations of the smart phone signals with the GPS and OBDII signals 

require that the higher sampling rate acceleration signal be decimated through a 

two-step process where the signal is low-pass anti-alias filtered (ideal, non-causal, 

linear-phase, Hann window with length 950, unity gain, zero delay, pass band 

corner 0.40Hz, stop band corner 0.48Hz). 

ZjIDkFlJI 	 max	8R]H]R				m]n]Qm
^∑ _od∗�QmFOn�`�FOH�a

bcdodce f	 [B-14] 

 Here, PLP is decimated through the 40m term with the l shift parameter, 

allowing for micro-alignment at the 40Hz sampling rate and the n term allowing time 

alignment at the 1Hz sampling rate to ensure maximum correlation between signals 

(equation B-14).  

B.2. Experimental Results 

A typical velocity profile for the OBDII and GPS velocity sensors is shown in 

Figure B-1 with the upper plot shows the time domain, while the lower plots showing 

the power spectrum.  The accuracy of GPS velocity measure is +/- 0.4km/hr [93] 

while the OBDII accuracy is specified at 10% (or +/- 4km/hr at 40km/hr). 

Automakers typically ensure that the speedometer readings (OBDII) are never 

lower than actual velocity so the actual vehicle calibration has an unknown offset. 

The two figures show the strong similarity of the velocity profiles, but also 

demonstrate that the OBDII signal contains a small amount of higher frequency 

noise and the calibration offset in the OBDII signal. 
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Figure B-1: Example time and frequency domain acceleration profiles. Blue-solid: GPS, 
Red-dashed: OBDII. 

Figure B-2 compares the various smart phone accelerometer signals for the 

example GPS and OBDII profile in Figure B-1. The smart phone signals are shown 

after each has been low-pass filtered in preparation for decimation.  Figure B-9 

shows the similarity between the signals while also highlighting the variation 

between accelerometers in the smart phone devices. 

 

Figure B-2: Example acceleration profiles for the 3 accelerometers with the mean signal.  
Blue-solid: Z10A, Red-dashed: Z10B Black-dashdot: Z10C, Green-dot: 
Mean 

Figures B-3 and B-4 provide comparisons between the Central 2-point and 

Forward 3-point difference formulas for a typical acceleration/deceleration profile.  

In the upper plot of Figure B-3, the acceleration signal was derived from both the 

GPS and OBDII velocity data using the Central 2-point formula, while in the lower 

plot, the acceleration signals were obtained using the Forward 3-point formula.  The 

error in the Central 2-point acceleration estimates can be found (equation B-10) of 
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0.1m/s2 for the GPS and 1 m/s2 for the OBDII given an h of 1 second. The errors 

for the other derivative formulas scale per the noise gains. 

 

Figure B-3: Example acceleration signals comparing GPS to OBDII for two difference 
formulas.  Blue-solid: GPS, Red-dashed: OBDII. 

 

Figure B-4: Example comparison of acceleration signals for the Central 2-point and 
Forward 3-point formulas showing the resulting effects of noise in the 
resulting acceleration signal.  Blue-solid: Central 2-point, Red-dashed: 
Forward 3-point. 

Figure B-4 compares the derived signals with GPS signals being very similar 

while the OBDII derived signals differ significantly. The OBDII Central 2-point is 

very similar to both of the derived GPS signals, but the Forward 3-point signal 

demonstrates the effect of the higher frequency noise (shown in Figure B-1) being 

amplified by the difference formula (as predicted by equation B-9).  Similar effects 

were seen in the Backward 3-point, Central 4-point and Forward/Backward 2-point 

as noise amplification varied as predicted by the differing noise gains. 
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Table B-2: Comparison of the smart phone acceleration profiles showing the maximum, 
minimum, mean correlation coefficient and standard deviation of mean. 
(n=16) 

  Z10 A Z10 B Z10 C Z10 mean 

Z10 A Max   0.974 0.973 0.984 

Mean   0.949 0.956 0.976 

Min   0.875 0.930 0.955 

StDev   0.025 0.012 0.008 

Z10 B Max 0.974  0.998 0.998 

Mean 0.949  0.973 0.990 

Min 0.875  0.831 0.931 

StDev 0.025   0.041 0.016 

Z10 C Max 0.973 0.998   0.998 

Mean 0.956 0.973   0.994 

Min 0.930 0.831   0.974 

StDev 0.012 0.041   0.006 
 

The comparison of the correlation coefficient for the 16 acceleration / 

deceleration events between the 4 accelerometer signals is shown in Table B-2.  

For each profile, the correlation coefficient was measured using equation B-15 and 

down sampled 1Hz signals showing that the smart phone accelerometers provide 

results that are highly correlated, despite the signal variation. 

Table B-3 shows the correlation coefficient comparison of the OBDII and GPS 

derived acceleration signals for each of the difference formulas with the highest 

correlations when Central 2-point is used for both signals even though the theory 

for noise-free signals predicts that Central 4-point should provide the best result.  

This is in line with the noise effects predicted in equations B-7 through B-11.  The 

effect of the higher frequency content in the OBDII signal is very evident in the table, 

but the smaller effect of the lower noise GPS signal is also evident.  The results for 

Forward and Backward 2-point are identical as these two acceleration signals are 

only 1 sample shifted. One method to reduce the effect of the noise within the 

formulas is to introduce a low pass filter ahead of the difference formula, but the 

Central 2-point formula has this filter “built-in” as it acts as a band pass filter. 
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Table B-3: GPS and OBDII correlation results for the difference estimates (n=16) 

 

GPS 

OBDII 

 

Central  
2-point 

Central 4-
point 

Forward 
3-point 

Backward 
 3-point 

Fwd/Bwd 
 2-point 

Central  
2-point 

Max 0.991 0.985 0.887 0.878 0.955 

Mean 0.986 0.977 0.815 0.812 0.927 

Min 0.978 0.963 0.739 0.732 0.895 

StDev 0.004 0.006 0.043 0.042 0.018 

Central  
4-point 

Max 0.989 0.983 0.890 0.880 0.957 

Mean 0.985 0.976 0.816 0.811 0.926 

Min 0.974 0.960 0.743 0.732 0.896 

StDev 0.004 0.007 0.043 0.042 0.019 

Forward  
3-point 

Max 0.974 0.971 0.869 0.876 0.943 

Mean 0.966 0.959 0.814 0.807 0.917 

Min 0.937 0.924 0.752 0.739 0.855 

StDev 0.009 0.011 0.036 0.037 0.023 

Backward 
 3-point 

Max 0.981 0.979 0.907 0.871 0.954 

Mean 0.971 0.965 0.812 0.815 0.918 

Min 0.950 0.939 0.733 0.748 0.887 

StDev 0.009 0.010 0.048 0.036 0.019 

Forward/ 
Backward 
 2-point 

Max 0.987 0.983 0.888 0.879 0.953 

Mean 0.980 0.971 0.814 0.814 0.929 

Min 0.970 0.960 0.734 0.731 0.892 

StDev 0.005 0.007 0.042 0.043 0.017 
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Table B-4: Correlation results comparing the GPS signal for the difference formula 
derivatives with the smart phone acceleration signals. (n=16) 

 
  

Central 2-
point 

Central 
4-point 

Fwd  
3-point 

Fwd 
2-point 

Bwd 
3-point 

Bwd 
2-point 

Z10 A 
vs GPS 

Max 0.875 0.873 0.873 0.873 0.858 0.872 

Mean 0.710 0.709 0.689 0.704 0.721 0.709 

Min 0.639 0.635 0.619 0.634 0.655 0.633 

StDev 0.065 0.062 0.064 0.061 0.048 0.065 

Z10 B 
vs GPS 

Max 0.872 0.867 0.851 0.867 0.868 0.868 

Mean 0.823 0.822 0.800 0.817 0.828 0.822 

Min 0.706 0.706 0.708 0.707 0.699 0.705 

StDev 0.040 0.038 0.035 0.037 0.040 0.040 

Z10 C vs 
GPS 

Max 0.943 0.938 0.923 0.937 0.922 0.936 

Mean 0.838 0.837 0.812 0.832 0.843 0.837 

Min 0.790 0.791 0.757 0.784 0.806 0.788 

StDev 0.038 0.036 0.039 0.037 0.029 0.038 

Z10 
mean 
vs 
GPS 

Max 0.879 0.876 0.872 0.876 0.859 0.874 

Mean 0.810 0.808 0.785 0.803 0.815 0.810 

Min 0.760 0.762 0.742 0.758 0.779 0.757 

StDev 0.034 0.031 0.035 0.031 0.021 0.034 

Tables B-4 and B-5 provide the correlation coefficient comparisons of the smart 

phone acceleration signals to the GPS and OBDII accelerations.  Once again the 

high frequencies in the OBDII reduced the correlations due to the noise 

amplification on the difference formulas. The tables show the strong correlation 

between the acceleration signals derived from the GPS position sensor and OBDII 

velocity sensor in comparison to direct acceleration measurement. 
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Table B-5: Correlation results comparing the OBDII signal for the difference formula 
derivatives with the smart phone acceleration signals. (n=16) 

 
  

Central 2-
point 

Central 
4-point 

Fwd  
3-point 

Fwd 
2-point 

Bwd 
3-point 

Bwd 
2-point 

Z10 A 
vs OBDII 

Max 0.856 0.845 0.712 0.815 0.711 0.813 

Mean 0.712 0.705 0.594 0.676 0.613 0.678 

Min 0.622 0.613 0.500 0.579 0.535 0.580 

StDev 0.068 0.067 0.058 0.062 0.063 0.067 

Z10 B 
vs OBDII 

Max 0.875 0.862 0.765 0.832 0.788 0.844 

Mean 0.821 0.813 0.681 0.775 0.700 0.783 

Min 0.700 0.696 0.611 0.684 0.614 0.684 

StDev 0.044 0.044 0.049 0.042 0.054 0.045 

Z10 C vs 
OBDII 

Max 0.941 0.931 0.759 0.879 0.786 0.887 

Mean 0.836 0.827 0.688 0.787 0.710 0.792 

Min 0.771 0.759 0.609 0.729 0.632 0.729 

StDev 0.043 0.043 0.049 0.041 0.053 0.044 

Z10 
mean vs 
OBDII 

Max 0.869 0.859 0.739 0.819 0.767 0.842 

Mean 0.808 0.801 0.667 0.761 0.687 0.768 

Min 0.742 0.732 0.590 0.699 0.616 0.698 

StDev 0.040 0.040 0.049 0.039 0.051 0.044 

 


