

Fusion Algorithm for the Detection of ECG Characteristic Points R B Wallace, R M Dansereau, R A Goubran

Canada's Capital University

Objective

- The Electrocardiogram (ECG) is a key diagnostic monitor used by clinicians for in-patient and increasingly for outpatients.
- Temporal location of ECG P, Q, R, S and T phases enables many diagnostic decisions
 - Pulse → from R phase spacing
 - Changes in intervals between waves can be indicators of various conditions or identify risks

Typical ECG signal

Challenges

- Noise ECG signals are mV range
- Normal variations in wave form
 - Inverted T waves
 - Additional phases Normal conditions, Infants
 - Medical conditions: Missing, extra, variant phases
- ECGs are non-stationary signals:
 - Vary over time and cycle to cycle
 - Spectrum is very different for each of the phases

Dataset

- ECG training set (33 ECGs) from <u>www.physionet.org</u>
 - 26 ECGs: "PTB Diagnostic ECG Database"
 - 4 ECGs: "Non-Invasive Fetal ECG Database"
 - 3 ECGs: "Intracardiac Atrial Fibrillation Database"

Multi-resolution Wavelet Analysis

Overview:

- Decompose signals into frequency bands using short length filters to allow for compact support in time
- Results in a series of detail and final approximation signals representing various frequency bands of the signal

For each R phase

For each R phase

reconstruction

→ Q phase

→ S phase

→ P Phase

phase

Search for preceding minima

Search for following minima

Create WLe4 – Approx 5

Search for maxima before each Q

Measure slope trend post S phase

Update T phase trend measure

maxima / minima post S phase

Based on trend search for

Detection algorithm

Create reconstructions
WLe1: Detail 4,5,6
WLe2: Detail 6xDetail 4,5
WLe1e2: abs(WLe1*WLe2)

Do peak search on WLe1e2
Peak: WLe1e2 > 5% max(WLe1e2)
→ Candidate R phases

WLe3: 60Hz IIR LPF of ECG Take derivatives of WLe1 and WLe3 and correlate

True up R phases - Search correlation for local maxima near candidate R phases

→ R phase locations

time - msec

Table 1: Detection results for wavelet algorithm

Empirical Mode Decomposition

Overview

- EMD effectively uses the signal itself as the decomposition reference.
- Decomposes signal into a series of Intrinsic Mode Functions (IMF) and a resulting residue
- Reconstruction is simple through addition of IMFs and final residual

Example EMD decomposition of a noisy sine wave showing resulting first IMF and residual

Detection algorithm

time - msec

Fusion Detection Algorithm

Calculate R phase candidates per EMD and Wavelet algorithms

→ two R phase candidate sets

Calculate pulse estimate

Find R phase pairs (+/- 20 samples) in sets

Processed unpaired R phases

- If adjacent pairs from different algorithm
- → if pulses are close: choose nearest to pulse predicted location otherwise treat as separate R phases

For separate R phases – Accept if close to predicted pulse location

Build final set → R phases

Use EMD algorithm → Q & S phases

Find EMD and wavelet algorithm P and T phase candidate sets
Use average PQ gap to identify P wave → P phases
Use average ST gap to identify T wave → T phases

Conclusions

- None of the errors are common between the EMD and wavelet algorithms enabling fusion algorithm to be developed with improved performance.
- Low false positive (FP) and false negative (FN) rates with fusion technique with false negative errors rates of less than 1.0% and only 2 false positive errors across almost 1500 phases analyzed
- Wavelet: Shows good rejection of movement artifacts
- P, Q, S, T accuracy highly dependent on the R phase detection accuracy

Future work

- Extend algorithm to support block processing for longer duration ECGs
- Include classification models to enhance detection performance
- Test algorithm on longer (duration) ECGs and on ECGs outside training set

Results	Phase	Total	Detected	Missed	Extra	TP Rate	TP st.dev.	FP Rate	FN Rate	Phase	Total	Detected	Missed	Extra	TP Rate	TP st.dev	FP Rate	FN Rate
	Р	278	275	3	1	99.0%	0.030	0.36%	1.08%	Р	362	355	7	2	98.1%	0.044	0.55%	1.93%
	Q	310	305	5	0	98.3%	0.049	0.00%	1.61%	Q	410	403	7	3	98.3%	0.043	0.73%	1.71%
	R	336	328	8	10	97.6%	0.048	2.98%	2.38%	R	443	436	7	3	98.5%	0.040	0.68%	1.58%
	S	303	265	38	9	87.3%	0.234	2.97%	12.5%	S	411	401	10	2	97.6%	0.060	0.49%	2.43%
	Т	305	300	5	8	98.1%	0.047	2.62%	1.64%	Т	411	400	11	2	97.3%	0.049	0.49%	2.68%

time - msec

Table 2: Detection results for EMD algorithm
--

	Phase	Total	Detected	Missed	Extra	TP Rate	TP st.dev	FP Rate	FN Rate
	Р	269	269	0	0	100%	0.000	0.00%	0.00%
	Q	302	300	2	0	99.3%	0.039	0.00%	0.66%
	R	334	332	2	1	99.4%	0.035	0.30%	0.60%
	S	301	298	3	1	98.9%	0.044	0.33%	1.00%
	Т	302	299	3	0	99.0%	0.033	0.00%	0.99%
_			-			<u>-</u>			

Table 3: Detection results for Fusion algorithm

(S0026)